Quiz 6 Real Analysis ICTP 2025

Julian Weigt

October 9, 2025

1. Is it true that for $a,b\geq 0$ and $f,g\geq 0$ we have

$$||af + bg||_{L^p(\mathbb{R}^d)} = a||f||_{L^p(\mathbb{R}^d)} + b||g||_{L^p(\mathbb{R}^d)}?$$

2. Is it true that for F, E disjoint we have

$$||f||_{L^p(E \cup F)} = ||f||_{L^p(E)} + ||f||_{L^p(F)}?$$

- 3. Is it true for $0 \le f \le g$ that $||f||_{L^p(\mathbb{R}^d)} \le ||g||_{L^p(\mathbb{R}^d)}$?
- 4. Does $||f||_{L^p(\mathbb{R}^d)} = 0$ imply f = 0 everywhere?
- 5. What is another way to write $\|f\|_{L^{\infty}(\mathbb{R}^d)}$ if $f: \mathbb{R}^d \to \mathbb{R}$ is continuous?
- 6. If $E \subset \mathbb{R}^2$ is \mathcal{L}^2 -measurable, is it true that for each $x \in \mathbb{R}$ the set $E_x = \{y \in \mathbb{R} : (x,y) \in E\}$ is \mathcal{L}^1 -measurable?
- 7. If $f: \mathbb{R}^2 \to [-\infty, \infty]$ is \mathcal{L}^2 -integrable, is it true that for every $x \in \mathbb{R}$ the function $y \mapsto f(x, y)$ is \mathcal{L}^1 -integrable?