Quiz 6 Real Analysis ICTP 2025

Julian Weigt

October 9, 2025

1. Is it true that for $a, b \ge 0$ and $f, g \ge 0$ we have

$$||af + bg||_{L^p(\mathbb{R}^d)} = a||f||_{L^p(\mathbb{R}^d)} + b||g||_{L^p(\mathbb{R}^d)}?$$

Solution: No, only for p=1 or for g=0. But it remains true as an inequality for all $1 \le p \le \infty$.

2. Is it true that for F, E disjoint we have

$$||f||_{L^p(E\cup F)} = ||f||_{L^p(E)} + ||f||_{L^p(F)}$$
?

Solution: No, only for p = 1.

3. Is it true for $0 \le f \le g$ that $||f||_{L^p(\mathbb{R}^d)} \le ||g||_{L^p(\mathbb{R}^d)}$?

Solution: Yes.

4. Does $||f||_{L^p(\mathbb{R}^d)} = 0$ imply f = 0 everywhere?

Solution: No, only almost everywhere.

5. What is another way to write $||f||_{L^{\infty}(\mathbb{R}^d)}$ if $f:\mathbb{R}^d\to\mathbb{R}$ is continuous?

Solution: If f is continuous then $\|f\|_{L^{\infty}(\mathbb{R}^d)} = \sup_x |f(x).$

6. If $E \subset \mathbb{R}^2$ is \mathcal{L}^2 -measurable, is it true that for each $x \in \mathbb{R}$ the set $E_x = \{y \in \mathbb{R} : (x,y) \in E\}$ is \mathcal{L}^1 -measurable?

Solution: No (assuming AC). For example take a nonmeasurable set $S \subset [0,1]$ and set $E = \{(0,y): y \in S\}$. Then $\mathcal{L}^2(E) = 0$ and thus E is \mathcal{L}^2 -measurable, but $E_0 = S$ is not \mathcal{L}^1 -measurable.

7. If $f: \mathbb{R}^2 \to [-\infty, \infty]$ is \mathcal{L}^2 -integrable, is it true that for every $x \in \mathbb{R}$ the function $y \mapsto f(x, y)$ is \mathcal{L}^1 -integrable?

Solution: No, only for \mathcal{L}^1 -almost every $x \in \mathbb{R}$. For example $f = \infty \cdot (1_{\{0\} \times [1,2]} - 1_{\{0\} \times [-1,0]})$ has $\int f \, d\mathcal{L}^2 = 0$ but $y \mapsto f(0,y)$ is not \mathcal{L}^1 -integrable.