Quiz 4 Real Analysis ICTP 2025

Julian Weigt

September 29, 2025

1. Let $A_1,A_2,\ldots\subset\Omega$ be measurable and $a_1,a_2,\ldots\geq0$. Is the function $f=\sum_{n=1}^\infty a_n1_{A_n}$ measurable?

Solution: Yes, because for each $k \in \mathbb{N}$ the function $f_k = \sum_{n=1}^k a_k 1_{A_k}$ is measurable and $f = \lim_{k \to \infty} f_k$.

2. Let $a_1,...,a_n,b_1,...,b_n\in\mathbb{R}$ and $A_1,...,A_n,B_1,...,B_n\subset\Omega$ such that

$$\sum_{k=1}^{n} a_n 1_{A_n} = \sum_{k=1}^{n} b_n 1_{B_n}.$$

Is it true, that $\{a_1,...,a_n\}=\{b_1,...,b_n\}$ and $\{A_1,...,A_n\}=\{B_1,...,B_n\}?$

Solution: No, it may happen that $A_1 = A_2 = B_1 = B_2$ and $a_1 + a_2 = b_1 + b_2$ but $\{a_1, a_2\} \neq \{b_1, b_2\}$, for example for $a_1 = 0, a_2 = 2, \ b_1 = b_2 = 1$.

It similarly happen that $a_1 = a_2 = b_1 = b_2$ and $A_1 \cup A_2 = B_1 \cup B_2$ but $\{A_1, A_2\} \neq \{B_1, B_2\}$.

3. Let $f_1, f_2: \Omega \to [0, \infty]$ and $f = f_1 - f_2$. Does that imply $f_1 = f^+$ and $f_2 = f^-$? What, if for all $x \in \Omega$ we have $f_1(x) = 0$ or $f_2(x) = 0$?

Solution: No, for example if f = 1 is constant, then $f^+ = 1$ and $f^- = 0$ but $f_1 = 2$ and $f_2 = 1$ satisfy $f = f_1 - f_2$.

The statement is true however under the assumption that for all $x \in \Omega$ we have $f_1(x) = 0$ or $f_2(x) = 0$.

4. Let μ be a measure on \mathbb{R}^d . Is \mathbb{R}^d σ -finite with respect to μ ? What, if μ is a Radon measure?

Solution: No, for example for the counting measure.

If μ is a Radon measure the answer is yes, because $\mathbb{R}^d = B(0,1) \cup B(0,2) \cup \dots$ and $\mu(B(0,n)) \leq \mu(\overline{B(0,1)}) < \infty$.

5. Given $f, f_1, f_2, \ldots : \Omega \to \mathbb{R}$, what does it mean that $f_n \to f$ uniformly?

Solution: It means that for every $\varepsilon > 0$ exists an $n \in \mathbb{N}$ such that for all $k \ge n$ and $x \in \Omega$ we have $|f_k(x) - f(x)| < \varepsilon$.

6. Find an example of functions $f, f_1, f_2, \ldots : (0,1) \to \mathbb{R}$ such that $f_n \to f$ pointwise, but not uniformly.

Solution: Set $f_n(x) = x^{1/n}$. Then $f_n \to 0$ pointwise but not uniformly: Let $n \in \mathbb{N}$. Then for $x_n = 1/2^{1/n} \in (0,1)$ we have $|f_n(x_n) - 0| = 1/2$.

7. Find $f: \mathbb{R} \to \mathbb{R}$ and a closed set $C \subset \mathbb{R}$ such that $f: C \to \mathbb{R}$ is continuous but $f: \mathbb{R} \to \mathbb{R}$ is not continuous in every $x \in C$.

Can you also find an open set with that property?

Solution: Set C = [0, 1] and f(x) = 1 if $x \in C$ and f(x) = 0 if $x \notin C$.

Such an example cannot be found with an open set U instead. The reason is, that if $x \in U$ and $x_n \to x$, then there exists a $k \in \mathbb{N}$ such that for all $n \geq k$ we have $x_n \in U$. As a consequence, $f: U \to \mathbb{R}$ is continuous in x if and only if $f: \mathbb{R}^d \to \mathbb{R}$ is continuous in x.

- 8. What is the Lebesgue integral $\int f d\mathcal{L}$ for
 - (i) $f = 1_{\mathbb{R}} 1_{\mathbb{R}}$
 - (ii) $f = 1_{[0,\infty)} 1_{(-\infty,0)}$

Solution:

- (i) 0, since the canonical form of f is f = 0.
- (ii) The integral is not defined because both $\int f^+ d\mathcal{L} = \infty$ and $\int f^- d\mathcal{L} = \infty$.