Quiz 1 Real Analysis ICTP 2025

Julian Weigt

September 2, 2025

1. For $Q = \{Q_n : n \in \mathbb{N}\}$ is

$$\bigcup \mathcal{Q} = \bigcup_{n=1}^{\infty} Q_n?$$

- 2. For $x, y \in \mathbb{R}^d$ and $i \in \{1, ..., d\}$ is it true, that $x_i + y_i = (x + y)_i$?
- 3. Is it true for all $x \in \mathbb{R}$ that $(x + \infty) \infty = x + (\infty \infty)$?
- 4. In \mathbb{R} , what is the value of $\mathcal{L}_*(\{2\})$?
- 5. Is it true for any set of cubes $Q_1,...,Q_n\subset\mathbb{R}^d$ that

$$\mathcal{L}_*(Q_1 \cup ... \cup Q_n) = \mathcal{L}_*(Q_1) + ... \mathcal{L}_*(Q_n)$$
?

- 6. Let μ_* be an outer measure on Ω . Is it true for all sets $A, B \subset \Omega$ that $\mu_*(A \cup B) \leq \mu_*(A) + \mu_*(B)$?
- 7. Let μ_* be an outer measure on Ω . Is it true for all sets $A, B \subset \Omega$ with $A \cap B = \emptyset$ that $\mu_*(A \cup B) = \mu_*(A) + \mu_*(B)$?
- 8. Let μ_* be an outer measure on Ω . Is it true for all measurable sets $A, B \subset \Omega$ with $A \cap B = \emptyset$ that $\mu_*(A \cup B) = \mu_*(A) + \mu_*(B)$?
- 9. Does Lebesgue outer measure assign a number to every subset $E \subset \mathbb{R}^d$? Does this number always represent a reasonable notion of volume of the set?