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Preliminaries

This course assumes familiarity with basic no-
tions from

• functions, such as injectivity, bijectivity,
images, and preimages,

• topology on ℝ𝑑, such as closed and open
sets,

• analysis on the real line, such as sequences,
series, limits, lim inf and lim sup,

• calculus on the real line, such as the chain
and product rule for derivatives, and the
Riemann integral.
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We recall the following notions and notations
that are important for the course.

Sets and set operations We denote by ℕ the
natural numbers ℕ ≔ {1, 2, 3, …} and by ℝ
the real numbers. For two sets 𝐴 and 𝐵 their
union 𝐴 ∪ 𝐵 consists of all points 𝑥 that belong
to 𝐴 or to 𝐵. Their intersection 𝐴 ∩ 𝐵 con-
sists of all points that belong to both 𝐴 and 𝐵.
For sets 𝐴𝑛 that are indexed by for example by
natural numbers 𝑛 ∈ ℕ in the case of a sequence
𝐴1, 𝐴2, …, we denote by

∞
⋃
𝑛=1

𝐴𝑛 = 𝐴1 ∪ 𝐴2 ∪ …

their union, i.e. the set of all points that for any 𝑛
belong to 𝐴𝑛. More generally, if 𝒜 is a collection
of sets 𝐴, we denote by

⋃ 𝒜 = ⋃
𝐴∈𝒜

𝐴

the set of all points 𝑥 for which there exists an
𝐴 ∈ 𝒜 with 𝑥 ∈ 𝒜. The set difference 𝐴 ∖ 𝐵
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consists of all points that belong to 𝐴 and not
to 𝐵. Two sets 𝐴, 𝐵 are disjoint if 𝐴 ∩ 𝐵 = ∅.
We say that a collection of sets 𝒜 is disjoint, if
any two 𝐴, 𝐵 ∈ 𝒜 with 𝐴 ≠ 𝐵 are disjoint.

For two sets 𝐴, 𝐵 we define their product 𝐴×
𝐵 as the set of all pairs with the first element
from 𝐴 and the second element from 𝐵, i.e.

𝐴 × 𝐵 = {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.
More generally,

𝐴1×…×𝐴𝑛 = {(𝑎1, …, 𝑎𝑛) ∶ ∀𝑘 = 1, …, 𝑛 𝑎𝑘 ∈ 𝐴𝑘}.
A set 𝐴 is countable if there exists a surjection
𝑓 ∶ ℕ → 𝐴, i.e. for each 𝑎 ∈ 𝐴 exists an 𝑛 ∈ ℕ
with 𝑓(𝑛) = 𝑎. We also write 𝑎𝑛 ≔ 𝑓(𝑛).

Euclidean space The basic space where our
study takes place is Euclidean space, that is,
for any natural number 𝑑 ∈ ℕ, the space ℝ𝑑,
which consist of all 𝑑-tuples 𝑥 = (𝑥1, …, 𝑥𝑑) of
real numbers 𝑥𝑛 ∈ ℝ with 𝑛 = 1, …, 𝑑.

We assign to each point 𝑥 ∈ ℝ𝑑 its (Eu-
clidean) norm

|𝑥| = (𝑥2
1 + … + 𝑥2

𝑑) 1
2 .
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We can add and substract points 𝑥, 𝑦 ∈ ℝ𝑑 com-
ponentwise,

𝑥 + 𝑦 = (𝑥1 + 𝑦1, …, 𝑥𝑑 + 𝑦𝑑)
𝑥 − 𝑦 = (𝑥1 − 𝑦1, …, 𝑥𝑑 − 𝑦𝑑).

Euclidean distance The (Euclidean) distance
between them is |𝑥 − 𝑦|. The most elementary
subsets of ℝ we consider are open and closed in-
tervals. For 𝑎, 𝑏 ∈ ℝ denote by [𝑎, 𝑏] the set of
all 𝑥 ∈ ℝ with 𝑎 ≤ 𝑥 ≤ 𝑏 and by (𝑎, 𝑏) the set
of all 𝑥 ∈ ℝ with 𝑎 < 𝑥 < 𝑏. In Euclidean space
with larger dimensions 𝑑 those sets generalize to
rectangles and balls. For 𝑎, 𝑏 ∈ ℝ such that for
𝑛 = 1, …, 𝑑 we have 𝑎𝑛 ≤ 𝑏𝑛, the open and closed
rectangles that have 𝑎 and 𝑏 as opposite corners
are

(𝑎1, 𝑏1) × … × (𝑎𝑑, 𝑏𝑑), [𝑎1, 𝑏1] × … × [𝑎𝑑, 𝑏𝑑].

The (open) ball with center 𝑥 ∈ ℝ𝑑 and radius
𝑟 > 0 consist of those 𝑦 ∈ ℝ𝑑 with |𝑥 − 𝑦| < 𝑟
and is denoted by 𝐵(𝑥, 𝑟). The corresponding
closed ball 𝐵(𝑥, 𝑟) consist of those 𝑦 ∈ ℝ𝑑 with
|𝑥 − 𝑦| ≤ 𝑟.
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Let 𝐴 ⊂ ℝ𝑑. A point 𝑥 ∈ ℝ𝑑 is an interior
point of 𝐴 if there exists an 𝑟 > 0 with 𝐵(𝑥, 𝑟) ⊂
𝐴. A point 𝑥 ∈ ℝ𝑑 is a limit point of 𝐴 if for
every 𝑟 > 0 exists a 𝑦 ∈ 𝐴 with |𝑥 − 𝑦| < 𝑟.
We denote by ̊𝐴 the interior of 𝐴, the set of
all interior points of 𝐴. We denote by 𝐴 the
closure of 𝐴, the set of all limit points of 𝐴.
We denote by

𝜕 𝐴 ≔ 𝐴 ∖ ̊𝐴

the boundary of 𝐴. By this definiton, the inte-
rior of an open or closed ball is the corresponding
open ball, and its closure is the corresponding
closed ball. The same is true for rectangles.

The extendend real line is the set ℝ∪{−∞, ∞}.
We partially extend addition and multiplication
from ℝ to the extended real line by defining

∀𝑥 ∈ ℝ ∪ {∞} ∶ 𝑥 + ∞ ≔ ∞ ∀𝑥 > 0 ∶ 𝑥 ⋅ ∞ ≔ ∞.

We further extend this by prescribing commu-
tativity and associativity and multiplying both
definitions with −1. This only leaves ∞ − ∞
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and 0 ⋅ ∞ undefined. In this sense we can treat
a statement like

lim
𝑛→∞

𝑎𝑛 = ∞

as an equality on the extended real line. We also
extend the relations <, ≤, >, ≥ to the extended
real line via

∀𝑥 ∈ ℝ ∪ {−∞} ∶ 𝑥 < ∞, ∞ = ∞,
with the corresponding definitions for −∞.

Recall also

inf ∅ = ∞, sup ∅ = −∞.

Convergent sums Let 𝑎1, 𝑎2, … ≥ 0. Then
their sum does not depend on the order of sum-
mation, i.e. for any bijection 𝜎 ∶ ℕ → ℕ we have

∞
∑
𝑛=1

𝑎𝑛 =
∞

∑
𝑛=1

𝑎𝜎(𝑛).

Here, both sides of the equality may be infinite.
The same conclusion is true if 𝑎1, 𝑎2, … ∈ ℝ and

∞
∑
𝑛=1

|𝑎𝑛| < ∞.

7



For a countable set 𝐴 = {𝑎1, 𝑎2, …} ⊂ [0, ∞] this
allows for the notation

∑
𝑎∈𝐴

𝑎 =
∞

∑
𝑛=1

𝑎𝑛.
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Chapter 1

Measure Theory

The main textbook sources are [SS05] and [EG15].
Other inspirational material are the lecture notes
in real analysis by Emanuel Carneiro and the
lecture notes in measure theory [Kin24] and real
analysis [Kin25] by Juha Kinnunen.
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1.1 Lebesgue outer measure
1

Our first goal is to rigorously assign a volume
to subsets of ℝ𝑑. A set whose volume we already
know is the rectangle: For 𝑎, 𝑏 ∈ ℝ𝑑 the volume
of the rectangle 𝑅 = (𝑎1, 𝑏1)×…×(𝑎𝑑, 𝑏𝑑) is the
product of its side lengths,

|𝑅| = (𝑏1 − 𝑎1) ⋅ … ⋅ (𝑏𝑑 − 𝑎𝑑). (1.1.1)
The corresponding closed rectangle has the same
volume.

We say that a collection ℛ of rectangles is
almost disjoint if for any two 𝑅0, 𝑅1 ∈ ℛ with
𝑅0 ≠ 𝑅1 their interiors ̊𝑅0 and ̊𝑅1 are disjoint.
Lemma 1.1.1. Let 𝑛 ∈ ℕ and let 𝑅1, …, 𝑅𝑛 be
almost disjoint rectangles such that

𝑅 = 𝑅1 ∪ … ∪ 𝑅𝑛

is a rectangle, too. Then

|𝑅| =
𝑛

∑
𝑘=1

|𝑅𝑘|.
1This section follows Sections 1.1.1 and 1.1.2 from

[SS05] for the construction of the Lebesgue measure.
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Figure 1.1: The grid case.

By our intuition about volumes this is clearly
true. But it requires a proof because all we know
so far about our mathematical notion of volume
is the abstract formula (1.1.1).

Proof. We first consider the case that the rectan-
gles form a grid, that is, for each 𝑙 = 1, …, 𝑑 there
are 𝑎𝑙 = 𝑎0

𝑙 < … < 𝑎𝑁𝑑
𝑙 = 𝑏𝑙 such that each rect-

angle 𝑅𝑘 is of the form [𝑎𝑖
1, 𝑎𝑖+1

1 ]×…×[𝑎𝑗
𝑑, 𝑎𝑗+1

𝑑 ].
Then

|𝑅| =
𝑑

∏
𝑙=1

(𝑏𝑙 − 𝑎𝑙) =
𝑑

∏
𝑙=1

𝑁𝑑

∑
𝑖=1

(𝑎𝑖
𝑙 − 𝑎𝑖−1

𝑙 )
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=
𝑁1

∑
𝑖1=1

…
𝑁𝑑

∑
𝑖𝑑=1

𝑑
∏
𝑙=1

(𝑎𝑖𝑙
𝑙 − 𝑎𝑖𝑙−1

𝑙 ) =
𝑛

∑
𝑘=1

|𝑅𝑘|.

(1.1.2)

For the general case, we subdecompose each
rectangle 𝑅𝑖 via the extended faces of the rectan-
gles 𝑅1, …, 𝑅𝑛 into rectangles 𝑅𝑖 = 𝑅1

𝑖 ∪…∪𝑅𝑁𝑖
𝑖 .

This subdecomposition is a grid which means
that by the previous case

|𝑅𝑖| =
𝑁𝑖

∑
𝑗=1

|𝑅𝑗
𝑖 |.

Moreover, the rectangles {𝑅𝑗
𝑖 ∶ 𝑗 = 1, …, 𝑁𝑖, 𝑖 =

1, …, 𝑛} form a grid for 𝑅, so that

|𝑅| =
𝑛

∑
𝑖=1

𝑁𝑖

∑
𝑗=1

|𝑅𝑗
𝑖 | =

𝑛
∑
𝑖=1

|𝑅𝑖|. (1.1.3)

Lemma 1.1.2. Let 𝑛 ∈ ℕ and let 𝑅, 𝑅1, …, 𝑅𝑛
be rectangles with

𝑅 ⊂ 𝑅1 ∪ … ∪ 𝑅𝑛
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Figure 1.2: The general
case.

Figure 1.3: Subdecom-
position into grid.
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Then
|𝑅| ≤

𝑛
∑
𝑘=1

|𝑅𝑘|.

Proof. This follows by the same proof as Lemma 1.1.1,
except that some rectangles of the grid that de-
composes 𝑅 may belong to more than one of the
rectangles 𝑅1, …, 𝑅𝑛. More precisely, the last
equality in (1.1.2) and the first equality in (1.1.3)
become inequalities.

We want to use a similar idea of writing a
set in terms of sets whose volume we know in
order to define its volume. A cube 𝑄 ⊂ ℝ𝑑 is a
rectangle whose sidelengths are all identical, i.e.
for 𝑎1, …, 𝑎𝑑 ∈ ℝ𝑑 and 𝑟 > 0 it is of the form

𝑄 = (𝑎1, 𝑎1 + 𝑟) × … × (𝑎𝑑, 𝑎𝑑 + 𝑟).

Its volume thus is |𝑄| = 𝑟𝑑. For any set 𝐸 ⊂ ℝ𝑑

we define its outer Lebesgue measure by

ℒ∗(𝐸) = inf{∑
𝑄∈𝒬

|𝑄| ∶

𝒬 is a countable set of closed cubes
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with 𝐸 ⊂ ⋃ 𝒬}.

2025-09-09

Lemma 1.1.3. For each closed cube 𝑄 we have

ℒ∗(𝑄) = |𝑄|.

Proof. Since {𝑄} is a cover of 𝑄 we have ℒ∗(𝑄) ≤
|𝑄|. For the reverse inequality let 𝜀 > 0. Then
there exists a countable cover 𝒬 of 𝑄 such that

ℒ∗(𝑄) ≤ ∑
𝑃∈𝒬

|𝑃 | + 𝜀.

Let 𝛿 > 0 and for each 𝑃 ∈ 𝒬 denote by ̃𝑃 the
open cube with the same center as 𝑃 and volume
1+𝛿 times the volume of 𝑃 . Then ̃𝑃 ⊃ 𝑃 which
means that 𝒫̃ ≔ { ̃𝑃 ∶ 𝑃 ∈ 𝒬} is an open cover of
the compact set 𝑄 and thus has a finite subcover
𝒫. By Lemma 1.1.2 we can conclude

|𝑄| ≤ ∑
𝑃̃∈𝒫

| ̃𝑃 | = (1 + 𝛿) ∑
𝑃̃∈𝒫

|𝑃 |

≤ (1 + 𝛿) ∑
𝑃∈𝒬

|𝑃 | ≤ (1 + 𝛿)(ℒ∗(𝑄) + 𝜀).
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Since 𝜀, 𝛿 > 0 were arbitrarily small we can con-
clude |𝑄| ≤ ℒ∗(𝑄) and finish the proof.

Remark 1.1.4. We need to allow countable se-
quences of cubes in the definition of the outer
measure. If we only allowed finite sequences then
unbounded sets would always have infinite outer
Lebesgue measure. However, sets like ℕ ⊂ ℝ
should have zero volume.

For a set Ω denote by 2Ω the set of all subsets
of Ω. We say that a set function 𝜇∗ ∶ 2Ω → [0, ∞]
is an outer measure if it has the following two
properties:

(i) (empty set) 𝜇∗(∅) = 0.

(ii) (countable subadditivity) For each 𝐸, 𝐸1, 𝐸2, … ⊂
Ω with 𝐸 ⊂ 𝐸1 ∪ 𝐸2 ∪ … we have

𝜇∗(𝐸) ≤
∞

∑
𝑛=1

𝜇∗(𝐸𝑛).

Observe that countable subadditivity implies
the monotonicity property, that for each 𝐸0 ⊂
𝐸1 ⊂ Ω we have 𝜇∗(𝐸0) ≤ 𝜇∗(𝐸1).
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Proposition 1.1.5. Lebesgue outer measure is
an outer measure or ℝ𝑑.

Proof. In order to show the empty set property
it suffices to observe that the empty cover ∅ is a
cover of ∅, and that an empty sum equals zero.

In order to prove the countable subadditivity
let 𝜀 > 0. Then for each 𝑛 = 1, 2, … exists a cover
𝒬𝑛 of 𝐸𝑛 such that

∑
𝑄∈𝒬𝑛

|𝑄| ≤ ℒ∗(𝐸)𝑛 + 2−𝑛𝜀.

Then 𝒬 ≔ 𝒬1 ∪ 𝒬2 ∪ … is a cover of 𝐸1 ∪ 𝐸2 ∪ …
and thus

ℒ∗(
∞
⋃
𝑛=1

𝐸𝑛)

≤ ∑
𝑄∈𝒬1∪𝒬2∪…

|𝑄| =
∞

∑
𝑛=1

∑
𝑄∈𝒬𝑛

|𝑄|

≤
∞

∑
𝑛=1

(ℒ∗(𝐸𝑛) + 2−𝑛𝜀) = 𝜀 +
∞

∑
𝑛=1

ℒ∗(𝐸𝑛).

Since 𝜀 > 0 was arbitrarily small this finishes the
proof.
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For Lebesgue outer measure to represent a
reasonable notion of volume, it should be true
that if we divide a set into parts, the volumes
of the parts should sum up to the volume of the
original set. This property is called additivity if
we ask it to hold for a division into finitely many
parts, and countable additivity for countably
many. In Proposition 1.1.5 we have only proven
countable subadditivity for Lebesgue outer mea-
sure, i.e. that the volumes of the parts sum up
to at least the volume of the original set. Unfor-
tunately, we cannot strengthen this to countable
additivity. More precisely, we cannot prove that
for any sequence 𝐸1, 𝐸2, … ⊂ ℝ𝑑 of disjoint sets
we have

ℒ∗(
∞
⋃
𝑛=1

𝐸𝑛) =
∞

∑
𝑛=1

ℒ∗(𝐸𝑛). (1.1.4)

In fact, we will see in Section 1.2.2 that this prop-
erty can indeed fail if we assume the axiom of
choice.
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1.2 Measurable sets
1.2.1 Carathéodory’s theorem
2

As we will see, (1.1.4) actually does hold for
a vast amount of sets. To determine a sufficient
class of those sets we elevate to a more abstract
setting.

We say that a collection ℳ ⊂ 2Ω of sets is a
𝜎-algebra if

(i) (empty set) ∅ ∈ ℳ,

(ii) (complement) for each 𝐸 ∈ ℳ we have
Ω ∖ 𝐸 ∈ ℳ, and

(iii) (countable union) for each 𝐸1, 𝐸0, … ∈ ℳ
we have ∞

⋃
𝑛=1

𝐸𝑛 ∈ ℳ.

Let ℳ be a 𝜎-algebra. A set function 𝜇 ∶
ℳ → [0, ∞] is called a measure if it has the
following two properties.

2This section follows the more abstract Section 6.1.1
from [SS05].
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(i) (empty set) 𝜇(∅) = ∅.

(ii) (countable additivity) For all disjoint 𝐸0, 𝐸1, … ∈
ℳ we have

𝜇(
∞
⋃
𝑛=0

𝐸𝑛) =
∞

∑
𝑛=0

𝜇(𝐸𝑛).

A triple (Ω, ℳ, 𝜇) of a set Ω, a 𝜎-algebra ℳ and
a measure 𝜇 is called a measure space.

Note, that countable additivity is our missing
property (1.1.4). That means we call an outer
measure 𝜇∗ on a selected collection of sets a mea-
sure, if on those sets it is not only countable
subadditive but countable additive. But how do
we find that selected collection? As we will see
soon, the following criterion will do.

Given an outer measure 𝜇∗, we say that a set
𝐴 ⊂ Ω is Carathéodory measurable if for all
𝐵 ⊂ Ω we have

𝜇∗(𝐵) = 𝜇∗(𝐵 ∩ 𝐴) + 𝜇∗(𝐵 ∖ 𝐴). (1.2.1)

For brevity we will just say measurable instead
of Carathéodory measurable. As we will see,
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for Lebesgue outer measure, essentially all the
sets that we care about in analysis satisfy this
Carathéodory criterion.

Note, that

𝜇∗(𝐵) ≤ 𝜇∗(𝐵 ∩ 𝐴) + 𝜇∗(𝐵 ∖ 𝐴)

always holds by subadditivity of an outer mea-
sure. That means (1.2.1) is equivalent to

𝜇∗(𝐵) ≥ 𝜇∗(𝐵 ∩ 𝐴) + 𝜇∗(𝐵 ∖ 𝐴).

Theorem 1.2.1. Given an outer measure 𝜇∗
on Ω, the set ℳ of all Carathéodory measurable
subsets of Ω forms a 𝜎-algebra.

Theorem 1.2.2. Given an outer measure 𝜇∗
on Ω, the map 𝜇∗ restricted to the set ℳ of
all Carathéodory measurable subsets of Ω is a
measure.

2025-09-11

Proof of Theorems 1.2.1 and 1.2.2. We have to
show the following properties: Let 𝐸1, 𝐸2, … ⊂
Ω be measurable. Then
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(i) ∅ is measurable,

(ii) Ω ∖ 𝐸1 is measurable,

(iii) 𝐺 = 𝐸1 ∪ 𝐸2 ∪ … is measurable, and

(iv) if 𝐸1, 𝐸2, … are disjoint then

𝜇∗(𝐺) =
∞

∑
𝑛=1

𝜇∗(𝐸𝑛).

𝐸 = ∅ satisfies (1.2.1), and since 𝐸1 satisfies
(1.2.1) also Ω ∖ 𝐸 does. That proves (i) and (ii).

Let 𝐴 ⊂ Ω. Then

𝜇(𝐴) = 𝜇(𝐴 ∩ 𝐸1) + 𝜇(𝐴 ∖ 𝐸1)
= 𝜇(𝐴 ∩ 𝐸1 ∩ 𝐸2) + 𝜇(𝐴 ∩ 𝐸1 ∖ 𝐸2)

+ 𝜇(𝐴 ∖ 𝐸1 ∩ 𝐸2) + 𝜇(𝐴 ∖ (𝐸1 ∪ 𝐸2))
≥ 𝜇(𝐴 ∩ (𝐸1 ∪ 𝐸2)) + 𝜇(𝐴 ∖ (𝐸1 ∪ 𝐸2)).

That means 𝐸1 ∪ 𝐸2 is measurable, and by in-
duction we can conclude that for any 𝑛 ∈ ℕ the
set 𝐺𝑛 ≔ 𝐸1 ∪ … ∪ 𝐸𝑛 is measurable.

Set ̃𝐸1 = 𝐸1 and for each 𝑛 ≥ 2 set ̃𝐸𝑛 =
𝐸𝑛 ∖ 𝐺𝑛−1. Then

̃𝐸𝑛 = Ω ∖ [(Ω ∖ 𝐸𝑛) ∪ 𝐺𝑛−1]
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is measurable and 𝐺𝑛 = ̃𝐸1 ∪ … ∪ ̃𝐸𝑛, 𝐺 =
̃𝐸1 ∪ ̃𝐸2 ∪ …. Then

𝜇(𝐴 ∩ 𝐺𝑛) = 𝜇(𝐴 ∩ 𝐺𝑛 ∩ ̃𝐸𝑛) + 𝜇(𝐴 ∩ 𝐺𝑛 ∖ ̃𝐸𝑛)
= 𝜇(𝐴 ∩ ̃𝐸𝑛) + 𝜇(𝐴 ∩ 𝐺𝑛−1)

and by induction we can conclude

𝜇(𝐴 ∩ 𝐺𝑛) =
𝑛

∑
𝑘=1

𝜇(𝐴 ∩ ̃𝐸𝑘).

Therefore

𝜇(𝐴) = 𝜇(𝐴∩𝐺𝑛)+𝜇(𝐴∖𝐺𝑛) ≥
𝑛

∑
𝑘=1

𝜇(𝐴∩ ̃𝐸𝑘)+𝜇(𝐴∖𝐺)

and letting 𝑛 → ∞ we obtain

𝜇(𝐴) ≥
∞

∑
𝑘=1

𝜇(𝐴 ∩ ̃𝐸𝑘) + 𝜇(𝐴 ∖ 𝐺)

≥ 𝜇(𝐴 ∩ 𝐺) + 𝜇(𝐴 ∖ 𝐺) ≥ 𝜇(𝐴).
That means the previous inequality is an equal-
ity, which implies (iii). If the 𝐸1, 𝐸2, … are dis-
joint then 𝐸𝑛 = ̃𝐸𝑛. Setting 𝐴 = 𝐺 in the pre-
vious equality thus implies (iv).
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It follows from the definition that any set
𝐸 ⊂ Ω with 𝜇∗(𝐸) = 0 is measurable as

𝜇∗(𝐴 ∩ 𝐸) + 𝜇∗(𝐴 ∖ 𝐸) = 𝜇∗(𝐴 ∖ 𝐸) ≤ 𝜇(𝐴).

This property is called that the 𝜎-algebra ℳ of
measurable sets is complete.

Lemma 1.2.3. Let (Ω, ℳ, 𝜇) be a measure space
and let 𝐸1, 𝐸2, … ∈ ℳ. If 𝐸1 ⊂ 𝐸2 ⊂ … then

lim
𝑛→∞

𝜇(𝐸𝑛) = 𝜇(
∞
⋃
𝑛=1

𝐸𝑛),

where both sides may be infinite. If 𝜇(𝐸1) < ∞
and 𝐸1 ⊃ 𝐸2 ⊃ … then

lim
𝑛→∞

𝜇(𝐸𝑛) = 𝜇(
∞
⋂
𝑛=1

𝐸𝑛).

Proof. Exercise.

Note, that we ask (1.2.1) to hold for all sets
𝐵 ⊂ Ω, which in the end may include sets that
do not belong to the collection ℳ of measurable
sets.
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By Theorem 1.2.5, Lebesgue outer measure is
not a measure on the 𝜎-algebra 2ℝ if we assume
the axiom of choice. In the next section we will
see that still essentially all the sets that we care
about in analysis are Lebesgue measurable.

1.2.2 A non-measurable set
Lemma 1.2.4 (Translation invariance of Lebesgue
measure). Let 𝐸 ⊂ ℝ𝑑 and 𝑥 ∈ ℝ𝑑 and denote

𝐸 + 𝑥 = {𝑦 + 𝑥 ∶ 𝑦 ∈ 𝐸}.

Then
ℒ∗(𝐸 + 𝑥) = ℒ∗(𝐸).

Proof. It suffices to show ℒ∗(𝐸 + 𝑥) ≤ |𝐸| be-
cause from that we also obtain ℒ∗(𝐸) = ℒ∗(𝐸 +
𝑥 − 𝑥) ≤ ℒ∗(𝐸 + 𝑥).

For any 𝜀 > 0 exists a cover 𝒬 of 𝐸 with

ℒ∗(𝐸) ≤ 𝜀 + ∑
𝑄∈𝒬

|𝑄|.

Then ̃𝒬 = {𝑄 + 𝑥 ∶ 𝑄 ∈ 𝒬} is a cover of 𝐸 + 𝑥
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and thus since |𝑄 − 𝑥| = |𝑄| we obtain

ℒ∗(𝐸 + 𝑥) ≤ ∑
𝑄̃∈𝒬̃

|𝑄̃| = ∑
𝑄̃∈𝒬̃

|𝑄̃ − 𝑥| = ∑
𝑄∈𝒬

|𝑄|

≤ ℒ∗(𝐸) + 𝜀.

Since 𝜀 > 0 was arbitraly small we obtain ℒ∗(𝐸+
𝑥) ≤ |𝐸| and finish the proof. (Exercise?)

Theorem 1.2.5. Assume the axiom of choice
holds. Then there exist disjoint sets 𝐸0, 𝐸1, … ⊂
ℝ for which (1.1.4) fails.

Proof. For 𝑥, 𝑦 ∈ [0, 1] denote 𝑥 ∼ 𝑦 if 𝑥 − 𝑦
is a rational number. Then ∼ is an equivalence
relation. (Exercise here?) That means there is a
decomposition 𝒜 of [0, 1], i.e. the union

[0, 1] = ⋃ 𝒜

is disjoint, such that for any 𝑥, 𝑦 ∈ [0, 1] we have
𝑥 ∼ 𝑦 if and only if 𝑥 and 𝑦 belong to the same
set 𝐴 ∈ 𝒜. By the axiom of choice there exists
a set 𝐸 that contains exactly one element from
each set 𝐴 ∈ 𝒜. That means for each 𝑥 ∈ [0, 1]
exists a 𝑦 ∈ 𝐸 and a rational 𝑞 ∈ ℚ ∩ [−1, 1]
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such that 𝑥 = 𝑦 + 𝑞. Moreover, for each 𝑥 ∈ 𝐸
and 𝑞 ∈ ℚ we have 𝑥 + 𝑞 ∉ 𝐸. We can conclude
that the sets in {𝐸 + 𝑞 ∶ 𝑞 ∈ ℚ ∩ [−1, 1]} form
a countable disjoint cover of [0, 1] and belong to
[−1, 2].

By Lemma 1.2.4 we have ℒ∗(𝐸+𝑞) = ℒ∗(𝐸).
Then by

1 = ℒ∗([0, 1]) ≤ ∑
𝑞∈ℚ∩[0,1]

ℒ∗(𝐸+𝑞) = ∑
𝑞∈ℚ∩[0,1]

ℒ∗(𝐸).

we must have ℒ∗(𝐸) > 0. This however means

∑
𝑞∈ℚ∩[0,1]

ℒ∗(𝐸 + 𝑞) = ∑
𝑞∈ℚ∩[0,1]

ℒ∗(𝐸) = ∞

> 3 ≥ ℒ∗([−1, 2])
≥ ℒ∗( ⋃

𝑞∈ℚ∩[0,1]
𝐸 + 𝑞),

i.e. (1.1.4) fails.

1.2.3 Metric measures
Our definition of measurability works in a very
general setting of a mere set Ω. Since the fun-
damental domain in this course is ℝ𝑑 we allow
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ourselves to a ssume a bit more structure. Given
a set Ω a map d ∶ Ω × Ω → [0, ∞) is called a
metric if

(i) for all 𝑥 ∈ Ω we have d(𝑥, 𝑥) = 0,

(ii) (symmetry) for all 𝑥, 𝑦 ∈ Ω we have d(𝑥, 𝑦) =
d(𝑦, 𝑥), and

(iii) (triangle inequality) for all 𝑥, 𝑦, 𝑧 ∈ Ω we
have d(𝑥, 𝑧) ≤ d(𝑥, 𝑦) + d(𝑦, 𝑧).

The pair (Ω, d) is called a metric space.
Given a metric d, we can define an (open)

ball centered in 𝑥 ∈ Ω with radius 𝑟 > 0,
𝐵(𝑥, 𝑟) = {𝑦 ∈ Ω ∶ d(𝑥, 𝑦) < 𝑟}.

We say that a set 𝐴 ⊂ Ω is open if for every
𝑥 ∈ 𝐴 exists an 𝑟 > 0 such that 𝐵(𝑥, 𝑟) ⊂ 𝐴. We
say that 𝐴 ⊂ Ω is closed if Ω∖𝐴 is open. We de-
fine the Borel 𝜎-algebra ℬΩ to be the smallest
𝜎 algebra that contains all open sets 𝐴 ⊂ Ω (Ex-
ercise). Its members 𝐸 ∈ ℬΩ are called Borel
sets. We want to show that all Borel subsets of
ℝ𝑑 are Lebesgue measurable. This will be a con-
sequence of the fact that Lebesgue outer measure
is a metric outer measure.
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We extend the metric to d ∶ 2Ω ×2Ω → [0, ∞)
by defining

d(𝐴, 𝐵) = inf{d(𝑥, 𝑦) ∶ 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}.

An outer measure 𝜇∗ is called a metric outer
measure if for all 𝐴, 𝐵 ⊂ Ω with d(𝐴, 𝐵) > 0
we have

𝜇∗(𝐴 ∪ 𝐵) = 𝜇∗(𝐴) + 𝜇∗(𝐵).

Lemma 1.2.6. Lebesgue outer measure is a met-
ric outer measure.

Proof. Let 𝐴0, 𝐴1 ⊂ ℝ𝑑 with 𝛿 ≔ d(𝐴0, 𝐵0) > 0.
It suffices to prove

ℒ(𝐴0 ∪ 𝐴1) ≥ ℒ(𝐴0) + ℒ(𝐴1).

Let 𝜀 > 0. Then there exists a countable cover
𝒬 of 𝐴0 ∪ 𝐴1 with closed cubes such that

∑
𝑄∈𝒬

|𝑄| ≤ ℒ(𝐴0 ∪ 𝐴1) + 𝜀.

There is a subdivision ̃𝒬 of the cubes in 𝒬 in
cubes with diameter less than 𝛿 and. That means
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the cover ⋃ 𝒬 and by Lemma 1.1.1 we have

∑
𝑄∈𝒬

|𝑄| = ∑
𝑄∈𝒬̃

|𝑄|.

Since d(𝐴0, 𝐴1) = 𝛿, any 𝑄 ∈ ̃𝒬 cannot intersect
both 𝐴0 and 𝐴1. That means the sets ̃𝒬𝑖 =
{𝑄 ∈ ̃𝒬 ∶ 𝑄 ∩ 𝐴𝑖 ≠ ∅} are disjoint for 𝑖 = 0, 1.
Moreover, ̃𝒬𝑖 is a cover of 𝐴𝑖. We can conclude

ℒ(𝐴0 ∪ 𝐴1) + 𝜀 ≥ ∑
𝑄∈𝒬̃

|𝑄| ≥ ∑
𝑄∈𝒬̃0

|𝑄| + ∑
𝑄∈𝒬̃1

|𝑄|

≥ ℒ(𝐴0) + ℒ(𝐴1).
Since 𝜀 > 0 was arbitrarily small this finishes the
proof. (Exercise with subdivision hint?)

Theorem 1.2.7. Let 𝜇∗ be a metric outer mea-
sure. Then all Borel sets are 𝜇∗-measurable.
Proof. By the definition of Borel sets and The-
orem 1.2.1 it suffices to show that all closed sets
are 𝜇∗-measurable. To that end it suffices to
show that for all 𝐴 ⊂ Ω and all closed 𝐵 ⊂ Ω we
have

𝜇∗(𝐴) ≥ 𝜇∗(𝐴 ∩ 𝐵) + 𝜇∗(𝐴 ∖ 𝐵). (1.2.2)
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For 𝑛 ∈ ℕ denote

𝐴𝑛 = {𝑥 ∈ 𝐴 ∖ 𝐵 ∶ d(𝐵, {𝑥}) ≥ 1/𝑛}.

Since 𝐵 is closed we have 𝐴 = 𝐴1 ∪ 𝐴2 ∪ ….
Moreover, for each 𝑛 we have d(𝐵, 𝐴𝑛) ≥ 1/𝑛
and since 𝜇∗ is a metric outer measure this means

𝜇∗(𝐴) ≥ 𝜇∗(𝐴 ∩ 𝐵 ∪ 𝐴𝑛) = 𝜇∗(𝐴 ∩ 𝐵) + 𝜇∗(𝐴𝑛).
(1.2.3)

Set 𝐶𝑛 = 𝐴𝑛+1 ∖ 𝐴𝑛. Then

d(𝐶𝑛+1, 𝐴𝑛) ≥ 1
𝑛(𝑛 + 1) .

Since 𝜇∗ is a metric outer measure, by induction
this implies

𝜇∗(𝐴) ≥ 𝜇∗(
𝑛

⋃
𝑘=1

𝐶2𝑘) =
𝑛

∑
𝑘=1

𝜇∗(𝐶2𝑘)

and similarly

𝜇∗(𝐴) ≥ 𝜇∗(
𝑛

⋃
𝑘=1

𝐶2𝑘−1) =
𝑛

∑
𝑘=1

𝜇∗(𝐶2𝑘−1).
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Since 𝜇∗(𝐴) < ∞ (why?) we can conclude

∞
∑
𝑘=1

𝜇∗(𝐶𝑘) < ∞

Therefore,

𝜇∗(𝐴𝑛) ≤ 𝜇∗(𝐴 ∖ 𝐵) ≤ 𝜇∗(𝐴𝑛) +
∞

∑
𝑘=𝑛+1

𝜇∗(𝐶𝑘).

Letting 𝑛 → ∞ this means 𝜇∗(𝐴𝑛) → 𝜇∗(𝐴 ∖ 𝐵)
and thus from (1.2.3) we can conclude (1.2.2)
and finish the proof.

An measure for which all open, or, equiva-
lently, all Borel sets, are measurable is also called
a Borel measure.

Proposition 1.2.8. Let 𝜇 be a Borel measure
which is finite for all balls with finite radius.
Then for any Borel set 𝐸 and any 𝜀 > 0 ex-
ists an open set 𝑈 ⊃ 𝐸 and a closed set 𝐶 ⊂ 𝐸
such that

𝜇(𝑈 ∖ 𝐸) < 𝜀, 𝜇(𝐸 ∖ 𝐶) < 𝜀.
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Proof. First consider the case that 𝐸 is a count-
able union of closed sets 𝐸 = 𝐶1 ∪ 𝐶2 ∪ ….
Since finite unions of closed sets are closed, it
suffices to consider the case that the sequence
is increasing, i.e. 𝐶1 ⊂ 𝐶2 ⊂ …. Take any
𝑥 ∈ Ω. Let 𝜀 > 0 and 𝑛 ∈ ℕ. Then since
𝜇(𝐵(𝑥, 𝑛) ∖ 𝐵(𝑥, 𝑛 − 1)) is finite by assumption,
by Lemma 1.2.3 there exists an 𝑁(𝑛) such that

𝜇([𝐸 ∖ 𝐶𝑁(𝑛)] ∩ [𝐵(𝑥, 𝑛) ∖ 𝐵(𝑥, 𝑛 − 1)]) ≤ 2−𝑛𝜀.

Since 𝐶𝑁(𝑛) and 𝐵(𝑥, 𝑛)∖𝐵(𝑥, 𝑛 − 1)) are closed
in 𝐵(𝑥, 𝑛) ∖ 𝐵(𝑥, 𝑛 − 1)) , also the set

𝐶 =
∞
⋃
𝑛=1

𝐶𝑁(𝑛) ∩ 𝐵(𝑥, 𝑛) ∖ 𝐵(𝑥, 𝑛 − 1)

is closed and satisfies

𝜇(𝐸 ∖ 𝐶) ≤
∞

∑
𝑛=1

2−𝑛𝜀 = 𝜀.

We now proceed essentially by induction. De-
note by ℳ the set of sets 𝐸 that satisfy the con-
clusion of the proposition. It suffices to show
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that ℳ is a 𝜎-algebra which contains all open
sets. So, let 𝑈 be open. Then we can write 𝑈 as
a countable union of closed sets,

𝑈 =
∞
⋃
𝑛=1

{𝑥 ∈ 𝑈 ∶ d({𝑥}, Ω ∖ 𝑈, ≥)1/𝑛}.

By the previous argument we can conclude 𝑈 ∈
ℳ.

Now we show that ℳ is a 𝜎-algebra. Since
open and closed sets are complements it follows
that ℳ is closed under complement. It remains
to show that ℳ is closed under countable union.
So, let 𝐸1, 𝐸2, … ∈ ℳ and set 𝐸 = 𝐸1 ∪ 𝐸2 ∪ …
and let 𝜀 > 0. By inductive assumption for each
𝑛 ∈ ℕ exists an open set 𝑈𝑛 and a closed set 𝐶𝑛
with 𝜇(𝑈𝑛 ∖𝐸𝑛) < 2−𝑛𝜀 and 𝜇(𝐸𝑛 ∖𝐶𝑛) < 2−𝑛𝜀.
That means 𝑈 = 𝑈1∪𝑈2∪… and 𝐾 = 𝐶1∪𝐶2∪…
satisfy

𝜇(𝑈 ∖ 𝐸) ≤
∞

∑
𝑛=1

𝜇(𝑈𝑛 ∖ 𝐸𝑛) ≤
∞

∑
𝑛=1

2−𝑛𝜀 = 𝜀,

𝜇(𝐸 ∖ 𝐾) ≤
∞

∑
𝑛=1

𝜇(𝐸𝑛 ∖ 𝐶𝑛) ≤
∞

∑
𝑛=1

2−𝑛𝜀 = 𝜀.
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The set 𝑈 is open, but 𝐾 might not be. However,
𝐾 is a countable union of open sets and thus
by the first argument there exists a closed set
𝐶 ⊂ 𝐾 with 𝜇(𝐾 ∖ 𝐶) < 𝜀. We can conclude

𝜇(𝐸 ∖ 𝐶) ≤ 𝜇(𝐸 ∖ 𝐾) + 𝜇(𝐾 ∖ 𝐶) ≤ 2𝜀

and finish the proof.

Such a measure for which all measurable sets
can be approximated from within by closed sets
is called inner regular. If all measurable sets
can be approximated from the outside by open
sets then the measure is called outer regular.
An inner and outer regular Borel measure is called
a Radon measure.

Lemma 1.2.9. Let 𝜇 be Borel measure for which
all balls have finite measure and such that for
each measurable set 𝐸 we have

𝜇(𝐸) = inf{𝜇(𝑈) ∶ 𝑈 open, 𝐸 ⊂ 𝑈}.

Then for every measurable 𝐸 ⊂ ℝ𝑑 we have

𝜇(𝐸) = sup{𝜇(𝐶) ∶ 𝐶 closed, 𝐶 ⊂ 𝐸}.
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Proof. Similarly to the previous proof it suffices
to consider subsets 𝐸 of a closed ball 𝐵. By
assumption exists a sequence 𝑈1, 𝑈2, … of open
sets with 𝑈𝑛 ⊃ 𝐵 ∖𝐸 and 𝜇(𝐵 ∩𝑈𝑛) → 𝜇(𝐵 ∖𝐸)
. Thus, we have

𝜇(𝐵) = 𝜇(𝐵∩𝑈𝑛)+𝜇(𝐵∖𝑈𝑛) → 𝜇(𝐵∖𝐸)+𝜇(𝐸).

Thus, the closed sets 𝐵 ∖ 𝑈𝑛 approximate 𝐸 as
desired.

Corollary 1.2.10. For each Lebesgue measur-
able set 𝐸 exists a Borel set 𝐵 and sets 𝑁, 𝑀
with Lebesgue outer measure zero such that 𝐸 =
(𝐵 ∖ 𝑁) ∪ 𝑀 .

Conversely, each such set (𝐵 ∖ 𝑁) ∪ 𝑀 is
Lebesgue measurable.

Proof. (Exercise)

In this sense the set of Lebesgue measur-
able sets is the completion of the Borel 𝜎-algebra
with respect to sets with Lebesgue outer measure
zero.
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1.3 Measurable functions
1.3.1 Definition and extent of the

class
Let (Ω, ℳ, 𝜇) be a measure space. We consider
functions with values in the extended real line,
𝑓 ∶ Ω → [−∞, ∞], i.e. real valued functions that
can also attain the values ±∞. Such a function
𝑓 is called (𝜇-)measurable if for every 𝑎 ∈ ℝ
the set

{𝑓 < 𝑎} ≔ 𝑓−1([−∞, 𝑎)) ≔ {𝑥 ∈ Ω ∶ 𝑓(𝑥) ∈ [−∞, 𝑎)}

is (𝜇-)measurable.

Lemma 1.3.1. Let 𝑓 ∶ Ω → [−∞, ∞]. Then
following are equivalent to 𝑓 being measurable

(i) For every 𝑎 ∈ ℝ the set {𝑓 ≥ 𝑎} is measur-
able.

(ii) For every 𝑎 ∈ ℝ the set {𝑓 < 𝑎} is measur-
able.

(iii) For every 𝑎 ∈ ℝ the set {𝑓 ≤ 𝑎} is measur-
able.
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(iv) The function −𝑓 is measurable.

If 𝑓 ∶ Ω → (−∞, ∞) then measurability is also
equivalent to each of the following:

(v) For every 𝑎, 𝑏 ∈ ℝ the set {𝑎 < 𝑓 < 𝑏} is
measurable. Equivalently we can replace
< by ≤ in either instance.

(vi) For every open 𝑈 ∈ ℝ the set 𝑓−1(𝑈) is
measurable.

(vii) For every closed 𝐶 ∈ ℝ the set 𝑓−1(𝐶) is
measurable.

The latter also apply to functions 𝑓 ∶ Ω → [−∞, ∞]
if in addition we require 𝑓−1({−∞}) and 𝑓−1({∞})
to be measurable.

Proof. Exercise

Lemma 1.3.2. Let 𝑓 ∶ Ω → (−∞, ∞) be con-
tinuous. Then 𝑓 is measurable.

Lemma 1.3.3. Let 𝑓1, 𝑓2, … ∶ Ω → [−∞, ∞]
be measurable. Then the following functions are
continuous
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(i) 𝑥 ↦ sup𝑛 𝑓𝑛(𝑥)
(ii) 𝑥 ↦ inf𝑛 𝑓𝑛(𝑥)
(iii) 𝑥 ↦ lim sup𝑛 𝑓𝑛(𝑥)
(iv) 𝑥 ↦ lim inf𝑛 𝑓𝑛(𝑥)
(v) If (𝑓𝑛)𝑛 converges pointwise, then 𝑥 ↦

lim𝑛 𝑓𝑛(𝑥) is measurable.
Proof. Exercise.

Lemma 1.3.4. Let 𝑓 ∶ Ω → (−∞, ∞) be mea-
surable and 𝑔 ∶ ℝ → ℝ be continuous. Then 𝑔 ∘ 𝑓
is measurable
Proof. Exercise.

Lemma 1.3.5. Let 𝑓, 𝑔 ∶ Ω → (−∞, ∞) be
measurable. Then 𝑓 + 𝑔 and 𝑓𝑔 are measurable.

We say that a statement that involves 𝑥 ∈
Ω holds (𝜇-)almost everywhere if the set of
all 𝑥 ∈ Ω for which the statement fails is 𝜇-
measurable and has zero 𝜇-measure. For ex-
ample, given 𝑓, 𝑔 ∶ Ω → [−∞, ∞], we say that
𝑓(𝑥) = 𝑔(𝑥) for 𝜇-almost everywhere 𝑥 if 𝜇({𝑥 ∈
Ω ∶ 𝑓(𝑥) ≠ 𝑔(𝑥)}) = 0.
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Lemma 1.3.6. Let 𝑓, 𝑔 ∶ Ω → [−∞, ∞] such
that 𝑓 is measurable and 𝑓(𝑥) = 𝑔(𝑥) for 𝜇-
almost every 𝑥. Then 𝑔 is 𝜇-measurable.

40



Bibliography

[EG15] Lawrence Craig Evans and Ronald F.
Gariepy. Measure theory and fine prop-
erties of functions. English. Revised ed.
Textb. Math. Boca Raton, FL: CRC
Press, 2015. isbn: 978-1-4822-4238-6;
978-1-4822-4240-9.

[Kin24] Juha Kinnunen. Lecture notes: Mea-
sure and Integral. http://math.aalto.
fi/~jkkinnun/files/measure_and_
integral.pdf. Nov. 2024.

[Kin25] Juha Kinnunen. Lecture notes: Real Anal-
ysis. http://math.aalto.fi/~jkkinnun/
files/real_analysis.pdf. Feb. 2025.

41

http://math.aalto.fi/~jkkinnun/files/measure_and_integral.pdf
http://math.aalto.fi/~jkkinnun/files/measure_and_integral.pdf
http://math.aalto.fi/~jkkinnun/files/measure_and_integral.pdf
http://math.aalto.fi/~jkkinnun/files/real_analysis.pdf
http://math.aalto.fi/~jkkinnun/files/real_analysis.pdf


[SS05] Elias M. Stein and Rami Shakarchi.
Real analysis. Measure theory, integra-
tion, and Hilbert spaces. English. Vol. 3.
Princeton Lect. Anal. Princeton, NJ:
Princeton University Press, 2005. isbn:
0-691-11386-6.

42


	Measure Theory
	Lebesgue outer measure
	Measurable sets
	Carathéodory's theorem
	A non-measurable set
	Metric measures

	Measurable functions
	Definition and extent of the class



