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Preliminaries

This course assumes familiarity with basic notions from

o functions, such as injectivity, bijectivity, images, and preim-
ages,

« topology on R?, such as closed and open sets,

o analysis on the real line, such as sequences, series, limits, lim inf



and lim sup,

e calculus on the real line, such as the chain and product rule
for derivatives, and the Riemann integral.

We recall the following notions and notations that are particu-
larly important for the course.

Sets and set operations We denote by N the natural numbers
N:={1,2,3,...} and by R the real numbers. For two sets A and B
their union A U B consists of all points x that belong to A or to B.
Their intersection A N B consists of all points that belong to both
A and B. For sets A,, that are indexed by for example by natural
numbers n € N in the case of a sequence A, A,, ..., we denote by

A, =A UA, U ...
=1

n



their union, i.e. the set of all points that for any n belong to A,,.
More generally, if A is a collection of sets A, we denote by

Ua=1J4

AecA

the set of all points z for which there exists an A € A with x € A.
The set difference A \ B consists of all points that belong to A
and not to B. Two sets A, B are disjoint if AN B = . We say that
a collection of sets A is disjoint, if any two A, B € A with A +# B
are disjoint.

For two sets A, B we define their product A x B as the set of all
pairs with the first element from A and the second element from B,
ie.

Ax B={(a,b):a€ A, be B}.

More generally,

Ay x ..o x A, ={(ay,...,a,):Vk=1,...,na, € A,}.



A set A is countable if there exists a surjection f: N — A, i.e. for
each a € A exists an n € N with f(n) = a. We also write a,, := f(n).

Euclidean space The basic space where our study takes place is
Euclidean space, that is, for any natural number d € N, the space
R¢, which consist of all d-tuples x = (xq,...,z,) of real numbers
z, € Rwithn=1,..,d.

We assign to each point z € R? its (Euclidean) norm

2| = (22 + ... + 22)2.
We can add and substract points z,y € R? componentwise,
T+y= (T + Y, Ty +yd)

T—Y= (T = Y50y Ty — Yg)-

Euclidean distance The (Euclidean) distance between them is
|z —y|. The most elementary subsets of R we consider are open and



closed intervals. For a,b € R denote by [a,b] the set of all z € R
with a < z < b and by (a,b) the set of all z € R with a < z < b.
In Euclidean space with larger dimensions d those sets generalize to
rectangles and balls.

Definition 0.0.1. For a,b € R such that for n = 1,...,d we have
a,, <b,, the closed and open rectangles that have a and b as opposite
corners are

(ag,b1) X ... X (ag,by), [ag,b1] X ... X [ay, byl

By rectangle we always mean a closed rectangle unless specified
otherwise.

The (open) ball with center x € R? and radius r > 0 consist
of those y € R? with |z —y| < r and is denoted by B(z,r). The
corresponding closed ball B(z,r) consist of those y € R? with |z —
yl<r.



Let A C R%. A point € R? is an interior point of A if there
exists an r > 0 with B(z,7) C A. A point z € R? is a limit point
of A if for every r > 0 exists a y € A with |x —y| < r. We denote by
A the interior of A, the set of all interior points of A. We denote
by A the closure of A, the set of all limit points of A. We denote
by )

0A:=A\A
the boundary of A. By this definition, the interior of an open

or closed ball is the corresponding open ball, and its closure is the
corresponding closed ball. The same is true for rectangles.

The extendend real line is the set RU {—o00,00}. We partially
extend addition and multiplication from R to the extended real line
by defining

Ve e RU{oo}:a+00:=00 Vo >0:2-00:=00.



We further extend this by prescribing commutativity and associa-
tivity and multiplying both definitions with —1. This only leaves
oo — oo and 0 - oo undefined. In this sense we can treat a statement
like

li =

Jm 0, =00
as an equality on the extended real line. We also extend the relations
<, <, >, > to the extended real line via

Ve € RU{—o0}: 2z < oo, 00 = 00,
with the corresponding definitions for —oo.
Recall also
inf() = oo, sup ) = —oo.

Convergent sums Let a;,ay,... > 0. Then their sum does not
depend on the order of summation, i.e. for any bijection o : N — N
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we have
oo oo
E (Zn = E ao.(n>.
n=1 n=1

Here, both sides of the equality may be infinite. The same conclusion
is true if aq, ay, ... € R and

o0
Z la,| < oo.
n=1

For a countable set A = {a;,ay,...} C [0,00] this allows for the

notation
o0
g a= g Q-
n=1

acA
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Chapter 1

Measure Theory

The main textbook sources are [SS05] and [EG15]. Other inspira-
tional material are the lecture notes in real analysis by Emanuel
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Carneiro and the lecture notes in measure theory [Kin24] and real
analysis [Kin25] by Juha Kinnunen.

1.1 Lebesgue outer measure
i

Our first goal is to rigorously assign a volume to subsets of RY.
A set whose volume we already know is the rectangle: For a,b € R?
the volume of the rectangle R = (aq,b;) X ... X (ay, by) is the product
of its side lengths,

IR| = (b —ay) - .- (by — ay). (1.1.1)

The corresponding closed rectangle has the same volume.

I This section follows Sections 1.1.1 and 1.1.2 from [$S05] for the construction
of the Lebesgue measure.

13



Definition 1.1.1. We say that a collection X of rectangles is al-
most disjoint if for any two Ry, Ry € R with Ry # R, their inte-
riors Ry and R, are disjoint.

Lemma 1.1.2. Let n € N and let R,,..., R, be almost disjoint

rectangles such that
R=R,U..UR,

is a rectangle, too. Then

|R| = Z|Rk"
k=1

By our intuition about volumes this is clearly true. But it re-
quires a proof because all we know so far about our mathematical
notion of volume is the abstract formula [(1.1.1).

Proof. We first consider the case that the rectangles form a grid,
that is, for each [ = 1,...,d there are q; = a? <. < alNd = b; such

14



Figure 1.1: The grid case.

15



that each rectangle Ry, is of the form [a}, ai™]x ... x [a}, a’*"]. Then

d d Ng
|R| = H L= ) Hzal*al
=1 =1 i=1

_Z ZH a'™h Z‘RM (1.1.2)

ii=1  ig=11=1

For the general case, we subdecompose each rectangle R, via

the extended faces of the rectangles R, ..., R, into rectangles R; =

RIU..U RZN ‘. This subdecomposition is a grid which means that
by the previous case
N,

i

R, = |R]l.

J=1

Moreover, the rectangles {Rf :j=1,...,N;,, i=1,..,n} form a grid
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Figure 1.3:  Subdecomposition

Figure 1.2: The general case. into grid.
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for R, so that

n N'i . n
[RI=)_ Y IRI=) IR (1.1.3)
i=1

i=1 j=1

O
Lemma 1.1.3. Let n € N and let R, R, ..., R,, be rectangles with
RCR/U..UR,
Then N
|R| < ; Ry

Note, that also holds if Ry, ..., R, are open, because

R, C R; and |R;| = |R;|.

Proof. This follows by the same proof as , except that

some rectangles of the grid that decomposes R may belong to more

18



than one of the rectangles R, ..., R,,. More precisely, the last equal-
ity in and the first equality in become inequalities. [

We want to use a similar idea of writing a set in terms of sets
whose volume we know in order to define its volume.

Definition 1.1.4. A cube Q C R? is a rectangle whose sidelengths
are all identical, i.e. for ay,...,a; € R? and 7 > 0 it is of the form

Q= (ay,a, +7) X ... x (ag,a4+T).
Its volume thus is |Q| = 7.

Definition 1.1.5. For any set £ C R? we define its outer Lebesgue
measure by

£.(B) = inf{ > |Ql:

QeQ

Q is a countable set of closed cubes
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with £ ¢ [ 2}.
Lemma 1.1.6. For each closed cube ) we have

£.(Q) = Q|

Proof. Since {Q} is a cover of @ we have £,(Q) < |Q|. For the
reverse inequality let € > 0. Then there exists a countable cover 9
of @ such that

S IPI<£(Q) +e.

PeQ
Let 6 > 0 and for each P € Q denote by P the open cube with the
same center as P and volume 1 + § times the volume of P. Then
P 5 P which means that  := {P : P € Q} is an open_cover of the
compact set @ and thus has a finite subcover . By [Lemma 1.1.
we can conclude

QI< D IPl=(1+06)> |P|

Pep Pep

20



<(1+468) ) [Pl < (1+6)(£.(Q) +e).

PcQ

Since €, > 0 were arbitrarily small we can conclude |Q| < £,(Q)
and finish the proof. O

Remark 1.1.7. We need to allow countable sequences of cubes in the
definition of the outer measure. If we only allowed finite sequences
then unbounded sets would always have infinite outer Lebesgue mea-
sure. However, sets like N C R should have zero volume.

For a set 2 denote by 2 the set of all subsets of €.

Definition 1.1.8. We say that a set function p, : 2% — [0, 0] is an
outer measure if it has the following two properties:

(i) (empty set) p,(0) = 0.

21
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(ii) (countable subadditivity) For each E, Fy, E,,... C Q with E C
E, UE,U ... we have

1 (B) <3 By,
n=1

Observe that countable subadditivity implies the monotonicity
property, that for each E, C E; C Q we have p,(Ey) < pu,(Ey).

Proposition 1.1.9. Lebesgue outer measure is an outer measure
d
on R*.

Proof. In order to show the empty set property it suffices to observe
that the empty cover @ is a cover of (), and that an empty sum equals
zero. In order to prove the countable subadditivity let € > 0. Then
for each n =1, 2, ... exists a cover Q,, of E, such that

> IRl L(E,) + 2.

QEQ’H
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Then Q:= 0, U0, U...is a cover of E; U E, U ... and thus
“(J)
> lel=X > 1l

Qe0,U0,U... n=1Qe0,
<Y (LB, +27e) =+ Y L.(E,).

n=1 n=1

IN

Since € > 0 was arbitrarily small this finishes the proof. O

For Lebesgue outer measure to represent a reasonable notion of
volume, it should be true that if we divide a set into parts, the vol-
umes of the parts should sum up to the volume of the original set.
This property is called additivity if we ask it to hold for a division
into finitely many parts, and countable additivity for countably
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many. In tProposition 1.1.d we have only proven countable subaddi-
tivity for Lebesgue outer measure, i.e. that the volumes of the parts
sum up to at least the volume of the original set. Unfortunately, we
cannot strengthen this to countable additivity. More precisely, we
cannot prove that for any sequence E;, E,,... C R? of disjoint sets

we have
z;*(fjl En> - ;6*(]3”). (1.1.4)

In fact, we will see in that this property can indeed fail

if we assume the axiom of choice.
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1.2 Measurable sets

1.2.1 Carathéodory’s theorem

i

As we will see, actually does hold for a vast amount of
sets. To determine a sufficient class of those sets we elevate to a

more abstract setting.

Definition 1.2.1. We say that a collection M C 29 of sets is a
o-algebra if

(i) (empty set) @ € M,
(ii) (complement) for each E € M we have Q\ E € M, and

2This section follows the more abstract Section 6.1.1 from [SS05].
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(iii) (countable union) for each Fy, Ey,... € M we have
| E, eMm.
n=1

Definition 1.2.2. Let M be a og-algebra. A set function pu: M —
[0, 00] is called a measure if it has the following two properties.

(i) (empty set) u(@) = 0.
(ii) (countable additivity) For all disjoint E, Fy, ... € M we have

w(J B) =Xt

A triple (Q, M, ) of a set Q, a o-algebra M and a measure p is
called a measure space. Given E C Q we also say that F is (u-
)measurable if F € M.
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Note, that countable additivity is our missing property .
That means we call an outer measure p, on a selected collection of
sets a measure, if on those sets it is not only countable subadditive
but countable additive. But how do we find that selected collection?
As we will see soon, the following criterion will do.

Definition 1.2.3. Given an outer measure p,, we say that a set
A C Q is Carathéodory measurable if for all B C 2 we have

pe(B) = p (BN A) + i (BN A). (1.2.1)

For brevity we will just say measurable instead of Carathéodory
measurable. As we will see, for Lebesgue outer measure, essentially
all the sets that we care about in analysis satisfy this Carathéodory
criterion.

Note, that we ask to hold for all sets B C €2, which in
the end may include sets that do not belong to the collection M of
measurable sets.
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Note, that

p(B) < p (BNA)+ p (B\ A)

always holds by subadditivity of an outer measure. That means
1.2.1) is equivalent to

1(B) = p (BN A) + (B A).

Theorem 1.2.4. Given an outer measure u, on §2, the set M of
all Carathéodory measurable subsets of Q) forms a o-algebra.

Theorem 1.2.5. Given an outer measure p, on €, the map p,
restricted to the set M of all Carathéodory measurable subsets of
15 a measure.

Proof of Theorems and , We have to show the following
properties: Let E, E,,... C Q) be measurable. Then

(i) 0 is measurable,

28



(ii) Q\ E; is measurable,
(iii) G = E; U E, U ... is measurable, and
(iv) if Ey, E,, ... are disjoint then

1.(G) = S w(B,).

n=1

Ttems to imply |l heorem 1.2.1 and m together with the

fact that u, is an outer measure implies [Theorem_1.2.5.

E = () satisfies E1.2.1 , and since E; satisfies also Q\ FE

does. That proves (i) and .

Let A C Q. Then

n(A) = p(ANEy) + (AN Ey)

29
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=u(ANE NEy)+ pu(ANE; \ E,)
+ (AN Ep) N Ey) + p(AN (B U Ey))
> u(AN(Ey U Ey)) + p(AN (B U Ey)).

That means E; UE, is measurable, and by induction we can conclude
that for any n € N the set G,, := E; U ... U E, is measurable.
Set B, = E, and for each n > 2 set £, = E, \ G,,_;. Then

B, =Q\[(Q\E,) UG, 4]
is measurable and G,, = El U..uJ E’n, G = ff?l U E’Q U.... Then
wWANG,) =u(ANG,NE,)+mANG,\E,)
— (AN E,) + 1(ANG, )
and by induction we can conclude

WANG,) =" AN E).
k=1

30



Therefore

n

p(A) = p(ANG,) + u(ANG,) > > (AN Ey) + (AN G)
k=1

and letting n — oo we obtain

Z (ANE,) + uw(A\G)

> (ANG) 4+ (AN G) > p(A).

That means the previous inequality is an equality, which implies
. If the B}, E,, ... are disjoint then E, = E,,. Setting A = G in
the previous equality thus implies . O

Definition 1.2.6. A measure space (2, M, u) is called complete if
for every A € M with pu(A) =0 and every E C A we have E € M.
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It follows from the definition that any set £ C Q with u,(E) =0
is measurable as

p(ANE) + p, (AN E) = i, (AN E) < p(A).

This means the restriction of u, to its measurable sets is a complete
measure.

Lemma 1.2.7. Let (2, M, ) be a measure space and let Fy, F,, ... €
M. If B, CE, C... then

(@

lim p(E,) = u( En)
n—oo

n=1
where both sides may be infinite. If u(E;) < oo and E; D Fy D
then -
tim () = ([ ).
Proof. See exercise sheet 2. O



1.2.2 A non-measurable set

Lemma 1.2.8 (Translation invariance of Lebesgue measure). Let
E C R? and z € R? and denote

E+z={y+z:ycE}

Then
LB +a) = £,(B).

Proof. Tt suffices to show £, (E + x) < £, (FE) because from that we
also obtain £,(F) =L (E+x—z) < L, (E+ ).
For any € > 0 exists a cover Q of E with

£.(B)<e+ Y Q|

QeQ

Then O = {Q+ 2 : Q € Q) is a cover of E + z and thus since

33



|Q — z| = |Q| we obtain

L(E+2) <) Q=) 10—al=)_ Q|

Qed Qeo Q<0
< L.(E)+e.

Since € > 0 was arbitraly small we obtain £,(E+z) < |E| and finish
the proof. O
Theorem 1.2.9. Assume the axiom of choice holds. Then there
exist disjoint sets By, Ey,... C R for which fails.

Proof. For x,y € [0,1] denote = ~ y if  — y is a rational number.
Then ~ is an equivalence relation. That means there is a decompo-
sition A of [0,1], i.e. the union

0,1]=[JA4

is disjoint, such that for any z,y € [0,1] we have z ~ y if and only
if  and y belong to the same set A € A. By the axiom of choice
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there exists a set ' that contains exactly one element from each set
A € A. That means for each x € [0, 1] exists a y € E and a rational
qg € QN [—1,1] such that x = y + ¢q. Moreover, for each © € F
and ¢ € Q we have z + ¢ ¢ E. We can conclude that the sets in
{E+q:qe€Qn[-1,1]} form a countable disjoint cover of [0,1] and
belong

to |[—1.2].
e o ive 6.(F 4 g) = £.(E). Thea by
1=£.(0,1)< > L(E+q= D, L.(B)

qeQn[-1,1] q€QN[-1,1]

we must have £, (E) > 0. This however means

Y. LEtq= Y L(B)=c

qeQN[—1,1] qeQN[-1,1]
>32>4,([-1,2])

2£*< U E+q>,

qeQN[-1,1]

35



ie. fails. O
By , Lebesgue outer measure is not a measure on

the g-algebra 2% if we assume the axiom of choice. In the subsequent
ection we will see that still essentially all the sets that we care about
in analysis are Lebesgue measurable.

1.2.3 Metric measures

Our definition of measurability works in a very general setting of a
mere set . Since the fundamental domain in this course is R% we
allow ourselves to a ssume a bit more structure.

Definition 1.2.10. Given a set Q a map d :  x Q@ — [0,00) is
called a metric if

(i) for all x € Q we have d(z,z) =0,

(ii) (symmetry) for all z,y € Q we have d(z,y) = d(y, z), and
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(iii) (triangle inequality) for all z,y, z € Q we have d(z, z) < d(z, y)+
d(y, 2).

The pair (£2,d) is called a metric space.

Definition 1.2.11. Given a metric d, we can define an (open) ball
centered in x € Q with radius r» > 0,

B(z,r)={y € Q:d(z,y) <r}.

We say that a set A C 2 is open if for every x € A exists an r > 0
such that B(z,r) C A. We say that A C  is closed if Q \ A
is open. We define the Borel o-algebra B, to be the smallest o
algebra that contains all open sets A C Q. Its members E € B, are
called Borel sets.

See exercise sheet 1 for what we mean precisely by the smallest
o algebra that contains all open sets A C Q.
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We want to show that all Borel subsets of R? are Lebesgue mea-
surable. This will be a consequence of the fact that Lebesgue outer
measure is a metric outer measure.

We extend the metric to d : 2% x 2% — [0, 00) by defining

d(A, B) = inf{d(z,y) : x € A, y € B}.

Definition 1.2.12. An outer measure p, is called a metric outer
measure if for all A, B C  with d(4, B) > 0 we have

1 (AU B) = p,(A) + p,(B).

Lemma 1.2.13. Lebesgue outer measure is a metric outer measure.
Proof. Let Ay, A; C R? with 6 := d(A,, A;) > 0. It suffices to prove
L(AgU Ay) > L(Ag) + L(Ay).

38
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Let € > 0. Then there exists a countable cover Q of Ay U A; with
closed cubes such that

Z QI < L(AgU Ay) +¢

QeQ

There is a subdivision O of the cubes in Q in cubes with diameter
less than ¢ and. That means the cover | JQ and by we

have
Yolel=>"1el
Qe QGQ

Since d(4y, 4;) =9, any Q € O cannot intersect both Ay and A;.
That means the sets Q ={Q € g:Qn A, # 0} are disjoint for
i1 =0,1. Moreover, Q is a cover of A;. We can conclude

L(AGUA)+e>>1Q1= > QI+ > 1@l

Qe0 Qed, Qef,

39



> L(Agy) + L(Ay).
Since € > 0 was arbitrarily small this finishes the proof. O

Theorem 1.2.14. Let u, be a metric outer measure. Then all Borel
sets are p,-measurable.

Proof. By the definition of Borel sets and it suffices

to show that all closed sets are u,-measurable. To that end it suffices
to show that for all A C 2 and all closed B C €2 we have

p.(A) = p, (AN B) + p, (AN B). (12.2)
For n € N denote
A, ={x € A\ B:d(B,{z}) > 1/n}.
Let z € Q with d({z},B) = 0. Then there exists a sequence

Zy,Tq,... € B with d(x,,z) — 0. Since B is closed this means
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x € B. Therefore, for any n € N
|J 4y ={z€A\B:d({z},B) >0} = A\B.
k=n+1

Moreover, for each n we have d(B,A4,,) > 1/n and since pu, is a
metric outer measure this means

o (A) = p,(ANBUA,) = (AN B) + p,(A,,). (1.2.3)
Set C, =A,.1 \A,. Then

1

> —.
d<Cn+17Anfl) = TL(TL+ 1)

Since p, is a metric outer measure, by induction this implies
() = (U o) = Do (o)
k=1 k=1

41



and similarly

p.(A) = M(U C2k71) = ZM*(C%A)-
k=1 k=1

Since it suffices to consider p,(A) < oo (why?), we can conclude

k=1

Therefore,

o0

k=n+1

Letting n — oo this means u,(A,) — p.(A\ B) and thus from
E1.2.3 we can conclude and finish the proof. O
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Definition 1.2.15. An outer measure for which all open, or, equiv-
alently, all Borel sets. are measurable is also called a Borel outer
measure. By lLemma 1.2.1ﬂ and ITheorem 1.2.14 Lebesgue measure
is a Borel measure.

Conversely, a Borel outer measure x on R is called Borel reg-
ular if for every measurable set A exists a Borel set B C A with
uw(A) = u(B). A Borel regular outer measure p such that for all
compact K C R? we have u(K) < oo is called a Radon outer
measure.

A measure is called Borel if its o-algebra M contains all Borel
sets, and it is called Borel regular or Radon measure respectively if
the above properties hold for all sets A € M. That means the restric-
tion of a Borel/Borel regular/Radon outer measure to its measurable
sets yields a Borel/Borel regular/Radon measure.

Definition 1.2.16. For n € Z recall the dyadic numbers
D, = {k2": k € Z}, D=[]JD,CR.

nez
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We define the set of dyadic cubes by

d
D, = {H2"[kl,kl 1) ky, kg € Z},
=1

D=|]D,.

nez

Then for any n € Z and O C UZZiOO D,., we have

Jo=(J{Qeo:vPeo-QcP}

The latter is called the maximal disjoint subset of O. Any two
dyadic cubes in that collection are disjoint. Moreover, for any 2 € R?
and r > 0 exists a Q € D with € Q C B(z,r). Combining these
two facts, we arrive at the following.

Fact 1.2.17. Any open set U C R? can be written as a countable
disjoint union of dyadic cubes.
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For a proof in one dimension see exercise sheet 2.
For two sets A, B C 2 define their symmetric difference by

AAB = (A\B)U(B\ A).
Proposition 1.2.18. Let £ C R?.

(i)
L, (E) =inf{£(U): U C R? open, E C U}.
If F is measurable then for every € > 0 exists an open set

U D F with
L,(U\NE)<e.

(ii) If F is Lebesgue measurable then for every £ > 0 exists a closed

set C' C E with
L(ENC) <e.
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(iii) There exists a Borel set B D E such that

If F' is Lebesgue measurable then there exists a Borel set B D
E such that
L. (B\E)=0.

(iv) If E is Lebesgue measurable then there exists a Borel set B C
E such that
L(EN\ B) =0.

(v) If E is Lebesgue measurable with £(F) < oo then for every
€ > 0 exists a finite collection Q of disjoint dyadic cubes with

L(EA(]OQ) <e.

In particular, Lebesgue outer measure is a Radon outer measure.
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Proof. We only prove that implies . For the remaining see
exercise sheet 3.

First, assume that there exists a ball B with E C B. Then by
there exists an open set U D B\ E with £(U\ (B\ E)) < . Define
C = B\ U, which is closed. Then C C E and

ENC=(BNE)\B\U=BnN(ENU)
=(BNU)\(B\E)CU\ (B\E)

and thus we can conclude £(E\ C) < e.
Finally, for a general set £ C R? and n € N abbreviate the
annulus by

A, = B(0,n)\ B(0,n —1).
By the previous case exists a closed set C,, C EN A, with L(EN
A NC,) <2 "e. Since C, and A,, are closed, also their intersection
is closed. Note, that the annuli have no accumulation point, i.e. no
sequence T, Ty, ... € R? with x,, € A, has a convergent subsequence.
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As a consequence, the set
o0
c=|Jc,nA,
n=1

is closed and satisfies
L(ENC) <Y L(ENANC,) < 2.
n=0

O

Corollary 1.2.19. For each Lebesgue measurable set E C R? exists
Borel sets B, B; with By C E C By such that £(B; \ By) = 0.

Conversely, for B, B; Borel with £(B; \ B,) = 0, each B, C
E C B, is measurable.

In this sense the set of Lebesgue measurable sets is the comple-
tion of the Borel o-algebra with respect to sets with Lebesgue outer
measure zero.
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Proof. For E C R? measurable and ¢ > 0 denote by U_, C. the open
and closed sets from tProposition 1.2.1&. Then

By = ﬂ Uijn B, = U Cl/n

neN neN

have the required properties.

For the other implication, E is the union of the Borel set B, and
the set E\ B, which has zero Lebesgue measure, making F a union
of two measurable sets and thus measurable itself. O

lProposition 1.2.1§ also holds for Radon measures in general.

Proposition 1.2.20. Let u be a Radon measure. Then for any
measurable set F and any € > 0 exists an open set U D F and a
closed set C' C F such that

wUNE)<e, wENC) <e.
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If ;1 is a Radon outer measure then in addition for every E C R? we
have
w(E) =inf{p(U) : U open, £ C U}.

Before we can prove tProposition 1.2.2d we need two preliminary
results.

Lemma 1.2.21. Let u be a Borel measure such that for every ball
B we have p1(B) < oco. Then for any Borel set E and any € > 0
exists an open set U D E and a closed set C C FE such that

w(UNE)<e, wENC) <e.

Proof. First consider the case that F is a countable union of closed
sets £ = C; UCy U .... Since finite unions of closed sets are closed,
it suffices to consider the case that the sequence is increasing, i.e.
C, CCy C .... Take any x € £, let ¢ > 0 and n € N and abbreviate
the annulus by

A B(z,n)\ B(z,n—1).

n '
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Then since p(A,,) is finite by assumption, by there

exists an N(n) such that

1([E\ Cnam)N4,) <27
Since Cy,,) and A, are closed, also their intersection is closed.
Note, that the annuli have no accumulation point, i.e. no sequence

Ty, Zq,... € Q with x,, € A, has a convergent subsequence. As a
consequence, the set

C= Ql Cnim N4,

is closed and satisfies

&)

pENC) <Y 2

n=1

We now proceed essentially by induction. Denote by M the set
of sets F that satisfy the conclusion of the . It suffices to
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show that M is a o-algebra which contains all open sets. So, let U
be open. Then we can write U as a countable union of closed sets,

U= G{xGU:d({x},Q\U} >1/n}.

n=1

By the previous argument we can conclude U € M.

Now we show that M is a o-algebra. Since open and closed sets
are complements it follows that M is closed under complement. It
remains to show that M is closed under countable union. So, let
E,E,, ..€Mandset E=FE UE,U... and let € > 0. By inductive
assumption for each n € N exists an open set U, and a closed set
C,, with p(U, \ E,) < 27"¢ and p(E,, \ C,,) < 27"¢. That means
U=U,UU,U..and K = C; UCyU ... satisfy

uw(UNE) < i U\En)gir
n=1

n=1
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o0

p(ENK) < i (E,\NC,) <Y 27
n=1

n=1

The set U is open, but K might not be. However, K is a countable
union of closed sets and thus by the first argument there exists a
closed set C' C K with u(K \ C) < e. We can conclude

WENC) < u(ENK)+ u(K\NC) <2
and finish the proof. O

Proposition 1.2.22. Let u be a Borel regular (outer) measure on
R?. Let A C R? be measurable with z(A) < oo. Then plLA given by

HLA(E) = u(AN E)
is a Radon (outer) measure.

Proof. We prove the statement for a measure and an outer measure
in parallel. In the measure case let M be the o algebra of y, and in
the outer measure case we denote M = 28"
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Since p(A) < oo, for all compact sets K we have uLA(K) < oo.
Since A € M is p-measurable, each u-measurable set E is also pl A-
measurable (why?). This is in particular true for Borel sets E. Thus,
it remains to show Borel regularity.

By the Borel regularity of p exists a Borel set B D A with u(A) =
u(B), and since A is measurable,

(BN A) = p(B) — p(A) = 0.
Thus, for any C' € M we have

wBNC)=pu(BNCNA) +u(BNC\A)
SuCNA)+p(B\NA) =pu(CNA)
< u(BNO),

so the inequalities are equalities and plLA(C) = pLB(C). That
means it suffices to consider the case that A = B, i.e. that A is
Borel. It remains to show that for every C € M exists a Borel set
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D > C with uLA(D) = pLA(C). By the Borel regularity of p,
there exists a Borel set £ D AN C with pu(E) = p(ANC). Define
D = EU(RY\ A). Then D is Borel and C C D. Finally, since
DN A=EnA we can conclude

pLA(D) = p(END) = u(ENA)
< uE) =wANC) = pLA(C),

and the reverse inequality follows from C' C D. O

Proof of leposz'tion 1 22d By definition of a Radon outer mea-
sure, for each £ C R? exists a Borel set B D E with u(E) = u(B).

By we can conclude
w(E) = p(B) = inf{pu(U) : U open, B C U}
> inf{u(U) : U open, E C U} > pu((E).

If F is measurable and p is a Radon measure, then similarly by
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for each ¢ > 0 exists an open set U D B D E with
pUNE)=p(UNB)+u(B\E)<e

It remains to show that a measurable set E' can be approximated
by closed sets. First consider the case u(E) < oco. By IProEosiJ
, the restriction ulF is a Radon (outer) measure. Then by
the previous argument, for each £ > 0 exists an open set U D R\ E
with uLE(U) < €, which means C = R\ U is closed with C C E
and p(E\C) = (UOE)

If u(E) = oo we proceed as in the proof of m For
each n € N define E,, = ENB(0,n+ 1)\ B(0,n). Since u is Radon,
we have p(E,) < oo, and thus by the finite case exists a closed set
C, C E, C B(0,n+ 1)\ B(0,n) with u(E, \ C,,) < 27"e. Then
C:=CyuC;U...C Eis closed and

p(ENC) < i (E,\C,)
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1.3 Measurable functions

1.3.1 Definition and extent of the class

Let (2, M, 1) be a measure space. We consider functions with values
in the extended real line, f : Q) — [—00, 0], i.e. real valued functions
that can also attain the values +oc.

Definition 1.3.1. A function f : Q — [—o00, 00] is called (u-)measurable
if for every a € R the set

{f <a}:=f"(-000)={z €Q: f(z) € [-00,a)}

is (u-)measurable, i.e. belongs to M.
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Lemma 1.3.2. Let f : Q — [—00, 00]. Then following are equivalent
to f being measurable

(i) For every a € R the set {f > a} is measurable.
(ii) For every a € R the set {f > a} is measurable.
(iii) For every a € R the set {f < a} is measurable.
(iv) The function —f is measurable.

If f:Q — (—o0,00) then measurability is also equivalent to each of
the following:

(v) For every a,b € R the set {a < f < b} is measurable. Equiva-
lently we can replace < by < in either instance.

(vi) For every open U C R the set f~(U) is measurable.

(vii) For every closed C' C R the set f~1(C) is measurable.
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(viii) For every Borel B C R the set f~!(B) is measurable.

The latter also apply to functions f : Q@ — [—o0,00] if in addition
we require f~1({—oo}) and f~!({oco}) to be measurable.

Proof. For every a € R we have {f > a} = Q\{f < a}. That means
{f > a}_is measurable if and only if {f < a} is measurable. This
proves @

The remaining items are exercises. O

Lemma 1.3.3. Let 2 be a metric space and p be a Borel measure
on (), i.e. its o-algebra M contains the Borel o-algebra. Then every
continuous f : Q — (—o0, 00) is measurable.

Proof. A map f : Q — (—o00,00) is continuous if and only if for

every open subset U C R, also f~}(U) is open. Thus the result
follows from lLemma 1.3.2f(vi). O
Lemma 1.3.4. Let fi, fs,... : = [—00, 00] be measurable. Then

the following functions are measurable

59



(i) =+ sup, f,(z)
(ii) = — inf, £, (x)

)

)

(iii) « + limsup,, f,(z)

(iv) = liminf, f, (x)
) 1

(v

f (f,,),, converges pointwise, then z + lim,, f, (x) is measur-
able.

Proof. Denote f =sup,_ f,. Then

{f >a} = J{f, > a},

which is a union of measurable sets and thus measurable itself. This
proves .
The proof of the remaining items are exercises. O
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Lemma 1.3.5. Let f: Q — (—o00,00) be measurable and g : R — R
be continuous. Then go f is measurable.

Proof. Exercise. O

Lemma 1.3.6. Let f,g: Q — (—00,00) be measurable. Then for
any ¢ € R the maps c¢f, f + g and fg are measurable.

Proof. 1t suffices to consider ¢ > 0. Then for any a € R we have

{cf <a}={f<a/c},

which is measurable.

Assume f(x) + g(xz) < a. Then there exists an ¢ > 0 with
f(x)+g(x) <a+eand an r > 0 and an r € Q with f(z) < r <
f(z) +e. Thus, g(x) < a— f(x)+¢e < a—r. Conversely, if f(z) <r
and g(x) < a —r then f(z)+ g(x) < a. We can conclude

{f+9<a}=J{f<rtufg<a—r}

reQ
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which is a countable union of measurable sets and thus measurable.
Moreover,

{f? <a}={f <a?}\{f < —a'?}

is measurable, and therefore

(f+9?—(f—9)?
2

fa=
is measurable, too. O

Definition 1.3.7. We say that a statement that involves x €
holds (u-)almost everywhere if the set of all € Q for which the
statement fails is p-measurable and has zero p-measure.

For example, given f,g: Q — [—00, 00|, we say that f(z) = g(x)
for u-almost everywhere z if u({z € Q: f(z) # g(x)}) = 0.
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Lemma 1.3.8. Let p be a complete measure and let f,g : Q —
[—00, 00] such that f is measurable and f(x) = g(x) for p-almost
every x. Then g is y-measurable.

Proof. Exercise. O

2025-09

1.3.2 Approximation

Definition 1.3.9. The most basic measurable functions are char-
acteristic functions, which are functions of the form

1 z€F,
Lp(r) = {0 v ¢ E
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for a measurable set E. For a4, ...,a, € R, we call a weighted sum

n
f= Z aklEk
k=1

a simple function. If the E, ..., E, are disjoint rectangles then f
is called a step functions.

Recall, that the Riemann integral is given in terms of step func-
tions. The Lebesgue integral will be defined in terms of the more
general simple functions. Because simple functions can approximate
the large class of measurable functions, the Lebesgue integral will
generalize the Riemann integral.

Definition 1.3.10. Let a € (0,00). Take N € Z maximal with
a<Q’NandforallnEZwithngNsetan:0. For n > N we
define a,, inductively as follows: Set a,_; = 0 if

n

a < Z a; 2% 4 2=+
k=N+1
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and a,; = 1 otherwise.
For a = 0 set a,, = 0 for all n and for a = oo set a,, = 1 for all n.

The sequence (a,),cz is called the binary expansion of a €
[0, 0]

Lemma 1.3.11. Let a € [0,00). Then for any n € Z we have
0<a— Y a2F<2 (1.3.1)
k=—o00
Proof. We proceed by induction. For n < N follows from
0<a<2 V<2
So, assume holds for n. If a,,,; = 0 then by inductive as-

sumption
n+1

Zak2k Zak2k<a
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and by the defining condition of @, ; = 0 we have

n+1

a < Z%Q k+2(n+1 Zak2k+2(n+l)
k=—o0 k=—o00

It remains to consider the case a,.; = 1. Then by the defining
condition of @, ; = 1 we have

n+1

Zak2k Zak2k+2<"+1)§a

k=—oc0 k=—oc0

and by the inductive assumption and 27" = 27"l 4 g 2-(n+D)
we have

)

n n+1
a< Y g2Ft2m= )" g2k 427,
k=—00 k=—00
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Corollary 1.3.12. For all a € [0, c0] we have

o0
a = E A 2_k.
k=—o00

Lemma 1.3.13. For a € [0,00) and any n € Z, the subsequence

(a)}__ of the binary expansion of a is the only sequence of num-
bers in {0, 1} for which holds.

Proof. Let (a,)7__., with a, € {0,1} for which holds and
which is different from (a;)7__ ... Then there exists an N € Z such
that for all & < N we have @, = 0, and we take N so small that
also a;, = 0. So, take K € Z minimal for which dy # ay. From

|a;, — ak|2”C < 27% it follows by induction on m > K that
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For m = n, this means cannot hold for both (a,)}__. and
(ag,)p__ at the same time. O

Theorem 1.3.14. Let f : Q — [0,00] be measurable. Then there
exist measurable sets Ay, A, ... and aq,a,,... > 0 such that for every
x € Q we have

f(.’L') = ZanlAn'
n=1
Proof. For n € Z define the set
A, ={xeQ: f(x), =1}
using the binary expansion of f(z). Then by [Corollary 1.3.12 we

have
fla)y=>"27"1, (2).

nez

Given a € [0,00) by Lemmas 1.3.11 and [1.3.1 for each n € Z
we have a,, = 1 if and only if there exists an N < n and a tuple
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AnsGnats s G 1) € 0,13 N such that
N:ONy1 n—1

n—1
0<a— > @2F<om
k=—N

That means
A, ={f = o0}V

n—1

U U {er:ng(a:)— S ak2_k<2_"},
k=N

N=—00 (ay,..,an_1)€{0,1}""

n—1

which is a countable union of measurable sets and thus measurable.
Reenumerating (A,,),,c7 as (A4,,),en finishes the proof. O

Corollary 1.3.15. Let f : Q — [0, 00] be measurable. Then there
exist simple functions fi, f5,... : € — [0,00) such that for every
x € Q we have f,(z) < f(z) and

flz) = lim f,(z).
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Proof. With a,,, A,, from [Theorem 1.3.1§ take

fn = ZanlAn'
k=1

Alternative independent proof. For n € N and 0 < m < 22" set
A ={x € Q:2"m < f(x) <2 (m+ 1)}, Afj” ={reQ:2" < f(x)}.
Then A]" is measurable. Define the simple function

22n

fo=_2""ml 4.
m=0

For every z € ) exists exactly one 0 < m < 22" with z € A™. This
means

fale) =27"m < f(z) <27"(m+1) = f,(2) +277,
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in case f(z) < 2" and m < 22", If f(x) > 2" then m = 22" and
fm(x) =2". We can conclude

lim f,(x) = f(x).

n—oo

Remark 1.3.16. The function f,, from [Corollary 1.3.1§ equals
—k
2. M,

k=—n+1

from the proof of [Cheorem 1.3.14.

Definition 1.3.17. For a function f : Q@ — [—o00,00] define its
positive and negative part by

fr(x) = max{f(z),0}, [~ () = max{—f(x),0}.
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Note, that f = f*— f~.

Theorem 1.3.18. Let f : Q — [—o0, 00| be measurable. Then there
exists a sequence Py, Py, ... of simple functions with |¢,| < ¢, 1]
and such that

flx) = lim @, (z).

n—oo

Proof. By [Corollary 1.3.15 there exist simple functions ¢7,¢37, ...

and o7, @5, ... with 0 < ¢F < ¢35 < ... < f* and
lim @7 (z) = f*(x).
n—oo
Then ,, := ¢} — ¢, have the required properties. O

Definition 1.3.19. We say, that a measure space (Q, M, ) is o-
finite if there exists a sequence E, Ey, ... € M with p(E,) < oo such
that Q = E, UE, U ....
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For example R? is o-finite with respect to Lebesgue measure,
since R? = U,.en B(0,n) and £(B(0,n)) < oco.

Lemma 1.3.20. Let (Q,M,u) be o-finite. Let fq, fy,... : @ —
[—00, 0] that converge to f : Q@ — [—00, 00] almost everywhere, and
for each n € N let f1, f2,... : © — [—00,00] that converge to f,

almost everywhere. Then there exist k;, k,,... and n;,n,,... € N

k
such that f,"™ converge to f almost everywhere.

Proof. For m € N and functions g, h denote

A (g, h) ={z € R?: |h(z) — g(x)] > 27}
U{z € R?: h(z) = o0, g(z) < 2™}
U{z € R?: h(z) = —oc0, g(x) > —2"}.

Then

{r €R?: lim f,(x) # f(z) or the limit does not exist.}
n—oo
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=N UA. D (1.3.2)

meN keN n>k

Recall 2 = E; U Ey U .... We may redefine those sets such that
for all n € N we have F,, CE, . Fix N € N.
Since f,, — f almost everywhere. i.e. the left hand side of

has zero Lebesgue measure, by [Lemma 1.2.ﬂ for every m € N exists
an n,, > m, N such that for all n > n,, we have

Also ¢, = 1p f, converge to f almost everywhere and Pk =

lg, f% converge to 1), almost everywhere. That means similarly, for
each n,m exists a k,, ,,, > n such that for all k >k, ,,, we have

(A (U y,)) <27

Then
k

[f (@) = g ()] < |f(@) = £, (@) +f,,, (€) = fur ™ (@)]-
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Note, that for every [,m,k € Z and n > N we have

EN mAl( '57f> - Al+1<fnaf) UAZ+1( fm’(/Jn)

In particular, for all m > [+1 sufficiently large so that, n,,, > +1, N,
we obtain

L(Ex N (A(fu s [)UA ™ 2, )
< L(Ex N (A(f o F)UA @™, )

< 27m+1.

We can conclude
L({w € By o Tim far (2) # f(2)})

<£(UN U BN (Al oD 0 A 0, )

leN keN m>k
< lim Z 2-m+l — (),

el
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k

That means the f,”™™ converge to f pointwise for almost every
x € Ey. Since N was arbitrary, they in fact converge for almost
every = € R, O

Theorem 1.3.21. Let f : R — [—00, o0] be measurable. Then there
exist step functions iy, 1, ... such that for almost every x € R we
have

lim ¢, (2) = f(z).

n—o0

Proof. We first consider the case that for E C R? measurable with
L(F) < oo we have f = 15. The by an exercise, for every n € N

exists a finite set O, if disjoint dyadic cubes with L'(EAUQn) <

27", Then
Fa=1q

Qe0

76

2025-09



is a step function such that
A, = {z €R: [ (2) # 1g(a)}
satisfies £(A4,,) < 27". We can conclude for
A=
{reR: nlggo fi(x) # 1g(z) or the limit does not exist.}

by lLemma 1.2.7| and |(1.3.2)| that

o0

£(A) gz(ﬂ U An) < lim S £(A)
keN n>k koo P
o0
< lim 27" = lim 2%t = .
k—oo ot k—oo

Next, consider the case that a,,...,ay € R and A,,..., Ay C R?
are measurable with £(A;) < ocoand f=a;1, +..+ayl, . Then
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by the previous case for each k = 1,..., N exists a sequence of step
functions f! with fi" — 1, pointwise almost everywhere as n — oo.
Thus, a, f{' + ... + ay fx are step functions that converge to f.
Finally, let f : R? — [—00, 0] be measurable. By
there exist simple functions ¢y, ¢,, ... that converge to f everywhere.
Then 1, = 1g(0,n)¥, also converge to f everywhere, and ¢, is a fi-
nite sum of characteristic functions with finite measure. That means,

by the previous case there exist step functions v}, 1?2, ... that con-

verge to 1, almost everywhere. An application of [emma 1.3.20

concludes the proof.

O

Theorem 1.3.22 (Egorov). Let p be a measure on Q with p(2) <
oco. Let f,fy, fay... : @ = (—00,00) measurable s.t. f,, — f a.e..
Then for every € > 0 emists a set C with u(Q\ C) < & such that
fn = f uniformly on C.

If u is a Radon measure then we can take C' closed.

Proof. By lLemma 1.2.7| and k1.3.2)| for every m € N exists a k,,, € N
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such that
(U Antfn) <2

n>k

Take N € N such that

m

Z 27M < g/2

m>N

and define

A=) U 4.m

m>N n>k,,

which means £(A) < e. If p is a Radon measure then by
there exists a closed set C C 2\ A with £(Q\ C) < e.
For a general measure just set C' = Q\ A.

Let m > N. Then for all n > k,, and x € C we have z ¢

A, m which means |f, (v) — f(x)| < 27™. This means f, — f
uniformly. O
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Theorem 1.3.23 (Lusin). Let E C R? be measurable with £(E) <
oo and f: E — (—00,00). Then for every e > 0 exists a closed set
C C E with L(E\C) < € such that f : C — (—00,00) is continuous.

This does not mean that f : E — (—o00, 00) is continuous in every
zeC.

Proof. By [Theorem 1.3.2]] exists a sequence fi, fy,... of step func-

tions that converge to f almost everywhere. For any n € N exists a
set E,, such that £(E,) < 27"¢ and f,, is continuous on E\ E,,. By
Egorov’s theorem exists a set A with £(E\ A) < € on which f,, — f
uniformly. Then on
B=A\|JE,
neN
f is a uniform limit of continuous functions, and thus continuous
itself. By [Proposition 1.2.1§ exists a closed set C' C B with £(B\
(') < e. Then f is continuous on C' and L(E\ C) < 3e. O
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Chapter 2

Integration

2.1 The Lebesgue integral

In this we assume (Q, M, 1) to be a measure space. Our goal
is to define and integral for a large class of measurable functions
82



f:Q — [—o00,00] from © to the extended real line.

2.1.1 Simple functions

In we saw that any measurable function can be approx-

imated pointwise by simple functions. The latter have a convenient
definition of their integral.

Definition 2.1.1. Let f be a simple function. Then there exists an
n € N U {0} such that f assumes n unique distinct a; < ... < a,
with a;, € [—00,00]. Define E, = f~1({a;}). We call those numbers
aq,...,a, and sets E, ..., F; the canonical form of f.

Note, that
n
f= Z alp, .
k=1

Definition 2.1.2. In the context of this we set 0-00 = 0.
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Let f be a nonnegative simple function with canonical form
a0y, By, E,. We call f p-integrable if there are no k,m
with a,u(Ey) = oo and a,,u(E,,) = —oc.

For a simple function f that is y-integrable we define its Lebesgue
integral by

[ran=>"awn(B,). (2.1.1)
k=1

For E C  measurable define

/Efdu=/f1Edu-

Note, that f is p-integrable if and only if the sum in is
well defined.
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Proposition

2.1.3. Let

f= Z aplp,
k=1

be a simple function such that there are no k, m with a,u(E,) = oo
and a,,u(E,,) = —oco. Then

/fd,u = ZakM(Ek>7
k=1

where we again set 0- oo = 0.

That means holds not only for the canonical form but for

any expressio
sum in [(2.1.1

n that yields the same simple function, provided the

| is well defined.
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~

Proof. Let aq,...,a; and El7 be the canonical form of f, i.e.

n
n
k=1

First, assume that the sets E, ..., E, are disjoint. Then for each
k =1,...,7 the set F; equals the disjoint union of all £, for which
ay = ay, Wthh means

WEY) = 3 wEy

k:ak:ak

and thus,

n

Z app(Ey) = Z 5kH(Ek>
k=1 k

It remains to consider the general case that the E, ..., E,, may
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overlap. For A C {1,...,n} define the collection of sets

Ey=()EN | En

keA meA

Let A, B € {1,...,n} with A #+ B. Assume #A < #B. Then there
exists a k with k£ € B\ A. That means Fz C F, and F4, N E, = (),
and therefore we have E4, N Ep = (. Next, let k € {1,...,n}. Then
for each A with k € A we have £, C E),. Conversely, let z € E), and
let A be the set of those m € {1,...,n} with x € E,,. Thenz € E,
and k € A. That means £, =J,_, £, and we can conclude

wE) = Y u(Ea).
Ae{l,...,n}:keA

Thus,

SauB)= Y S am(Ey).
k=1

Ac{l,..,n} ke A
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Since

f= X (X e,

Ac{l,..,k} mecA

writes f as a simple function with disjoint sets, by the previous case

we can conclude
[ ran=>" ey,
k=1

O

We collect a few basic properties of the Lebesgue integral of
simple functions.

Proposition 2.1.4. (i) (linearity) Let a,b € [—o00,00] and f,g
be simple functions. Then

/af—l—bgdu:a/fdu—i—b/gdu,
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provided the right hand side is well defined, i.e. not of the form
?700 _ OO”.

(ii) (additivity) Let and E, F' C € be disjoint and f1, be simple
and nonnegative. Then

/EUFfdu=/Efdu+/Ffdu~

(iii) (monotonicity) Let f, g be simple and integrable such that f <

g. Then
/fdu < /gdu-

Proof. i) This follows from the linearity of the formula in
-ition 2.1.3

(ii) This follows from linearity and flg,r = flg + flp.
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(iii) Since g — f > 0, the assumptions of the linearity conditions
are satisfied for the summands f and g — f. Thus the result
follows from linearity and [ g — fdu > 0.

O

2.1.2 Nonnegative functions

Definition 2.1.5. For f :  — [0, oo] measurable define its Lebesgue
integral by

/fdu = sup{/gd,u :g:Q — [0,00] simple, g < f}

Remark 2.1.6. By lProposition 2.1.4|kiii)|, for a simple function f this
definition coincides with the definition of the Lebesgue integral of a
simple function.

lProposition 2.1.4| carries over to nonnegative functions. Before
we are able to prove that pointwise convergence implies convergence
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of the integral in a bounded setting.

Lemma 2.1.7. Let u(Q) < oo and let N > 0. Let f: Q — [0, N]
be measurable and fi, fo,... : @ — [0, N] be simple functions such
that f, (z) = f(z) for a.e. x € Q. Then

Jm [ fodn= [ rap.

Proof. First, we show that the limit exists. Abbreviate I,, = [ f,, du
and let € > 0. By Egorov’s theorem exists a measurable set C C )
with u(Q\ C) < € such that f,, — f uniformly on C. Then for n,m
sufficiently large, for all x € C' we have |f, (z) — f(x)| < e. Thus,

Ifn—fmlé/Ifn—fmldu+2NM(Q\C)
C

< / 9edp+ 2Ne < 2(N + p(Q))e.
C
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Since € was arbitrarily small, this means (I,,),, is a Cauchy sequence
and hence converges.

In particular, this means any above sequence f;, f5, ... converges
to the same limit, because otherwise we could be interlacing two
sequences with different limits that would not converge. That means
it suffices to find one sequence of functions f,, that satisfies the
assumptions of this and whose integrals converge to [ fdu.

To that end, take ¢, from and a maximizing
sequence g, from the definition of [ fdpu, i.e. such that [ g, du —
[ fdu. Then f,(z) := max{ep, (z),9,(z)} < f is a step function for
which 1, — f pointwise and [, du — [ fdu. O

Definition 2.1.8. For f: ) — [—o0, 0] the support of f is
Spt(f) = fﬁl([_oo7 OO] \ {O}>7
i.e. the set of points x € Q for which f(z) # 0.

Theorem 2.1.9. Let i be a measure on €.
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(i) (linearity) Let a,b >0 and f,g > 0 be measurable. Then

/aerbgdp:a/fdqub/gdu.

(i) (additivity) Let and E,F C Q be disjoint and f > 0 be mea-

surable. Then
/ fdu=/fdu+/fdu-
EUF E P

(#ii) (monotonicity) Let f,g > 0 be measurable such that f < g.

Then
/ fdu< / gdu.

(iv) If f > 0 is measurable and [ fdu < oo then for a.e. x € Q we
have f(x) < oo.
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(v) Let f > 0 be measurable. Then [ fdu =0 if and only if a.e.
x € Q we have f(x) = 0.

2025-10

Proof. We first prove linearity. Let ¢, be simple functions with
p < fand ¥ < g. Then ap+ b is a simple function with ap+ by <
af + bg, and thus by linearity and monotonicity of the Lebesgue
integral of a simple function we can conclude

a/fdu—i—b/gd,ug/af—i—bgdu.

For the reverse inequality it suffices to consider the case that a [ fdu, b [ gdu <
0o. That means for every A > 0 we have u({af+bg > A\}) < u({af >
A2} + p({bg > A/2}) < 0. Let n < af + bg be a simple function.
Then by the previous sentence we have p(spt(n)) < oo and [ndu <
0o. Define n; = min{n,af} < af and n, = n—1n; < bg. Then

94



for ¢ = 1,2 we have spt(n;) C spt(n) which implies p(spt(n;)) < cc.
Thus, by borollary 1.3.151 and tLemma 2.1.7|, for ¢ = 1,2 exist se-
quences ¢}, b, ... of simple functions with 0 < . + p2 < 7 and
[l 4+ ¢2dp — [ndu. Since by definition we have

1 B
*/@idu:/ﬁdué/fdu,
a a

1 o
f/soid/J:/(idué/gdu,
b b

We can conclude

a/fdu+b/gduZggrgo/widu+/widu=/ndu.

Since n < af + bg was an arbitrary simple function this implies

a/fdqub/gd,uz/aerbng.
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Additivity follows from linearity and flg r = flg + flp.

Monotonicity follows from the fact that for any simple functions
@ < f we also have p < g.

Denote E = {z € Q: f(z) = oo}. If E has positive measure then
the simple function co- E is pointwise bounded by f and [ co-Edp =
o - p(E) = oo. Therefore [ fdu = oco.

Assume p({f >0}) >0and forn e Nlet E, ={z € Q: f(z) >
1/n}. Then {z € Q: f(x) > 0} = E; U E5, U.... That means there
exists an n € N for which u(E,) > 0. Now, the simple function
1 /n is pointwise bounded by f and thus [ fdu > [1p /ndp =
u(E,)/n > 0.

Assume p({f > 0}) = 0. And let aq,...,a,, Ey,...,E, be the
canonical form of a simple function ¢ < f. Then for any k& with
aj, > 0 we must have p(E)) = 0. Thus by definition [pdp=0 O

The convergence result had the two boundedness

assumptions that the domain has finite measure, and that all func-
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tions are bounded from below and from above. Next investigate
what happens if we relax those conditions.

Example 2.1.10. For n € Nlet f,, =1;, ,,1). Then for every z € R
we have f, () - 0and 0 < f,, <1, but

lim [ f,d=1>0= / lim f,(z)d<L(x).
n—0 n—00

That means the pointwise limit of nonnegative functions can have
a strictly smaller integral than the limit of the integrals. However,
it cannot be strictly larger.

Theorem 2.1.11 (Fatou’s lemma). Let p be a measure on Q and
let fi, fo, ... : 2 = [0,00]. Then

/lim inf f,, dp < lim inf/ frn dp.
n—oo n—oo
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Proof. Let
k

0= = aila, <Hmintf,
=
be a simple function. As in the proof of [Proposition 2.1.3 we can
make A, ..., A, disjoint.
Let 0 < ¢ < 1. Define

B, ={r€A;:Ym>n f,(x) > ta;}.

Then for any j we have
o
B;1 CBj,C...CA,; 1Bj’n =A;
n=

and for any n we have
k k
foxdtats, = [ fedus Yt
Jj=1 =1
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Thus, by
k
hrnlnf/fn dp > Ztaj liminfu(B;,,) = t/apdu.
n—o0 ’
j=1

Since 0 < ¢t < 1 and ¢ < liminf, | f,, were arbitrary this finishes
the proof. O

Corollary 2.1.12. Let f, f1, fo,... : @ — [0,00] with f,, < f and
fn — f almost everywhere. Then

/fd,u: lim /fndu.
n—oo

limsup/fndu < /fdugliminf/fnd,u.
n—oo

n—oo

Proof. We have
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Corollary 2.1.13 (Monotone convergence theorem). Let fi, f5, ... :
Q — [0, 00] with f; < f, < .... Then

/ lim f,dy= lim [ f,du.
n—oo n—oo

2.1.3 Measurable functions

For f: Q) — [—00.00] recall its positive and negative parts f* and
f~ from Definition 1.3.17. Then f* > 0, so its Lebesgue integral is
defined.

Definition 2.1.14. We say that f is integrable if [ f™du < co or
J f~dp < oo, in which case we define its Lebesgue measure by

/fdu::/ﬁduf/f’du,

using the definition of the Lebesgue measure of the nonnegative func-
tions f*.
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Lemma 2.1.15. Let f;, f; > 0 be measurable such that for at least
one i € {1,2} we have [ f;du < co. Then

[ran=[nau- [ nan
Proof. We have

f+:(fl_f2)1{f12f2}a 7= (fQ_fl)l{fl<f2}'

By the linearity of the integral for nonnegative function we have
/fll{f12f2} d‘LL = /(fl o f2)1{f12f2} + f21{f12f2} d/i

:/(fl_f2)1{f12f2}d“+/f21{f12fz}dM

which means

/<f1*f2)1{flzf2}dﬂz/fll{flzfz}dN*/le{flzfQ}dl‘-
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Argueing similarly for f~ we have

/(fQ_fl)l{f1<f2}dM:/f21{f1<f2}du_/fll{f1<f2}du

and we can conclude

/fdu=/f+du—/f’du
= /fll{flzfz}dﬂ—/f21{flzf2}dﬂ
—/le{f1<f2}dﬂ+/fll{f1<fz}d“

— [ fidn= [ fran.

Proposition 2.1.16. Let p be a measure on €.
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(i) (linearity) Let a,b € [—o0,00] and f,g : @ — [—o0,00] be
integrable. Then

/aerbgdu:a/fdqub/gdu,

provided the right hand side is well defined, i.e. not of the form
Y60 — o0’

(ii) (additivity) Let and E, F C 2 be disjoint and f be integrable.
Then
fau= [ s+ [ fa
EUF E F

(iii) (monotonicity) Let f, g be integrable such that f < g. Then

/ﬂmg/fM-
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(iv) (triangle inequality) Lef f be integrable. Then |f| is integrable

and
[ rau|< [1n1an

Proof. Since (—f)" = f~and (—f)” = f" it follows that [(—f)du =
— [ fdp. Similarly we can prove [afdu =a [ fdp. Thus, in order
to prove linearity it remains to show [ f+gdu = [ fdp+ [gdu,
provided the right hand side is well defined. Now, (f+g¢)* < fT+g*
and (f+9)” < f~ + g, which means that if [ fdu+ [gdp is well

defined then so is gdu. Now, f+g=f"+g"—(f +g).
Hence by and linearity for nonnegative functions we

can conclude
/f+gdu=/f++g+du—/f‘+g‘du

=/f*du+/+g+du—/f‘du—/9‘dﬂ
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:/fdu—i—/gd,u.

As before, additivity follows from linearity.

For monotonicity we observe f* < g and f~ > g~ and mono-
tonicity follows from monotonicity of the integral of nonnegative
functions.

The triangle inequality follows from f < |f|, —f < |f| linearity
and monotonicity. O

Proposition 2.1.17. Let (Q, M, 1) be o-finite and f : Q — [0, o0]
with [ fdp < oo and let & > 0.

(i) There exists a set B € M with pu(B) < oo such that

fdu<e.
B
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(ii) There exists a 6 > 0 such that for all E € M with pu(E) < §

we have
/ fdu<e.
E

Proof. Exercise. O

Theorem 2.1.18 (Dominated convergence). Let g > 0 with [ gdu <
oo and f,f1, fas. : 8 = [—00,00] such that for all n we have
|f.] < g almost everywhere and f,, — f almost everywhere. Then

lim /|fn—f|d,u:O.

n—oo

Proof. By Fatou’s lemma [Theorem 2.1.11] we have
/2gdu = /limiang— Ilf — fldu
n—oo

< liminf/2g* |f = fuldp
n—oo
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= /ng,u—limsup/|f—fn\d,u
n—0o0
which means

1imsup/|f—fn\d,u:0.
n—oo

2025-10

2.2 [P-spaces
Let (2, M, ) be a measure space and let 1 < p < co. Then for any

p-measurable f: Q@ — [—o0, 00], the function |f|P is measurable and
nonnegative and thus integrable. Define

1
P
£l e 2,00, = (/ | P d#) ) 1<p<oo,
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1l Lo (0,00, = EA > 0 u({[f] > A}) = 0}

For brevity we omit M in the notation. If g = f p-almost everywhere

then ||g] Lo, = e, and | f=9]Lr @4 = 0. For f measurable
denote by [f] the equivalence class of functions g that equal f u-

almost everywhere. We define

LP(Q, M, ) = {[f]: f: Q — [—00, 00] measurable, || ar ) < o0}

For [f] € LP(Q2, M, ) we will also slightly abuse notation and write

feLP(Q,M,p).
You will show in an exercise that LP(2, M, 1) is a normed space
with norm | - |[;»q,ar,)- In fact, the normed space is complete,

making it a Banach space. You will probably see it in the functional
analysis course.
Part of being a norm is the triangle inequality,

If + 9le@nem < NFlLe@ne,m + 191 Le @ ne,0-
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For 1 < p < oo denote p’ = 15 SO that %—i— ﬁ = 1. Note, that

(p") = p. You will also show Hoélder’s inequality, that for f €
LP(Q, M, ) and g € LP (Q, M, i) we have fg € L*(Q, M, p) with

1falr@ne < 1flze@aewl9le @ e

Proposition 2.2.1. Let 1 <p < oo, f € LP(Q,M, ) and € > 0.
Then

(i) exists a simple function ¢ with ¢ — fllr.ar,) <€

(ii) if @ = R? and p < oo exists a step function ¢ with |p —
florga,c) <e

(iii) if 2 = R? and p < oo exists a compactly supported continuous
function ¢ with [ — flege,c) <&

Proof. (i) For z € Q define by o(x) = 1if f(z) > Qand o(z) = —1
if f(z) < 0. We first consider p = oo. Apply Corollary 1.3.15

109



to |f], take f,, from the proof of Corollary 1.3.15. Then g, =

of, is a simple function. If n such that 2" > [ f| ;0 a¢,)
then ;(A2”") = 0, and thus for g-almost every = € Q we have

19, () = f(@)] = [f(2)| = fo(z) <277

Hence [ g, = fllp@n0,) <27

Now consider 1 < p < co. By applied to
|f|P exist a sequence of simple functions fi, f,, ... that mono-
toneously converge to | f|P from below. Define the step function
g, = o(f,)"/P. Then |f—g, | goes to zero u-almost everywhere
and 0 < |f —g,|? <|f|P. Thus, by dominated convergence we
have || f — g, » (0, 2¢,0) = 0

Take ¢ from . Then ¢ is a weighted sum of characteristic
functions of sets with finite measure. By the triangle inequality
it thus suffices to show that for each £ C R? with £(E) < oo
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exists a finite set Q of disjoint rectangles with
HlE -2 1

QeQ

Since ZQEQ lg =10 and

11z = 1ol rge,e) = C(EA[ ] Q)7,

the existence of such Q is a consequence of IProposition 1.2.1§
V)

<e.

L? (R4, L)

(iii) Let f = 1, for some cube Q. Let Then ¢, 5 given by

©g.s(x) = min{l,inf{|z —y| : y € R*\ Q}/d}

is continuous, supported on @, and, for § sufficiently small
satisfies

1o —¢qslr®e,c) < 1Mo — Lmint(jz—ylyerizg<oy lLrra,c) < €

111



by an explicit calculation or the monotone convergence theo-
rem. By the triangle inequality, the proof of and since
finite sums of compactly supported continuous functions are
compactly supported and continuous, this suffices to conclude
the proof.

O

2.3 Fubini’s theorem

Definition 2.3.1. For ¢ = 0,1 let p; be an outer measure on 2,.
Define the product (outer) measure of p, and py, py X fg :
220X — [0, 00], by

(1o x p1)(E) = inf{z to(Ag)py (AT) AT C Q; p-measurable, E C U Ap x A}
n=1

n=1
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Definition 2.3.2. Let (Q, M, 1) be a complete measure space and
E C Q with p(E) = 0. Then for f: Q\ F — [—o00, 0] we say that
f is measurable or integrable if

- flz) € Q\E,
0 A<D

is measurable or integrable respectively and we define

/fdu=/fdu-

Theorem 2.3.3. Let pg and p; be o-finite and complete.

(i) Then py X py is a o-finite measure and for each p;-measurable
sets A, C 2% their product Ag x Ay is jy X py -measurable with

(o X p)(Ag X Aq) = po(Ag)pg (Ay).
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i) For an Xy -measurable E C 2%0% their cross-sections
Y o X My

(ii)

E, . ={a;: (ag,a;) € E, a;_; = v}

are p;-measurable for p,_;-almost every x € §y_;. Moreover,
the maps x +— p;(E; ) are pu;_;-measurable and

(g % m)(B) = [ o) diy (o)
Note, that here we need to make use of ,

For f: Q4 x Q — [~o0,00] and x € Q,_; denote f; .(y) =
flz,y). If f is pg X pq-integrable then for u,_;-almost every
r € Qy_; the map f; . + Q; — [—00,00] is ;-integrable, the
map

T = /fza: du,
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is pq_;-integrable and

[ rato < m) = [[ [ e dnw] duy-ta).

In particular, means

//fxyduo z) dpy (y //ffvydul ) dpg ().

Before we start with the proof we consider the case of Lebesgue
measure. Denote by £7 Lebesgue outer measure on R™. You will
show in an exercise that £ x £¥ = £"*% In particular, they have
the same measurable sets and also agree as measures. That means
for an £™**-integrable function f : R»** — R we have

acntk — ) AL (x) ALk
[ .1 ‘Léf@” (z) AL (y)
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= [, y) dLF(y) dLm(x).
(-

2025-10
Proof. Define

Py ={Ay x A, + A, C Q, p;-measurable}
P = E, :E, P

={U o}
Py = E, :E, P ;.

:={N 3

For i,n =0,1 let A} C Q, be p;-measurable. Then

(A§ x A7) N (Ag x A}) = (A5 N Ag) x (AT x A}),
(AG x AY)\ (Ag x A}) = ([AG\ Ag] x A7)
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U ([AG N Ag] x [T\ A7)).

That means both intersections and set differences of two elements
from P, can be written as finite disjoint unions of elements from 2,,.
Let £, E,,... € P,.

Claim 1. Each element in 7| can be written as a countable disjoint
union of elements from 7.

Proof. We show by induction that for each n € N exists a collection
A, of disjoint elements from P such that

E,U..UE, = A4,

and A, C A, ;. Then we can conclude that A = A4, UA,U...isa
countable set of disjoint elements from P, and | JA = E; UE, U ...

For n € N take A,, = {F}, ..., Fy} from the inductive hypothesis.
First we prove by an induction argument within that for each k& =
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0,...,N exists a finite set B, of disjoint elements from P, with

|JB,=E,.,UF,U..UF,
By D{Fy, . i}

Take B,, from the inductive hypothesis. For each E € B, we may
write EUF)_ | as the disjoint union F} U(E\F},, ). By the previous
argument this disjoint union can be written as a finite disjoint union
of elements from P,. We collect in B, ; all the resulting sets. They
are all disjoint, cover F; U...U F},_ ;. Among its members are I},
and also F, for all m < k because they appear as F,, \ Fj, ;| =
F.. This proves the inner induction argument. In particular, the

conclusion holds for £ = N and we can set A, ,; = By, finishing
the outer induction. O

Let & be the collection of sets £ C Q x €, for which
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is po-measurable for p,-almost every y € Q;, and

Yo / (2, y) dpg ()

is p;-measurable. That means P, C F. For E € F define

o) = [ | [ 15() )] s )

Claim 2. Let E,F € & with E C F.
(i) Then p(E) < p(F).
(ii) Let By UE, U ... € Py. Then E, UE,U ... € F and

p(EyUE,U..) < ) p(Ey).

n=1

In particular, P, C .
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(iii) If By, Ey, ... € P, are disjoint then

p(ByUE,U.) =S p(E,).

n=1
(iv) If By, E,, ... € P, with p(E;) < co then E;NEyN... € F with

p(EyNEy,yN...)= lim p(E;N...NE,).

n—oo
In particular, P, C &.

Proof. If E C F then for p;-almost every y € Q; we have {z :
(z,y) € E} C {z: (z,y) € F'} and monotonicity follows from mono-
tonicity of the integrals.
Let E\,E,,... € Py and let n € N. Then for y € € the
n . .
map z = >, 1g (z,y) is a finite sum of ji-measurable maps
and thus measurable, and converges pointwise monotoneously to
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T ZZ’;I lg, (,y). By linearity and monotone convergence he
same is true for

yH/ZlEkxydﬂo /ZlEkmyduo()

and again by linearity and monotone convergence we obtain

//7}52021Ek(w,y> dpg(x) dp (y) = lim >~ p(Ey).  (2.3.1)
k=1 k=1

If E,, E,, ... are disjoint then

1g,uE,u. (z,y) = lim ZlE (z,y)

n—oo

and we can conclude

BV UE, U =S p(B,)
k=1
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finishing the proof in the disjoint case.

If they are not disjoint, we can make them disjoint, thereby es-
tablishing the required measurability properties from the previous
case. Moreover, since 1p yp . < Z:l 1, we obtain from [2.3.1)
that

p(ByUB, U ) <3 plEy).
k=1

Finally, let E;,E,,... € P;. Then for each n exist disjoint
rectangles F} F2 ... € P, with E, = F! UF? U.... That means

E,N..NE, equals the union of all sets of the form Flk1 N...N Fff"
with &k, ..., k,, € N, which is a countable union of disjoint rectangles.
By the previous case this establishes the measurability of

r=1lgnne, (z,y) — 1E1ﬁE,,Lﬁ...<x’y)

and
Yy /lElm...mEn (z,y) dpo ()
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Since p(E;) < oo then for py-almost every y € ©; we have

[ 1m,@w [ nola) <.

Similarly as in the previous case we can now argue by dominated
convergence or the measure continuity lemma that

v [ im0 dugo) = i [ 15,0 o (o) dig(o)

is pt;-measurable and

By NEyN..) = / lim / Ly oo (2,3) dptg () dpiy (9)

n—oo

= lim p(E,N...NE,).

n—oo
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Claim 3. For each £ C Q, x Q; we have

(o ¥ py)(E) = inf{(pg x 11,)(G) : E C G € Py}

inf{p(G) : EC G € P,}.

Proof. By for any G C P, exist measurable A} C (2, such
that

G:GASXI‘VL

n=1
where the union is disjoint. Thus

oo}

(o X 1)(G) <Y o(AF)ua (A7) = p(G).

n=1

Since py x p; is monotone we can conclude the with 7<”
instead of equalities.
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In order to prove ">” let ¢ > 0. Then there exist A} with
EcCJ,, Ay x A} € P, and

(ko X p1)(E +€>ZNO 0)m1 (A7) >p(UA”><A")

n=1

O

Let Ay x A; € P and let € > 0. Then by exists G € P,
with

(to X pq)(Ag X Ay) < po(Ag)pa (Ay) = p(Ag x Ay)
< p(G) < (po x py)(Ag x Ay) + ¢

Letting ¢ — 0 we obtain

(to X pq)(Ag X Aq) = pi(Ag) i1 (Ay).

125



In order to finish the proof of ((i) it remains to show that A, x A, is
1o X py-measurable. To that end let E C €y x €, and € > 0. Then
there exists a G € P with G D E and

p(G) < (ko X ) (E) +&.

Since G N (4, x A;) and G\ (4, x A;) are disjoint and belong to
P, we have

(o X pa) (BN (Ag x Ap)) + (po X ) (BN (Ag x Ay))
< p(GN(Ag x Ay)) +p(G\ (4 x Ay))
= p(G)

and letting ¢ — 0 we can conclude that Ay x A, is p, X pq-measurable
and finish the proof of .

Claim 4. We have P, C F and for each E C Q x 0y with (pg X
1q)(F) < oo exists a E C G € P, with

(g X p)(E) = p(G) = (g % 1) (G).
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Proof. By for each n € N exists £ C G,,, F,, € P, with

(1o x p)(E) < p(G,), (g % p11)(F,)
< (ko X py)(E) +27" < o0,

Set G = GiNFNGyNEyN... € P,y. 1t follows from the monotonicity
of (g x py) that (ug x p1)(E) = (g x p1)(G), and

(ko X p)(E) < p(G) < Tim p(Gy 0.0 Gy) = (pg X ) (E).
O

Let E C Q4 x Q4 be pg X py-measurable with (py % p1)(E) < oo.
Then take G D E from [Claim 4 so that (ug x p)(G\ E) = 0.
Then there exists G\ E C F € P, with p(F) = 0. That means
for py-almost every y € Q; we have py(Fy,) = 0. Since G, is
po-measurable and p, is complete this means that also E , is p-
measurable with

Ho (Go,y> = Ho(Eo,y)
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and thus
(1o X 1)(E) = (g % 11)(G) = / 1o(Goy ) diar ()
:/,LLO(EO,y) dﬂl(y),

proving in case (py X p1)(E) < oo. If (pg X py)(E) = oo then
since p; is o-additive so is gy X g, which means we can decompose
F into countably many pieces with finite measure and apply to
each piece. By monotone convergence this implies for E.
Observe, that is in the case f = 1. If f is nonnegative
we can hence deduce from , linearity of the
integral and the monotone convergence theorem. If f is integrable
we can deduce from f = f* — f~ and the nonnegative case. [
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Chapter 3

Differentiation and
integration on R

3.1 The Lebesgue differentiation theorem

Let F : R — R be differentiable %égrywhere with continuous deriva-
tive f = F’. The fundamental theorem of calculus states that for



any a < b we have
F(b) — F(a) _/ fd<.
[a,b]

Conversely, if f : R — R is continuous then the map F : R — R
given by

F(z) = {deﬁ z20, (3.1.1)

—['fdc z<o0

is differentiable with F/ = f. The latter is straightforward to prove:
Let x € R. Then for any € > 0 exists a § > 0 such that for all
0 <y <6 wehave |f(y) — f(x)] <e. As a consequence,

Flx4+h)—F(z) 1 .
o =n ), Taeel it . s )

z,2+h) yElz,z+h]

C[f(z) —e fz) +e].
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Hence (F(x + h) — F(x))/h — f(z).

We want to push this. First, we can generalize to higher dime-
nions. For a continuous function f : R? — R, by a similar argument
we have

N
im———
70 L(B(@,7)) Jpe.r
But we are now able to integrate much more general functions than
continuous functions.

Fde = f(a). (3.1.2)

Definition 3.1.1. We say that a map f : R? — R is locally L!-
integrable, or f € Ll _(R?), if for every ball B we have fB fd<l <
0.

That means for f € L] (R) we may define F _as in . Can
we still recover F'(x) = f? More generally, is (3.1.2) still true? In
general, no, for example take f = —1(_oc,0) T Ljo,00)- Then F'is not
even differentiable in 0, and the averages of f around 0 are all 0 and

do not converge to f(0) = 1.
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However, we can prove the following:
Theorem 3.1.2 (Lebesgue differentiation theorem). Let f € LL (R?).
Then for £-almost every x € R* we have

. 1 e
I B ., (27 619

The proof will take a while. We denote by M the Hardy-
Littlewood maximal operator which maps a function f € Llloc([Rd)
to Mf : R — [0, oc] given by

1
M) =50 2 B, ) /B@,r) Jlac

Theorem 3.1.3 (Hardy-Littlewood maximal function theorem).
Let f € LY(R%, £). Then Mf : R — R is measurable and there
exists a Cy € R such that for every A > 0 we have

LM > A} < C, ”f”Ll)f[Rd,L').
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Letting A — oo we in particular obtain that Mf is finite almost
everywhere.

Remark 3.1.4. The conclusion of can be written as
the weak bound

IMfll 100 (g, c) < Call fll L1 g, )

Moreover, it is straightforward to see, that if f € L>(RY, £) then
for every 2 € R? we have Mf(2) < | f] o (ra, ), Which means

IMf | oo g, ) < ]l oo (ra, -

By the Marcinkiewicz interpolation theorem this implies that
for every 1 < p < oo exists a C,,, € R such that

IMSfl e ®e,c) < CaplfllLewa,c)-

For the proof of we use the
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Lemma 3.1.5 (Vitali covering lemma). Let B be a finite set of balls
in R?. Then there exists a subset € C B such that the balls in € are

disjoint and
UJsc 3B
Bee

Here, 3B is the ball with the same center as B and three times
its radius.

Proof. We inductively find balls By, ..., B,, € B as follows: For k =
0,1, ... denote by P,, the set of balls B € B which do not intersect
any of the balls By, ..., B,. If P, is empty, stop. Otherwise take
B, to be a ball in ), with maximal radius.

This process will terminate at some number n since 3B is finite
and we set € = {By, ..., B,,}. That means ?,, is empty. Note, that
Py = B. That means for each B € B exists a k with B € P, \ P, ;.
That means B intersects B, ;. Since B, ; has maximal radius in
P}, it has radius at least as large as B. This means B C 3B, ;. O
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Proof of [Theorem 3.1.3. Let r > 0 and « € R?. Then

513316 L(B(x,r)AB(y,r)) = 0.

As a consequence of tProposition 2.1.17| we can conclude that the

map
T / |f|dL
B(z,r)
is continuous.

For cach # € R? with Mf(z) > A exists a ball B, , = B(z,7)
with

1
— dl > A\
2B ) /B@,T) flde>

By the above continuity that means there exists an € > 0 such that
for all y € B(x,&) we have

1
— ds > A
£L(B(y,r)) /B(%T) o g
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This means {Mf > A} is open and in particular measurable.
Moreover,

{Mf >\ | B,

TeR

Let K C {Mf > A} be compact. Then K has a finite subcover B of
balls from {B,  : « € R?}. Take € from . Then

L(K) < z(U B) < A(EEJG 33) < Zﬁ)£(3B) — 313" 4(B)
€ Be

Bee

3¢ 37

<5 1148 < s
Bec VB

By an exercise we can take compact sets K, C {Mf > A} with
L(K,) — L({Mf > A}), finishing the proof. O

Finally, we can prove the Lebesgue differentiation theorem.
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Proof of [Theorem 3.1.4. For A > 0 set

— d. 1 / }
E\(f) {a: ER?: llrfjglp’z(3<m7r)) - fdL— f(z)] > A
Then we can write the set of points where fails as (J E -
Thus it is enough to show that for every A > 0 we have L(E,(f)) =
0. To that end, it suffices to show that for each n € N we have
L(EX(f) N B(0,n)) = 0. Since Ey\(f) N B(0,n) = Ex\(flp0,n+1) 0
B(0,n) and flpg 1) € LY(R?, £) this means it suffices to consider
the case that f € L*(R?, £).

Let € > 0. Then by [Proposmon 2.2. ]J ) exists a continuous
function g with compact support such that Hf glrrrec) < e As
noted in [3.1.2) , for every x € R? we have

1
lim 7/ gdL = g(x).
70 L(B(@,7)) Jp (4.
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Since

1
T 2O
1 1
" Z(B) /B@,r> T o0 2B /B@,ﬂ g8 o)+ 9(x) = @),

we can conclude, that

lim sup

1
r—0 ‘L'(B(.CL',’I’)) /B(ac,r)

That means

Ey C{M(f —g) > A2y U{lf —gl > A/2}.

By the Hardy-Littlewood maximal function theorem we have

faL = f(@)| SM(f = g)(@) + | f(z) - glx)]

If —9HL1<W,4)

LUM(f —g) > A/2}) < 2C, 3
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and by Chebyshev’s inequality (see exercise) we have

L(|f—gl>A/2}) < QM%W.

We can conclude £(E)) < 2(Cy; + 1)e. Letting € — 0 concludes the
proof. O

We can in fact slightly strengthen .

Definition 3.1.6. We say that = € R? is a Lebesgue point of
fe LY (R Q) if

: 1 _
}"%W/B(z,r) |f = f(z)]dL =0.

Corollary 3.1.7. Let f € L'(R%, £). Then £-almost every z € R?
is a Lebesgue point of f.

140



Proof. For q € Q denote by E, the set of points = € R? for which

1

lim — —q|d<L ) —
) 0 # )

or the limit does not exist or |f(x)| = co. By the Lebesgue differ-
entiation theorem £(E,) = 0. That means for E' = quQ E, also
£(E) =0.

Let z € R?\ E and ¢ > 0. Then there exists ¢ € Q with |f(x) —
q| < e. We can conclude

|f = f(x)|dL

lim sup

),
r—0 £(B((L‘J’)) B(z,r)

< limsup |f —qldL + |f(z) —q

1
r—0 W ~/B(;E,T')
— 2/f(x) — gl < 2=

Letting € — 0 we obtain that x is a Lebesgue point of f. O
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Note, that for measurable E C R? we have 1, € Li (R?) and

loc
1 _ L(B(z,r)NE)
Z(Bw,1) /B@,m = T B, )

Corollary 3.1.8. Let E C R? be Lebesgue measurable. Then for
L-almost every z € E we have
lim L(B(z,7)NE) _1
0  L(B(z,T))
and for £-almost every = € R? \ E we have

1 £(Bla,r) N E)

r0  Z(B(z,1)) =0

This can be seen as Lebesgue measurable sets being ”clumpy”.
For example they cannot fill exactly half of every ball. Instead, in a
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sense most small enough balls are either almost full of E or almost
fully disjoint from F.

Coming back to our original question in one dimension, we can
conclude that for any f € Ll _(R), the function F : R — R given
as its integral, (3.1.1), is differentiable in £-almost every x € R and

F’ = f. In particular

Fb)— Fla)= | fdc= / Frdc.
la,b] la,b]

That means we have generalized the fundamental theorem of calcu-
lus to functions F' given as integrals of f € L{ (R).

loc
Next, we consider more general functions F' : R — R.
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3.2 Radon measures

For any measurable f € L (R?) with f > 0 define a map f<£ by

loc

(F)(E) = /E fdc.

Observe, that f£ is a measure on the o-algebra of Lebesgue mea-
surable sets and finite on bounded sets. This makes f£ a Radon
measure, with the property that for F' given by

fBrde x>0,
F(@{—fffdz <0’

for any interval (a,b] we have (f£)((a,b]) = F(b) — F(a).

Definition 3.2.1. If u,v are measures on the same c-algebra M
and for every E € M with v(E) = 0 we have u(E) = 0, we say that
w1 is absolutely continuous with respect to v and write p < v.
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For example, the measure f£ is absolutely continuous with re-
spect to £. Not all Radon measures on R are absolutely continuous
with respect to Lebesgue measure. We show next that there is a one
to one correspondence between general Radon measures p and gen-
eral increasing maps F' that do not necessarily arise as an integral
of a function.

Definition 3.2.2. We say that F': R — R is upper semicontinu-
ous in x if for every € > 0 exists a 6 > 0 such that for all y € B(z, 9)
we have f(y) < f(z) +e.

Theorem 3.2.3. Let F : R — R be nondecreasing and upper semi-

continuous. Then there exists a unique Radon measure pu such that
for all a < b we have u((a,b]) = F(b) — F(a).
Conversely, if u is a Radon measure on R then F: R — R given

by
L fnoa) a0
H ){—u«x,m) v <0
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is monedecreasing and upper semicontinuous.

Proof. We first show the second statement. Given a Radon measure
u, the function F' is nondecreasing as a consequence of the mono-
tonicity of p. Let © € R and n € N. Then F(z + 1/n) — F(z) =
w((z,z + 1/n]), which is finite since p is a Radon measure. Since
0 =, (@, x +1/n] we can conclude from the measure continu-
ity lemma that F(x 4+ 1/n) — F(x). Since F is nondecreasing this
proves upper semicontinuity.

For the difficult direction let F' : R — R be nondecreasing and
upper semicontinuous and define

u(B) = int{ 3" F(b,) ~ Fla,)
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a, <b, EC G(an,b ]}.
n=1

Then g is an outer measure on R.
Claim 1. For any a < b we have u((a,b]) = F(b) — F(a).

Proof. Since (a, b] covers (a, b] follows ”<”. For the reverse inequality
let € > 0. Then there exist a,, < b,, such that (a,b] C Uzozl(an, b,,]
and -

> Fb,) = Fla,) < pl(a,b]) +e.

n=1
Then by the upper semicontinuity of F' exists a’ > a with F(a’) <
F(a) + ¢ and for each n exists b), > b,, such that F(b;,) < F(b,,) +
27"¢. Then the compact set [a’, b] is covered by the union of open in-
tervals UZOZI (a,,,b,), which hence has a finite subcover U::le (a,,b).

n»’n n»’n

Inductively remove superfluous intervals, so that each (a,,, b;,) inter-

sects [a’, b] \Uke{1 L Nhn (ay, by,). Next, reorder the intervals so that
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a, < a,,;. Then for each n we must have b}, > a,,,, for otherwise
there would be a gap [b;,,a,,] C [a’,b] that is not covered. More-
over, a; < a’ and b < byy. Since F is nondecreasing we can conclude

F(b) — F(a) —e < F(b) — F(a')

= F(a,) = F(@') + (Y Flay1) = Fla,)) + F(b) = Flay)
N " N
<Y Fb,)—Fla,) <e+ Y F(b,) - Fla,)
n=1 n=1
< pu((a, b)) + 2.
Letting € — 0 we finish the proof. O

Now, let E, F C R with d(E, F) > 0. Similarly as for Lebesgue
measure we may restrict the the definition of u(E U F') to intervals
with b,, —a,, < d(E, F)/2 in order to show u(EUF) > pu(E)+ u(F),
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which means that p is a metric outer measure. By [Theorem 1.2.14

this makes p a Borel measure. Let £ C R. Then there exist se-
quences (ay ), zen and (b)), yey such that B C |J, _, (ay, 5] and

n»vn

n(E)

Il
—

=
T
—~
S
I
~
e
—

S
o
~—

Therefore,



is a Borel set with p(B) = p(E). This makes p Borel regular. Since
for any —oo < @ < b < oo we have p((a,b]) = F(b) — F(a) < oo the
measure p is finite on compact sets, which finally makes © a Radon
measure.

To show uniqueness, let 11, 11 be Radon measures with p;((a, b]) =
F(b) — F(a). Now any open sets can be decomposed into disjoint
dyadic intervals, which were intervals of the form [2"k,2"(k + 1)).
By symmetry we can also decompose into intervals (2"k, 2™ (k + 1)],
and and we can conclude that for each open U C R we have py(U) =
11 (U). That means by lProposition 1.2.2d we can conclude that g
and p, agree on all sets as soon as we show that they have have the
same measurable sets, or rather, more precisely, that they can be
extended to a common c-algebra of measurable sets.

To that end, define the outer measure

w,(E) = inf{uy(U) : E C U open}.

For each i, by [Proposition 1.2.2d it agrees with p,; all p,-measurable
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E. By the same argument as Exercise 4, Question 1 applied to u,; we
can conclude that all p;-measuarable sets satisfy the Caratheodory
criterion for p,, which means that the o-algebras of p;-measurable
sets belongs to the o-algebra of u,-Carathéodory measurable sets.
That means p, restricted to all p,-Carathéodory measurable sets is
an extension of y,. Since this is the case for both ¢ = 0, 1, this is the
common extension we wanted. O

Corollary 3.2.4. Let f € Li (R) with f > 0 be measurable and

loc

[ fTfdc x>0,
F(x){—ofz"fdz x <0.

Then p from is also given by
u(e) = [ rac.
E
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Proof. We already discussed that the map

E|—>/fd£
E

is a Radon measure. That means by the uniqueness assertion from

it equals 4. O

Definition 3.2.5. We say that a map F' : R — R is absolutely
continuous if for any a < b and any € > 0 exists a 6 > 0 such that
for any a < a;... < ay, < b with

n
E Agj, — Qg q <0
k=1

we have
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Lemma 3.2.6. A Radon measure pu on R is absolutely continuous
with respect to Lebesgue measure if and only if the map F': R — R

given by
Py {0 a=0
—p((x,0]) =<0

is absolutely continuous.
Proof. Exercise. O

Compare this with lProposition 2.1.17| .

Remark 3.2.7. If F': R — R is absolutely continuous, then its deriva-
tive exists almost everywhere and

F(b) — F(a) = / "pac

We do not prove this. By we can conclude that any

Radon measure p on R that is absolutely continuous with respect to
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Lebesgue measure can be written as
u(e) = [ rac
E

for some f € LL _(R?).

In fact this is true in much generality.
Remark 3.2.8. For Radon measures u, v we have p <« v if and only
if there exists f € L{ (v) with u = fr. The map f is called the

loc

Radon-Nikodym derivative of p with respect to v.

3.3 The Cantor set

For example, we know that the counting measure & ° on R, restricted
to N C R is a Radon measure. It arises from the function

F=3 lnoo) =D Licoomy

neN neN
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This function has jumps, so it is very far from being absolutely
continuous, and the counting measure is very far from Lebesgue
measure because it is concentrated on single points. Next, we define
the Cantor function, which gives rise to a measure ”in between”
these two extremes.

Inductively define Cy = [0,1] and C,,,; = +(C, U (C, +2)). It
follows that C,,; C C,,. The set

C= @cn

is called the Cantor set. It is a subset of [0,1]. Being an in-
tersection of closed sets, it is closed itself, in particular Lebesgue
measurable. Note, that £(C, ;) = 2£(C,,), and by the measure
continuity lemma it follows that £(C') = 0.

Another way to write C is in terms of the ternary expansion of
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numbers. Precisely,

C= {iaksf’ﬂ:al,ag,... c {0,2}}. (3.3.1)
k=1

We prove by induction that for each n the set C,, is the set of all
real numbers that have ternary expansions with aq,...,a, € {0,2}.
For n = 0 this is immediate. Assume this is true for C,,. Then

1 1
Cn+1 = 7Cn U 7<Cn + 2)

3 3
= {Z a3 % a, =0, ay,.ya,.q € {0,2}}
k=1

U {Z a3 Fia; =2, ag,.ya,,, € {0,2}}
k=1

= {Z a3 ay, . a,. € {0,2}}.
k=1
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Now follows from C = ﬂ:ozl C

Note, that in this context we do allow expansions that for some
N have a,, = 2 for all n > N. That means C' contains also all
numbers of the form

Zak3k+ Z 2.3k = Zak3k+3” 1
k=n+1

with a;, € {0,2}, i.e. those who have finite a ternary expansion that
ends in 1, and with all other digits in {0, 2}.

Similarly, for Uy =0, U; = (1/3,2/3) and U, ., = +(U, U (U, +
2)) we have U, = [0,1]\ C,, and

C =[0,1]\ G Uy,
n=1
and .
U, = UJ 0,3™) + Y a3~
k=1

aysesa,_1€{0,2},a,=1
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Now, C'is very disconnected in the sense that for any a,b € C
with a < b, there is an interval I of length a constant times b—a that
sits between a and b and belongs to the complement of C: Let (a,,),
and (b,,),, be their ternary expansion that witness a,b € C. Let n
be the least digit in which they differ. Then a,, = 0 and b,, = 2.
That means the interval

n—1
(0,3™) + > a37* 43
k=1
sits between a and b and belongs to U,, C [0,1]\ C.

Moreover, C' does not contain any isolated point either, since for

every € C' and £ > 0 exists a y € C with |z —y| < e.
We define the Cantor function F : C' — [0, 1] by

F(i an?r") = i %”2%.
n=1 n=1
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This map is well defined since the ternary expansion of a number
that witnesses membership to the Cantor set is unique. Since it maps
to any possible binary expansion of numbers in [0, 1] it is surjective.
This shows that C' is uncountable. The Cantor function is also
nondecreasing and continuous. Moreover, let (a,b) be one of the
open intervals in U,,, i.e. there are a,...,a,_; € {0,2} such that

n—1 n—1 e’}
a=Y a3 43 = a3 + > 2.3F
= k=1

k=1 k=n+1
n—1

b=> a3* 2.3
k=1

Then F(a) = F(b). That means we can extend F to a continuous,
nondecreasing map F : [0, 1] by setting F'(z) = F(a) for all a < z <
b. We further extend it to R by setting F(z) = F(0) =0 for z < 0

and F(z) =F(1) =1 for z > 1.
By F' gives rise to a measure pc.
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Lemma 3.3.1. The measure u has the following properties:
(i) n(c) =1.
(ii) u(R\C)=0.
(iii) For every x € R we have u({z}) = 0.

That means po is supported on a set with zero Lebesgue mea-
sure, but, unlike the counting measure, does not assign positive mea-
sure to any single point.

Proof. By the measure continuity lemma and the continuity of ' we
have

u({x}) = Tim p((x—1/n,a]) = F(z) - F(z — 1/n) = 0.
Moreover,

w(R) = lim F(n)— F(—n)=F(1)— F(0) = 1.

n—oo
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Similarly, we have F([1,00)) = F((—00,0]) = 0. In order to finish
the proof it remains to show F([0,1] \ C) = 0. Since [0,1]\ C =
Uf;l U, it suffices to show that for every n we have uo(U,) = 0.
By the way F' was extended from C' to [0, 1] we have

ey = Y o083+ 4
k=1

ay,enay,_1€{0,2},a, =1

< 3 F(3*" + ; ak?rk) - F<i ak?f’“)

ay,.,a, 1€{0,2},a,=1

=0.
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3.4 Functions of bounded variation

For u from to be a measure we need F' to be nonde-

creasing. What if we relax this condition? We can still assign the
value F(b) — F(a) to any interval (a,b], but can we extend this map
to all Lebesgue measurable sets?

Definition 3.4.1. Let a < b and F : [a,b] — R. We define
?,azﬁ(F) = SUP{Z |F(a)—F(ag_1)| :n €N, a5 € [a,b], ag < ... < an}'
@ k=1

We say that F is of bounded variation if vary, ,;(F) < oc.

For example, if F' is monotone and bounded by M > 0 then

n

D 1F () —Flag_y)| = ‘Z Flay)=F(ag_)| = |F(a,)=F(a)| < 2M,
k=1 k=1
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SO Vary, (F) < 2M. Similarly, if F' is nondecreasing and G is non-
increasing and bounded by M then

n

S F+E) (@) —(F+C) a0 < 3 [Flag)—Flag )+ [Glay)—Clay )| < 4

k=1 k=1 k=1

In fact, also the reverse is true: Any function with bounded variation
is the sum of two monotone and bounded functions. To construct
those functions, for an interval I C [a,b] we define

v%r(F) = sup{ZmaX{O,F(ak) —F(ap_1)}:meN, a, €1, a; <...< an},
k=1

vgir(F) = sup{Zmax{O,F(akfl) —Flag)}ineN, a, €1, a; <...< an}.
k=1

Lemma 3.4.2. Let F : [a,b] — R have bounded variation. Then
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for every z € [a, b] we have

and

Proof. Note, that varj, (F),vary, ,(F) < vary, ,(F) < co. Let

[a,x]

€ > 0. Then there exist ay < ... < a,, such that

var (F) = 3 max{0, Flay) = Flay)} <e.
a,xr k}:l

Since the sum only increases if we refine the partition, i.e. add more
points to {ag, ..., a,, }, we may take it such that a, = a, a,, = z and
also

[a,x]

var(F) — Z max{0, F(a;,_,) — F(ay)} <e.
k=1
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Then

)~ Fla) = 3" Flay) — Flay 1)

k=1

= i max{0, F(a,) — F(a;,_1)}
k=1

— Z maX{O, F(ak—l) - F(ak)}
k=1

and thus .
|F(z) — F(a) — [Var](F) + [ngr](F)| < 2e.

Letting € — 0 finishes the proof of the first claim.
The second one is a consequence of

Z'F(ak) — F(ag_y) Zmax{o F(ay) — F(a,_1)}
k=1 =1
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+ ETL: max{0, F(a,_1) — F(a;)}-
k=1
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Chapter 4

Further topics

4.1 Signed measures

Definition 4.1.1. Let Q be a set and M C 29 be a o-algebra. A
set function p : M — (—o0,00] is called a signed measure if for
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disjoint E;, E,, ... € M we have

u(@l B) =Y uB,),

Remark 4.1.2. Assume we had a signed measure with pu(A) = —oco
and pu(B) = co. Then by additivity u(B\ A) = co or u(BNA) = oo,
and pu(A\ B) = —oo or u(AN B) = —co. In either case there exist
two disjoint sets C', D with p(C) = oo and pu(D) = —oco. But then
w(CUD) = p(C)+ u(D) fails.

Of course we could also define signed measures to assume values
in [—o00, 00) instead.
Remark 4.1.3. The additivity for signed measures requires that the
sum on the right hand side does not depend on the order of summa-
tion.

Example 4.1.4. (i) If py and p; are measures on 2 with the
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(i)
(iif)

same g-algebra and p, () < oo then pg — pq is a signed mea-
sure.

If f € LY, p) then E fE fdp is a signed measure.
And F : R — R which is continuous from the right, i.e.

lim F(y) = F(x)

y%x,y>m

and has bounded variation generates a signed measure p with

F(b) = F(a) = p((a,b])
as follows: All of the maps x = vary, ,(F), @ = varg, (F)
and z var;x](F ) are continuous from the right. Since they
are also nondecreasing that makes them upper semicontinuous.
That means by l heorem 3.2.3 they give rise to measures which
we denote by |u|, 4T and p~, and by we have

|| = ™ + 1. The map pu = pt — = gives a signed measure
with and [u(E)| < |ul(E).
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Remark 4.1.5. If p is given as f£ for some f € Ll _(R) we say

that f is the weak derivative of F.. We call the space of functions
F € LP(R, £) whose weak derivative also belongs to LP(R, £) the
Sobolev space W1P(R). That means the space of functions with
bounded variation can be seen as an extension of W11(R) to those
functions whose derivative is a finite signed Radon measure. All
those spaces can also defined on R?.

Next, we show the converse of [Example 4.1.4 , i.e. that any

signed measure is the difference of two measures.

Definition 4.1.6. Let p be a signed measure. We define the total
variation measure |u| of p by

|u|(E) = sup{z |w(E,)| : Ey, E,, ... are disjoint with F = E1UE2U...}.
n=1
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Proposition 4.1.7. The total variation measure |u| of a signed
measure y is in fact a measure with |u(E)| < |p|(E).
Moreover, |u| is the smallest such measure.

Proof. First, we show the minimality of |u|. For any F and disjoint
E,\,E,,.. with E=E, UFE,U ... and any measure v with v(E,) >
|u(E,)| we have

WE) =S (B, 2= |u(E,)|
n=1

n=1

This shows |u| < v.

In order to prove the countable additivity of |u| let Ey, Ey, ... €
M be disjoint. Let € > 0. Then for each n exist a partition E}, E2 ...
of I, with

l(E,) —27"e <) |u(ER)|.
k=1
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Thus,

Now we let € — 0.

For the reverse inequality let F}, F,, ... be a partition of E,,. Then
for each n the sets {F;,NE,, : k € N} are a partition of of E,, and for
each k the sets {F;, N E, : n € N} are a partition of F}. Therefore,

> lu(E N E,)|

1n

Do) <
k=1

Il
_

NERANE
NgE

3
Il
—
=
Il
—



<> |ul(E,).
n=1

O

Now, we can define the positive and negative parts u™ and
u~ of a sigend measure u by

1 1
pt =5 (pl + p), pe =5 (pl = p).
2 2
Note, that ut and p~ are measures with = p* — p~. Since |p] is

the smallest measure with |u|(E) > |u(E)| we can conclude that pt
are the smallest measures with p = put — p~.
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4.2 Convolution and approximation of the
identity
Definition 4.2.1. Let f,g : R? — [~00,00] be measurable. We

define their convolution by

(Fra@) = [ 1= 42w,

for those x for which the integrand is integrable.

There are different ways to ensure the convolution is defined
almost everywhere. One way is assuming f € L{ _(R?) and g €
L (RY), as in the following situation.

Proposition 4.2.2. Let f € L _(R?) and g € C*(RY). Then fxg €
CF(RY).

175



Proof. Let x,v € R%, [v] =1 and h > 0. Then

(f*g)(x+ h2> —(f*x9)@) _ %( /R flz—y)gly) dL(y) — /R Fla—y)gly+hv)d
_ f(x,y)w}w dL(y)
[Rd

= (f*0,9)(x)

by dominated convergence, as |0, 9], < 00, g has compact support
and f € L O

loc*
Theorem 4.2.3. Let 1 < p,q,r < oo such that 1+ % =14 % If

f€LP(RY) and g € LYRY) then f+ g€ L"(RY) with

1
P

If * gl r®ey < 1 flLe®a) gl Loray-

Proof. Tt suffices to consider the case that f,g are nonnegative.
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Write
(fxg)(x) = / [f(m—y)P/"g(y) V") f (w—y)PA/P=L") g () 21471 A L (y).

By Hélder’s inequality with v, 1/p; = 1/p—1/rand 1/p, = 1/q—1/r
applied to these three factors we obtain

1/r
(P29 < ([ flo—yrawracw) LG gl
and thus

1/r
17 = glarieey < [ 1o —wprats acwyac) 1 ol

1/ptp/r +q/r
= 1B g5 T = | £ g,

177



Let g : RY — [—00, 0] be integrable with Jg£ =1 Forr>0

define
(@) = 2

Then [g,£ = [g£=1.
Theorem 4.2.4. Let f € L. and g € L with [ gL = 1. Then

loc
for every Lebesgue point x of f we have

lim(f * 9,)(x) = f(2).

Proof. Let x be a Lebesgue point. Then

5@) = (9@ = | [ £@)9.0) = 1o = 9, 42|

< / 1F(@) — £ — )llg, ()] 4L ()

rd

ol
< flx)— flx —y)|dL
/ LR E L
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9]0 e
< bl /B(o,cr)'f(“ flo—y)ldLy) — 0

asr — 0. O

has more general variants, without the assumption

that g is compactly supported or uniformly bounded. However, often
also the integrability assumption on f has to be strengthened.
Note, that taking g € C°, combined with [Prop
Eition 4.2.2 gives an explicit pointwise approximation of any locally
integrable function by smooth functions. We have not shown that a

function g € Cg° exists, but it does.

Under slightly different assumptions we also achieve approxima-
tion in LP.

Theorem 4.2.5. Let 1 <p < oo, f € LP(R?) and g € L*(R?) with
[gd< =1. Then

lij)% If = f*g.loe®e =0.
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Since LP C Li . this means we can also approximate f by smooth
functions in LP.
For the proof we will use Minkowski’s integral inequality.

Theorem 4.2.6 (Minkowski’s integral inequality). For i = 0,1 let
(Q, ;) be o-finite measure spaces and let F': Qy x Q; — [—00, 0]
be measurable. Then for every 1 < p < oo we have

([ P an@) am]” < [ ([ e amw)” ape.

This may look complicated, but in fact it is barely more general
than the triangle inequality on LP. For example, take 2, = {1,...,n}
and p, the counting measure on ;. Then writing k instead of x
and f, (y) = F(n,y), Minkowski’s integral inequality becomes

n n
I 5 <3 il o)
k=1 k=1

LP(Qq,1q)
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We also need the following.

Proposition 4.2.7. Let 1 < p < oo and f € LP(R?). Then

tim /(- = ) = fllp = 0.

Proof. Let € > 0. Then by [Proposition 2.2.]] there exists a
step function ¢ = ZZ:1 aplg, with [f — @[, < e. Thus, also
If(- —2) —o(- —2)|» < oo. Moreover, for each k we have |1, (-—

z)—1g |l, = £((Q) — x)AQk)% — 0 as ¢ — 0. We can conclude

1FC=2) = flpe <MFC=2) =0l =2 + (- = 2) = @llpe + |F = @l

<2+ Z%”le(' —x)—1g,[l, <3¢
k=1

for all x small enough. O
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Proof of [Theorem 4.2.4. By a change of variables, rz =y we have
(Fx9)00) = 1) = [ (7= 9) = F))g, () 4L
= [t =rs) = fong(z) ac(e)
By Minkowski’s integral inequality, we obtain

||f*grff\|pS/IIf('*TZ)*f||p|g(2)|d£(2)-

Now, |f(- —rz) — fll, < 2|f],, and by Proposition 4.2.7, for every
z € R% we have | f(-—rz) —fll, €= 0 as 7 — 0. Thus, by dominated
convergence we can conclude || f * g, — f[,, — 0. O
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