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Preliminaries

This course assumes familiarity with basic notions from
• functions, such as injectivity, bijectivity, images, and preim-

ages,

• topology on ℝ𝑑, such as closed and open sets,

• analysis on the real line, such as sequences, series, limits, lim inf
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and lim sup,

• calculus on the real line, such as the chain and product rule
for derivatives, and the Riemann integral.

We recall the following notions and notations that are particu-
larly important for the course.

Sets and set operations We denote by ℕ the natural numbers
ℕ ≔ {1, 2, 3, …} and by ℝ the real numbers. For two sets 𝐴 and 𝐵
their union 𝐴 ∪ 𝐵 consists of all points 𝑥 that belong to 𝐴 or to 𝐵.
Their intersection 𝐴 ∩ 𝐵 consists of all points that belong to both
𝐴 and 𝐵. For sets 𝐴𝑛 that are indexed by for example by natural
numbers 𝑛 ∈ ℕ in the case of a sequence 𝐴1, 𝐴2, …, we denote by

∞
⋃
𝑛=1

𝐴𝑛 = 𝐴1 ∪ 𝐴2 ∪ …
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their union, i.e. the set of all points that for any 𝑛 belong to 𝐴𝑛.
More generally, if 𝒜 is a collection of sets 𝐴, we denote by

⋃ 𝒜 = ⋃
𝐴∈𝒜

𝐴

the set of all points 𝑥 for which there exists an 𝐴 ∈ 𝒜 with 𝑥 ∈ 𝒜.
The set difference 𝐴 ∖ 𝐵 consists of all points that belong to 𝐴
and not to 𝐵. Two sets 𝐴, 𝐵 are disjoint if 𝐴 ∩ 𝐵 = ∅. We say that
a collection of sets 𝒜 is disjoint, if any two 𝐴, 𝐵 ∈ 𝒜 with 𝐴 ≠ 𝐵
are disjoint.

For two sets 𝐴, 𝐵 we define their product 𝐴 × 𝐵 as the set of all
pairs with the first element from 𝐴 and the second element from 𝐵,
i.e.

𝐴 × 𝐵 = {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.
More generally,

𝐴1 × … × 𝐴𝑛 = {(𝑎1, …, 𝑎𝑛) ∶ ∀𝑘 = 1, …, 𝑛 𝑎𝑘 ∈ 𝐴𝑘}.
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A set 𝐴 is countable if there exists a surjection 𝑓 ∶ ℕ → 𝐴, i.e. for
each 𝑎 ∈ 𝐴 exists an 𝑛 ∈ ℕ with 𝑓(𝑛) = 𝑎. We also write 𝑎𝑛 ≔ 𝑓(𝑛).

Euclidean space The basic space where our study takes place is
Euclidean space, that is, for any natural number 𝑑 ∈ ℕ, the space
ℝ𝑑, which consist of all 𝑑-tuples 𝑥 = (𝑥1, …, 𝑥𝑑) of real numbers
𝑥𝑛 ∈ ℝ with 𝑛 = 1, …, 𝑑.

We assign to each point 𝑥 ∈ ℝ𝑑 its (Euclidean) norm

|𝑥| = (𝑥2
1 + … + 𝑥2

𝑑) 1
2 .

We can add and substract points 𝑥, 𝑦 ∈ ℝ𝑑 componentwise,

𝑥 + 𝑦 = (𝑥1 + 𝑦1, …, 𝑥𝑑 + 𝑦𝑑)
𝑥 − 𝑦 = (𝑥1 − 𝑦1, …, 𝑥𝑑 − 𝑦𝑑).

Euclidean distance The (Euclidean) distance between them is
|𝑥 − 𝑦|. The most elementary subsets of ℝ we consider are open and
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closed intervals. For 𝑎, 𝑏 ∈ ℝ denote by [𝑎, 𝑏] the set of all 𝑥 ∈ ℝ
with 𝑎 ≤ 𝑥 ≤ 𝑏 and by (𝑎, 𝑏) the set of all 𝑥 ∈ ℝ with 𝑎 < 𝑥 < 𝑏.
In Euclidean space with larger dimensions 𝑑 those sets generalize to
rectangles and balls.

Definition 0.0.1. For 𝑎, 𝑏 ∈ ℝ such that for 𝑛 = 1, …, 𝑑 we have
𝑎𝑛 ≤ 𝑏𝑛, the closed and open rectangles that have 𝑎 and 𝑏 as opposite
corners are

(𝑎1, 𝑏1) × … × (𝑎𝑑, 𝑏𝑑), [𝑎1, 𝑏1] × … × [𝑎𝑑, 𝑏𝑑].

By rectangle we always mean a closed rectangle unless specified
otherwise.

The (open) ball with center 𝑥 ∈ ℝ𝑑 and radius 𝑟 > 0 consist
of those 𝑦 ∈ ℝ𝑑 with |𝑥 − 𝑦| < 𝑟 and is denoted by 𝐵(𝑥, 𝑟). The
corresponding closed ball 𝐵(𝑥, 𝑟) consist of those 𝑦 ∈ ℝ𝑑 with |𝑥 −
𝑦| ≤ 𝑟.
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Let 𝐴 ⊂ ℝ𝑑. A point 𝑥 ∈ ℝ𝑑 is an interior point of 𝐴 if there
exists an 𝑟 > 0 with 𝐵(𝑥, 𝑟) ⊂ 𝐴. A point 𝑥 ∈ ℝ𝑑 is a limit point
of 𝐴 if for every 𝑟 > 0 exists a 𝑦 ∈ 𝐴 with |𝑥 − 𝑦| < 𝑟. We denote by

̊𝐴 the interior of 𝐴, the set of all interior points of 𝐴. We denote
by 𝐴 the closure of 𝐴, the set of all limit points of 𝐴. We denote
by

𝜕 𝐴 ≔ 𝐴 ∖ ̊𝐴
the boundary of 𝐴. By this definition, the interior of an open
or closed ball is the corresponding open ball, and its closure is the
corresponding closed ball. The same is true for rectangles.

The extendend real line is the set ℝ ∪ {−∞, ∞}. We partially
extend addition and multiplication from ℝ to the extended real line
by defining

∀𝑥 ∈ ℝ ∪ {∞} ∶ 𝑥 + ∞ ≔ ∞ ∀𝑥 > 0 ∶ 𝑥 ⋅ ∞ ≔ ∞.

9



We further extend this by prescribing commutativity and associa-
tivity and multiplying both definitions with −1. This only leaves
∞ − ∞ and 0 ⋅ ∞ undefined. In this sense we can treat a statement
like

lim
𝑛→∞

𝑎𝑛 = ∞

as an equality on the extended real line. We also extend the relations
<, ≤, >, ≥ to the extended real line via

∀𝑥 ∈ ℝ ∪ {−∞} ∶ 𝑥 < ∞, ∞ = ∞,

with the corresponding definitions for −∞.
Recall also

inf ∅ = ∞, sup ∅ = −∞.

Convergent sums Let 𝑎1, 𝑎2, … ≥ 0. Then their sum does not
depend on the order of summation, i.e. for any bijection 𝜎 ∶ ℕ → ℕ
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we have ∞
∑
𝑛=1

𝑎𝑛 =
∞

∑
𝑛=1

𝑎𝜎(𝑛).

Here, both sides of the equality may be infinite. The same conclusion
is true if 𝑎1, 𝑎2, … ∈ ℝ and

∞
∑
𝑛=1

|𝑎𝑛| < ∞.

For a countable set 𝐴 = {𝑎1, 𝑎2, …} ⊂ [0, ∞] this allows for the
notation

∑
𝑎∈𝐴

𝑎 =
∞

∑
𝑛=1

𝑎𝑛.
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Chapter 1

Measure Theory

The main textbook sources are [SS05] and [EG15]. Other inspira-
tional material are the lecture notes in real analysis by Emanuel
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Carneiro and the lecture notes in measure theory [Kin24] and real
analysis [Kin25] by Juha Kinnunen.

1.1 Lebesgue outer measure
1

Our first goal is to rigorously assign a volume to subsets of ℝ𝑑.
A set whose volume we already know is the rectangle: For 𝑎, 𝑏 ∈ ℝ𝑑

the volume of the rectangle 𝑅 = (𝑎1, 𝑏1)×…×(𝑎𝑑, 𝑏𝑑) is the product
of its side lengths,

|𝑅| = (𝑏1 − 𝑎1) ⋅ … ⋅ (𝑏𝑑 − 𝑎𝑑). (1.1.1)

The corresponding closed rectangle has the same volume.
1This section follows Sections 1.1.1 and 1.1.2 from [SS05] for the construction

of the Lebesgue measure.
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Definition 1.1.1. We say that a collection ℛ of rectangles is al-
most disjoint if for any two 𝑅0, 𝑅1 ∈ ℛ with 𝑅0 ≠ 𝑅1 their inte-
riors ̊𝑅0 and ̊𝑅1 are disjoint.

Lemma 1.1.2. Let 𝑛 ∈ ℕ and let 𝑅1, …, 𝑅𝑛 be almost disjoint
rectangles such that

𝑅 = 𝑅1 ∪ … ∪ 𝑅𝑛

is a rectangle, too. Then

|𝑅| =
𝑛

∑
𝑘=1

|𝑅𝑘|.

By our intuition about volumes this is clearly true. But it re-
quires a proof because all we know so far about our mathematical
notion of volume is the abstract formula (1.1.1).

Proof. We first consider the case that the rectangles form a grid,
that is, for each 𝑙 = 1, …, 𝑑 there are 𝑎𝑙 = 𝑎0

𝑙 < … < 𝑎𝑁𝑑
𝑙 = 𝑏𝑙 such

14



Figure 1.1: The grid case.
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that each rectangle 𝑅𝑘 is of the form [𝑎𝑖
1, 𝑎𝑖+1

1 ]×…×[𝑎𝑗
𝑑, 𝑎𝑗+1

𝑑 ]. Then

|𝑅| =
𝑑

∏
𝑙=1

(𝑏𝑙 − 𝑎𝑙) =
𝑑

∏
𝑙=1

𝑁𝑑

∑
𝑖=1

(𝑎𝑖
𝑙 − 𝑎𝑖−1

𝑙 )

=
𝑁1

∑
𝑖1=1

…
𝑁𝑑

∑
𝑖𝑑=1

𝑑
∏
𝑙=1

(𝑎𝑖𝑙
𝑙 − 𝑎𝑖𝑙−1

𝑙 ) =
𝑛

∑
𝑘=1

|𝑅𝑘|. (1.1.2)

For the general case, we subdecompose each rectangle 𝑅𝑖 via
the extended faces of the rectangles 𝑅1, …, 𝑅𝑛 into rectangles 𝑅𝑖 =
𝑅1

𝑖 ∪ … ∪ 𝑅𝑁𝑖
𝑖 . This subdecomposition is a grid which means that

by the previous case

|𝑅𝑖| =
𝑁𝑖

∑
𝑗=1

|𝑅𝑗
𝑖 |.

Moreover, the rectangles {𝑅𝑗
𝑖 ∶ 𝑗 = 1, …, 𝑁𝑖, 𝑖 = 1, …, 𝑛} form a grid
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Figure 1.2: The general case. Figure 1.3: Subdecomposition
into grid.
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for 𝑅, so that

|𝑅| =
𝑛

∑
𝑖=1

𝑁𝑖

∑
𝑗=1

|𝑅𝑗
𝑖 | =

𝑛
∑
𝑖=1

|𝑅𝑖|. (1.1.3)

Lemma 1.1.3. Let 𝑛 ∈ ℕ and let 𝑅, 𝑅1, …, 𝑅𝑛 be rectangles with

𝑅 ⊂ 𝑅1 ∪ … ∪ 𝑅𝑛

Then
|𝑅| ≤

𝑛
∑
𝑘=1

|𝑅𝑘|.

Note, that Lemma 1.1.3 also holds if 𝑅1, …, 𝑅𝑛 are open, because
𝑅𝑖 ⊂ 𝑅𝑖 and |𝑅𝑖| = |𝑅𝑖|.
Proof. This follows by the same proof as Lemma 1.1.2, except that
some rectangles of the grid that decomposes 𝑅 may belong to more
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than one of the rectangles 𝑅1, …, 𝑅𝑛. More precisely, the last equal-
ity in (1.1.2) and the first equality in (1.1.3) become inequalities.

We want to use a similar idea of writing a set in terms of sets
whose volume we know in order to define its volume.

Definition 1.1.4. A cube 𝑄 ⊂ ℝ𝑑 is a rectangle whose sidelengths
are all identical, i.e. for 𝑎1, …, 𝑎𝑑 ∈ ℝ𝑑 and 𝑟 > 0 it is of the form

𝑄 = (𝑎1, 𝑎1 + 𝑟) × … × (𝑎𝑑, 𝑎𝑑 + 𝑟).

Its volume thus is |𝑄| = 𝑟𝑑.

Definition 1.1.5. For any set 𝐸 ⊂ ℝ𝑑 we define its outer Lebesgue
measure by

ℒ∗(𝐸) = inf{∑
𝑄∈𝒬

|𝑄| ∶

𝒬 is a countable set of closed cubes
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with 𝐸 ⊂ ⋃ 𝒬}.

Lemma 1.1.6. For each closed cube 𝑄 we have

ℒ∗(𝑄) = |𝑄|.
Proof. Since {𝑄} is a cover of 𝑄 we have ℒ∗(𝑄) ≤ |𝑄|. For the
reverse inequality let 𝜀 > 0. Then there exists a countable cover 𝒬
of 𝑄 such that

∑
𝑃∈𝒬

|𝑃 | ≤ ℒ∗(𝑄) + 𝜀.

Let 𝛿 > 0 and for each 𝑃 ∈ 𝒬 denote by ̃𝑃 the open cube with the
same center as 𝑃 and volume 1 + 𝛿 times the volume of 𝑃 . Then

̃𝑃 ⊃ 𝑃 which means that 𝒫̃ ≔ { ̃𝑃 ∶ 𝑃 ∈ 𝒬} is an open cover of the
compact set 𝑄 and thus has a finite subcover 𝒫. By Lemma 1.1.3
we can conclude

|𝑄| ≤ ∑
𝑃̃∈𝒫

| ̃𝑃 | = (1 + 𝛿) ∑
𝑃̃∈𝒫

|𝑃 |
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≤ (1 + 𝛿) ∑
𝑃∈𝒬

|𝑃 | ≤ (1 + 𝛿)(ℒ∗(𝑄) + 𝜀).

Since 𝜀, 𝛿 > 0 were arbitrarily small we can conclude |𝑄| ≤ ℒ∗(𝑄)
and finish the proof.

2025-09-09
Remark 1.1.7. We need to allow countable sequences of cubes in the
definition of the outer measure. If we only allowed finite sequences
then unbounded sets would always have infinite outer Lebesgue mea-
sure. However, sets like ℕ ⊂ ℝ should have zero volume.

For a set Ω denote by 2Ω the set of all subsets of Ω.

Definition 1.1.8. We say that a set function 𝜇∗ ∶ 2Ω → [0, ∞] is an
outer measure if it has the following two properties:

(i) (empty set) 𝜇∗(∅) = 0.
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(ii) (countable subadditivity) For each 𝐸, 𝐸1, 𝐸2, … ⊂ Ω with 𝐸 ⊂
𝐸1 ∪ 𝐸2 ∪ … we have

𝜇∗(𝐸) ≤
∞

∑
𝑛=1

𝜇∗(𝐸𝑛).

Observe that countable subadditivity implies the monotonicity
property, that for each 𝐸0 ⊂ 𝐸1 ⊂ Ω we have 𝜇∗(𝐸0) ≤ 𝜇∗(𝐸1).
Proposition 1.1.9. Lebesgue outer measure is an outer measure
on ℝ𝑑.

Proof. In order to show the empty set property it suffices to observe
that the empty cover ∅ is a cover of ∅, and that an empty sum equals
zero. In order to prove the countable subadditivity let 𝜀 > 0. Then
for each 𝑛 = 1, 2, … exists a cover 𝒬𝑛 of 𝐸𝑛 such that

∑
𝑄∈𝒬𝑛

|𝑄| ≤ ℒ∗(𝐸𝑛) + 2−𝑛𝜀.
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Then 𝒬 ≔ 𝒬1 ∪ 𝒬2 ∪ … is a cover of 𝐸1 ∪ 𝐸2 ∪ … and thus

ℒ∗(
∞
⋃
𝑛=1

𝐸𝑛)

≤ ∑
𝑄∈𝒬1∪𝒬2∪…

|𝑄| =
∞

∑
𝑛=1

∑
𝑄∈𝒬𝑛

|𝑄|

≤
∞

∑
𝑛=1

(ℒ∗(𝐸𝑛) + 2−𝑛𝜀) = 𝜀 +
∞

∑
𝑛=1

ℒ∗(𝐸𝑛).

Since 𝜀 > 0 was arbitrarily small this finishes the proof.

For Lebesgue outer measure to represent a reasonable notion of
volume, it should be true that if we divide a set into parts, the vol-
umes of the parts should sum up to the volume of the original set.
This property is called additivity if we ask it to hold for a division
into finitely many parts, and countable additivity for countably
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many. In Proposition 1.1.9 we have only proven countable subaddi-
tivity for Lebesgue outer measure, i.e. that the volumes of the parts
sum up to at least the volume of the original set. Unfortunately, we
cannot strengthen this to countable additivity. More precisely, we
cannot prove that for any sequence 𝐸1, 𝐸2, … ⊂ ℝ𝑑 of disjoint sets
we have

ℒ∗(
∞
⋃
𝑛=1

𝐸𝑛) =
∞

∑
𝑛=1

ℒ∗(𝐸𝑛). (1.1.4)

In fact, we will see in Section 1.2.2 that this property can indeed fail
if we assume the axiom of choice.
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1.2 Measurable sets
1.2.1 Carathéodory’s theorem
2

As we will see, (1.1.4) actually does hold for a vast amount of
sets. To determine a sufficient class of those sets we elevate to a
more abstract setting.

Definition 1.2.1. We say that a collection ℳ ⊂ 2Ω of sets is a
𝜎-algebra if

(i) (empty set) ∅ ∈ ℳ,

(ii) (complement) for each 𝐸 ∈ ℳ we have Ω ∖ 𝐸 ∈ ℳ, and
2This section follows the more abstract Section 6.1.1 from [SS05].
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(iii) (countable union) for each 𝐸1, 𝐸0, … ∈ ℳ we have
∞
⋃
𝑛=1

𝐸𝑛 ∈ ℳ.

Definition 1.2.2. Let ℳ be a 𝜎-algebra. A set function 𝜇 ∶ ℳ →
[0, ∞] is called a measure if it has the following two properties.

(i) (empty set) 𝜇(∅) = 0.

(ii) (countable additivity) For all disjoint 𝐸0, 𝐸1, … ∈ ℳ we have

𝜇(
∞
⋃
𝑛=0

𝐸𝑛) =
∞

∑
𝑛=0

𝜇(𝐸𝑛).

A triple (Ω, ℳ, 𝜇) of a set Ω, a 𝜎-algebra ℳ and a measure 𝜇 is
called a measure space. Given 𝐸 ⊂ Ω we also say that 𝐸 is (𝜇-
)measurable if 𝐸 ∈ ℳ.
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Note, that countable additivity is our missing property (1.1.4).
That means we call an outer measure 𝜇∗ on a selected collection of
sets a measure, if on those sets it is not only countable subadditive
but countable additive. But how do we find that selected collection?
As we will see soon, the following criterion will do.

Definition 1.2.3. Given an outer measure 𝜇∗, we say that a set
𝐴 ⊂ Ω is Carathéodory measurable if for all 𝐵 ⊂ Ω we have

𝜇∗(𝐵) = 𝜇∗(𝐵 ∩ 𝐴) + 𝜇∗(𝐵 ∖ 𝐴). (1.2.1)

For brevity we will just say measurable instead of Carathéodory
measurable. As we will see, for Lebesgue outer measure, essentially
all the sets that we care about in analysis satisfy this Carathéodory
criterion.

Note, that we ask (1.2.1) to hold for all sets 𝐵 ⊂ Ω, which in
the end may include sets that do not belong to the collection ℳ of
measurable sets.
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Note, that

𝜇∗(𝐵) ≤ 𝜇∗(𝐵 ∩ 𝐴) + 𝜇∗(𝐵 ∖ 𝐴)

always holds by subadditivity of an outer measure. That means
(1.2.1) is equivalent to

𝜇∗(𝐵) ≥ 𝜇∗(𝐵 ∩ 𝐴) + 𝜇∗(𝐵 ∖ 𝐴).

Theorem 1.2.4. Given an outer measure 𝜇∗ on Ω, the set ℳ of
all Carathéodory measurable subsets of Ω forms a 𝜎-algebra.

Theorem 1.2.5. Given an outer measure 𝜇∗ on Ω, the map 𝜇∗
restricted to the set ℳ of all Carathéodory measurable subsets of Ω
is a measure.

Proof of Theorems 1.2.4 and 1.2.5. We have to show the following
properties: Let 𝐸1, 𝐸2, … ⊂ Ω be measurable. Then

(i) ∅ is measurable,
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(ii) Ω ∖ 𝐸1 is measurable,

(iii) 𝐺 = 𝐸1 ∪ 𝐸2 ∪ … is measurable, and

(iv) if 𝐸1, 𝐸2, … are disjoint then

𝜇∗(𝐺) =
∞

∑
𝑛=1

𝜇∗(𝐸𝑛).

Items (i) to (iii) imply Theorem 1.2.4, and (iv) together with the
fact that 𝜇∗ is an outer measure implies Theorem 1.2.5.

𝐸 = ∅ satisfies (1.2.1), and since 𝐸1 satisfies (1.2.1) also Ω ∖ 𝐸
does. That proves (i) and (ii).

2025-09-11
Let 𝐴 ⊂ Ω. Then

𝜇(𝐴) = 𝜇(𝐴 ∩ 𝐸1) + 𝜇(𝐴 ∖ 𝐸1)
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= 𝜇(𝐴 ∩ 𝐸1 ∩ 𝐸2) + 𝜇(𝐴 ∩ 𝐸1 ∖ 𝐸2)
+ 𝜇((𝐴 ∖ 𝐸1) ∩ 𝐸2) + 𝜇(𝐴 ∖ (𝐸1 ∪ 𝐸2))

≥ 𝜇(𝐴 ∩ (𝐸1 ∪ 𝐸2)) + 𝜇(𝐴 ∖ (𝐸1 ∪ 𝐸2)).
That means 𝐸1∪𝐸2 is measurable, and by induction we can conclude
that for any 𝑛 ∈ ℕ the set 𝐺𝑛 ≔ 𝐸1 ∪ … ∪ 𝐸𝑛 is measurable.

Set ̃𝐸1 = 𝐸1 and for each 𝑛 ≥ 2 set ̃𝐸𝑛 = 𝐸𝑛 ∖ 𝐺𝑛−1. Then
̃𝐸𝑛 = Ω ∖ [(Ω ∖ 𝐸𝑛) ∪ 𝐺𝑛−1]

is measurable and 𝐺𝑛 = ̃𝐸1 ∪ … ∪ ̃𝐸𝑛, 𝐺 = ̃𝐸1 ∪ ̃𝐸2 ∪ …. Then

𝜇(𝐴 ∩ 𝐺𝑛) = 𝜇(𝐴 ∩ 𝐺𝑛 ∩ ̃𝐸𝑛) + 𝜇(𝐴 ∩ 𝐺𝑛 ∖ ̃𝐸𝑛)
= 𝜇(𝐴 ∩ ̃𝐸𝑛) + 𝜇(𝐴 ∩ 𝐺𝑛−1)

and by induction we can conclude

𝜇(𝐴 ∩ 𝐺𝑛) =
𝑛

∑
𝑘=1

𝜇(𝐴 ∩ ̃𝐸𝑘).
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Therefore

𝜇(𝐴) = 𝜇(𝐴 ∩ 𝐺𝑛) + 𝜇(𝐴 ∖ 𝐺𝑛) ≥
𝑛

∑
𝑘=1

𝜇(𝐴 ∩ ̃𝐸𝑘) + 𝜇(𝐴 ∖ 𝐺)

and letting 𝑛 → ∞ we obtain

𝜇(𝐴) ≥
∞

∑
𝑘=1

𝜇(𝐴 ∩ ̃𝐸𝑘) + 𝜇(𝐴 ∖ 𝐺)

≥ 𝜇(𝐴 ∩ 𝐺) + 𝜇(𝐴 ∖ 𝐺) ≥ 𝜇(𝐴).

That means the previous inequality is an equality, which implies
(iii). If the 𝐸1, 𝐸2, … are disjoint then 𝐸𝑛 = ̃𝐸𝑛. Setting 𝐴 = 𝐺 in
the previous equality thus implies (iv).

Definition 1.2.6. A measure space (Ω, ℳ, 𝜇) is called complete if
for every 𝐴 ∈ ℳ with 𝜇(𝐴) = 0 and every 𝐸 ⊂ 𝐴 we have 𝐸 ∈ ℳ.
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It follows from the definition that any set 𝐸 ⊂ Ω with 𝜇∗(𝐸) = 0
is measurable as

𝜇∗(𝐴 ∩ 𝐸) + 𝜇∗(𝐴 ∖ 𝐸) = 𝜇∗(𝐴 ∖ 𝐸) ≤ 𝜇(𝐴).
This means the restriction of 𝜇∗ to its measurable sets is a complete
measure.
Lemma 1.2.7. Let (Ω, ℳ, 𝜇) be a measure space and let 𝐸1, 𝐸2, … ∈
ℳ. If 𝐸1 ⊂ 𝐸2 ⊂ … then

lim
𝑛→∞

𝜇(𝐸𝑛) = 𝜇(
∞
⋃
𝑛=1

𝐸𝑛),

where both sides may be infinite. If 𝜇(𝐸1) < ∞ and 𝐸1 ⊃ 𝐸2 ⊃ …
then

lim
𝑛→∞

𝜇(𝐸𝑛) = 𝜇(
∞
⋂
𝑛=1

𝐸𝑛).

Proof. See exercise sheet 2.
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1.2.2 A non-measurable set
Lemma 1.2.8 (Translation invariance of Lebesgue measure). Let
𝐸 ⊂ ℝ𝑑 and 𝑥 ∈ ℝ𝑑 and denote

𝐸 + 𝑥 = {𝑦 + 𝑥 ∶ 𝑦 ∈ 𝐸}.

Then
ℒ∗(𝐸 + 𝑥) = ℒ∗(𝐸).

Proof. It suffices to show ℒ∗(𝐸 + 𝑥) ≤ ℒ∗(𝐸) because from that we
also obtain ℒ∗(𝐸) = ℒ∗(𝐸 + 𝑥 − 𝑥) ≤ ℒ∗(𝐸 + 𝑥).

For any 𝜀 > 0 exists a cover 𝒬 of 𝐸 with

ℒ∗(𝐸) ≤ 𝜀 + ∑
𝑄∈𝒬

|𝑄|.

Then ̃𝒬 = {𝑄 + 𝑥 ∶ 𝑄 ∈ 𝒬} is a cover of 𝐸 + 𝑥 and thus since
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|𝑄 − 𝑥| = |𝑄| we obtain

ℒ∗(𝐸 + 𝑥) ≤ ∑
𝑄̃∈𝒬̃

|𝑄̃| = ∑
𝑄̃∈𝒬̃

|𝑄̃ − 𝑥| = ∑
𝑄∈𝒬

|𝑄|

≤ ℒ∗(𝐸) + 𝜀.
Since 𝜀 > 0 was arbitraly small we obtain ℒ∗(𝐸 +𝑥) ≤ |𝐸| and finish
the proof.

Theorem 1.2.9. Assume the axiom of choice holds. Then there
exist disjoint sets 𝐸0, 𝐸1, … ⊂ ℝ for which (1.1.4) fails.
Proof. For 𝑥, 𝑦 ∈ [0, 1] denote 𝑥 ∼ 𝑦 if 𝑥 − 𝑦 is a rational number.
Then ∼ is an equivalence relation. That means there is a decompo-
sition 𝒜 of [0, 1], i.e. the union

[0, 1] = ⋃ 𝒜
is disjoint, such that for any 𝑥, 𝑦 ∈ [0, 1] we have 𝑥 ∼ 𝑦 if and only
if 𝑥 and 𝑦 belong to the same set 𝐴 ∈ 𝒜. By the axiom of choice
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there exists a set 𝐸 that contains exactly one element from each set
𝐴 ∈ 𝒜. That means for each 𝑥 ∈ [0, 1] exists a 𝑦 ∈ 𝐸 and a rational
𝑞 ∈ ℚ ∩ [−1, 1] such that 𝑥 = 𝑦 + 𝑞. Moreover, for each 𝑥 ∈ 𝐸
and 𝑞 ∈ ℚ we have 𝑥 + 𝑞 ∉ 𝐸. We can conclude that the sets in
{𝐸 + 𝑞 ∶ 𝑞 ∈ ℚ ∩ [−1, 1]} form a countable disjoint cover of [0, 1] and
belong to [−1, 2].

By Lemma 1.2.8 we have ℒ∗(𝐸 + 𝑞) = ℒ∗(𝐸). Then by

1 = ℒ∗([0, 1]) ≤ ∑
𝑞∈ℚ∩[−1,1]

ℒ∗(𝐸 + 𝑞) = ∑
𝑞∈ℚ∩[−1,1]

ℒ∗(𝐸).

we must have ℒ∗(𝐸) > 0. This however means

∑
𝑞∈ℚ∩[−1,1]

ℒ∗(𝐸 + 𝑞) = ∑
𝑞∈ℚ∩[−1,1]

ℒ∗(𝐸) = ∞

> 3 ≥ ℒ∗([−1, 2])
≥ ℒ∗( ⋃

𝑞∈ℚ∩[−1,1]
𝐸 + 𝑞),
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i.e. (1.1.4) fails.

By Theorem 1.2.9, Lebesgue outer measure is not a measure on
the 𝜎-algebra 2ℝ if we assume the axiom of choice. In the subsequent
section we will see that still essentially all the sets that we care about
in analysis are Lebesgue measurable.

1.2.3 Metric measures
Our definition of measurability works in a very general setting of a
mere set Ω. Since the fundamental domain in this course is ℝ𝑑 we
allow ourselves to a ssume a bit more structure.

Definition 1.2.10. Given a set Ω a map d ∶ Ω × Ω → [0, ∞) is
called a metric if

(i) for all 𝑥 ∈ Ω we have d(𝑥, 𝑥) = 0,

(ii) (symmetry) for all 𝑥, 𝑦 ∈ Ω we have d(𝑥, 𝑦) = d(𝑦, 𝑥), and
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(iii) (triangle inequality) for all 𝑥, 𝑦, 𝑧 ∈ Ω we have d(𝑥, 𝑧) ≤ d(𝑥, 𝑦)+
d(𝑦, 𝑧).

The pair (Ω, d) is called a metric space.

Definition 1.2.11. Given a metric d, we can define an (open) ball
centered in 𝑥 ∈ Ω with radius 𝑟 > 0,

𝐵(𝑥, 𝑟) = {𝑦 ∈ Ω ∶ d(𝑥, 𝑦) < 𝑟}.

We say that a set 𝐴 ⊂ Ω is open if for every 𝑥 ∈ 𝐴 exists an 𝑟 > 0
such that 𝐵(𝑥, 𝑟) ⊂ 𝐴. We say that 𝐴 ⊂ Ω is closed if Ω ∖ 𝐴
is open. We define the Borel 𝜎-algebra ℬΩ to be the smallest 𝜎
algebra that contains all open sets 𝐴 ⊂ Ω. Its members 𝐸 ∈ ℬΩ are
called Borel sets.

See exercise sheet 1 for what we mean precisely by the smallest
𝜎 algebra that contains all open sets 𝐴 ⊂ Ω.
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We want to show that all Borel subsets of ℝ𝑑 are Lebesgue mea-
surable. This will be a consequence of the fact that Lebesgue outer
measure is a metric outer measure.

We extend the metric to d ∶ 2Ω × 2Ω → [0, ∞) by defining

d(𝐴, 𝐵) = inf{d(𝑥, 𝑦) ∶ 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}.

Definition 1.2.12. An outer measure 𝜇∗ is called a metric outer
measure if for all 𝐴, 𝐵 ⊂ Ω with d(𝐴, 𝐵) > 0 we have

𝜇∗(𝐴 ∪ 𝐵) = 𝜇∗(𝐴) + 𝜇∗(𝐵).

2025-09-16

Lemma 1.2.13. Lebesgue outer measure is a metric outer measure.

Proof. Let 𝐴0, 𝐴1 ⊂ ℝ𝑑 with 𝛿 ≔ d(𝐴0, 𝐴1) > 0. It suffices to prove

ℒ(𝐴0 ∪ 𝐴1) ≥ ℒ(𝐴0) + ℒ(𝐴1).

38



Let 𝜀 > 0. Then there exists a countable cover 𝒬 of 𝐴0 ∪ 𝐴1 with
closed cubes such that

∑
𝑄∈𝒬

|𝑄| ≤ ℒ(𝐴0 ∪ 𝐴1) + 𝜀.

There is a subdivision ̃𝒬 of the cubes in 𝒬 in cubes with diameter
less than 𝛿 and. That means the cover ⋃ 𝒬 and by Lemma 1.1.2 we
have

∑
𝑄∈𝒬

|𝑄| = ∑
𝑄∈𝒬̃

|𝑄|.

Since d(𝐴0, 𝐴1) = 𝛿, any 𝑄 ∈ ̃𝒬 cannot intersect both 𝐴0 and 𝐴1.
That means the sets ̃𝒬𝑖 = {𝑄 ∈ ̃𝒬 ∶ 𝑄 ∩ 𝐴𝑖 ≠ ∅} are disjoint for
𝑖 = 0, 1. Moreover, ̃𝒬𝑖 is a cover of 𝐴𝑖. We can conclude

ℒ(𝐴0 ∪ 𝐴1) + 𝜀 ≥ ∑
𝑄∈𝒬̃

|𝑄| ≥ ∑
𝑄∈𝒬̃0

|𝑄| + ∑
𝑄∈𝒬̃1

|𝑄|
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≥ ℒ(𝐴0) + ℒ(𝐴1).

Since 𝜀 > 0 was arbitrarily small this finishes the proof.

Theorem 1.2.14. Let 𝜇∗ be a metric outer measure. Then all Borel
sets are 𝜇∗-measurable.

Proof. By the definition of Borel sets and Theorem 1.2.4 it suffices
to show that all closed sets are 𝜇∗-measurable. To that end it suffices
to show that for all 𝐴 ⊂ Ω and all closed 𝐵 ⊂ Ω we have

𝜇∗(𝐴) ≥ 𝜇∗(𝐴 ∩ 𝐵) + 𝜇∗(𝐴 ∖ 𝐵). (1.2.2)

For 𝑛 ∈ ℕ denote

𝐴𝑛 = {𝑥 ∈ 𝐴 ∖ 𝐵 ∶ d(𝐵, {𝑥}) ≥ 1/𝑛}.

Let 𝑥 ∈ Ω with d({𝑥}, 𝐵) = 0. Then there exists a sequence
𝑥1, 𝑥2, … ∈ 𝐵 with d(𝑥𝑛, 𝑥) → 0. Since 𝐵 is closed this means
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𝑥 ∈ 𝐵. Therefore, for any 𝑛 ∈ ℕ
∞
⋃

𝑘=𝑛+1
𝐴𝑘 = {𝑥 ∈ 𝐴 ∖ 𝐵 ∶ d({𝑥}, 𝐵) > 0} = 𝐴 ∖ 𝐵.

Moreover, for each 𝑛 we have d(𝐵, 𝐴𝑛) ≥ 1/𝑛 and since 𝜇∗ is a
metric outer measure this means

𝜇∗(𝐴) ≥ 𝜇∗(𝐴 ∩ 𝐵 ∪ 𝐴𝑛) = 𝜇∗(𝐴 ∩ 𝐵) + 𝜇∗(𝐴𝑛). (1.2.3)

Set 𝐶𝑛 = 𝐴𝑛+1 ∖ 𝐴𝑛. Then

d(𝐶𝑛+1, 𝐴𝑛−1) ≥ 1
𝑛(𝑛 + 1) .

Since 𝜇∗ is a metric outer measure, by induction this implies

𝜇∗(𝐴) ≥ 𝜇∗(
𝑛

⋃
𝑘=1

𝐶2𝑘) =
𝑛

∑
𝑘=1

𝜇∗(𝐶2𝑘)
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and similarly

𝜇∗(𝐴) ≥ 𝜇∗(
𝑛

⋃
𝑘=1

𝐶2𝑘−1) =
𝑛

∑
𝑘=1

𝜇∗(𝐶2𝑘−1).

Since it suffices to consider 𝜇∗(𝐴) < ∞ (why?), we can conclude

∞
∑
𝑘=1

𝜇∗(𝐶𝑘) < ∞

Therefore,

𝜇∗(𝐴𝑛) ≤ 𝜇∗(𝐴 ∖ 𝐵) ≤ 𝜇∗(𝐴𝑛) +
∞

∑
𝑘=𝑛+1

𝜇∗(𝐶𝑘).

Letting 𝑛 → ∞ this means 𝜇∗(𝐴𝑛) → 𝜇∗(𝐴 ∖ 𝐵) and thus from
(1.2.3) we can conclude (1.2.2) and finish the proof.
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Definition 1.2.15. An outer measure for which all open, or, equiv-
alently, all Borel sets, are measurable is also called a Borel outer
measure. By Lemma 1.2.13 and Theorem 1.2.14 Lebesgue measure
is a Borel measure.

Conversely, a Borel outer measure 𝜇 on ℝ𝑑 is called Borel reg-
ular if for every measurable set 𝐴 exists a Borel set 𝐵 ⊂ 𝐴 with
𝜇(𝐴) = 𝜇(𝐵). A Borel regular outer measure 𝜇 such that for all
compact 𝐾 ⊂ ℝ𝑑 we have 𝜇(𝐾) < ∞ is called a Radon outer
measure.

A measure is called Borel if its 𝜎-algebra ℳ contains all Borel
sets, and it is called Borel regular or Radon measure respectively if
the above properties hold for all sets 𝐴 ∈ ℳ. That means the restric-
tion of a Borel/Borel regular/Radon outer measure to its measurable
sets yields a Borel/Borel regular/Radon measure.
Definition 1.2.16. For 𝑛 ∈ ℤ recall the dyadic numbers

𝔻𝑛 = {𝑘2𝑛 ∶ 𝑘 ∈ ℤ}, 𝔻 = ⋃
𝑛∈ℤ

𝔻𝑛 ⊂ ℝ.
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We define the set of dyadic cubes by

𝒟𝑛 = {
𝑑

∏
𝑙=1

2𝑛[𝑘𝑙, 𝑘𝑙 + 1) ∶ 𝑘1, …, 𝑘𝑑 ∈ ℤ},

𝒟 = ⋃
𝑛∈ℤ

𝒟𝑛.

Then for any 𝑛 ∈ ℤ and 𝒬 ⊂ ⋃𝑛
𝑘=−∞ 𝒟𝑘, we have

⋃ 𝒬 = ⋃{𝑄 ∈ 𝒬 ∶ ∀𝑃 ∈ 𝒬 ¬𝑄 ⊊ 𝑃}.

The latter is called the maximal disjoint subset of 𝒬. Any two
dyadic cubes in that collection are disjoint. Moreover, for any 𝑥 ∈ ℝ𝑑

and 𝑟 > 0 exists a 𝑄 ∈ 𝔻 with 𝑥 ∈ 𝑄 ⊂ 𝐵(𝑥, 𝑟). Combining these
two facts, we arrive at the following.

Fact 1.2.17. Any open set 𝑈 ⊂ ℝ𝑑 can be written as a countable
disjoint union of dyadic cubes.

44



For a proof in one dimension see exercise sheet 2.
For two sets 𝐴, 𝐵 ⊂ Ω define their symmetric difference by

𝐴Δ𝐵 = (𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴).

Proposition 1.2.18. Let 𝐸 ⊂ ℝ𝑑.

(i)
ℒ∗(𝐸) = inf{ℒ(𝑈) ∶ 𝑈 ⊂ ℝ𝑑 open, 𝐸 ⊂ 𝑈}.

If 𝐸 is measurable then for every 𝜀 > 0 exists an open set
𝑈 ⊃ 𝐸 with

ℒ∗(𝑈 ∖ 𝐸) < 𝜀.

(ii) If 𝐸 is Lebesgue measurable then for every 𝜀 > 0 exists a closed
set 𝐶 ⊂ 𝐸 with

ℒ(𝐸 ∖ 𝐶) < 𝜀.
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(iii) There exists a Borel set 𝐵 ⊃ 𝐸 such that

ℒ(𝐵) = ℒ(𝐸).

If 𝐸 is Lebesgue measurable then there exists a Borel set 𝐵 ⊃
𝐸 such that

ℒ∗(𝐵 ∖ 𝐸) = 0.

(iv) If 𝐸 is Lebesgue measurable then there exists a Borel set 𝐵 ⊂
𝐸 such that

ℒ(𝐸 ∖ 𝐵) = 0.

(v) If 𝐸 is Lebesgue measurable with ℒ(𝐸) < ∞ then for every
𝜀 > 0 exists a finite collection 𝒬 of disjoint dyadic cubes with

ℒ(𝐸Δ ⋃ 𝒬) < 𝜀.

In particular, Lebesgue outer measure is a Radon outer measure.
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Proof. We only prove that (i) implies (ii). For the remaining see
exercise sheet 3.

First, assume that there exists a ball 𝐵 with 𝐸 ⊂ 𝐵. Then by (i)
there exists an open set 𝑈 ⊃ 𝐵 ∖ 𝐸 with ℒ(𝑈 ∖ (𝐵 ∖ 𝐸)) < 𝜀. Define
𝐶 = 𝐵 ∖ 𝑈 , which is closed. Then 𝐶 ⊂ 𝐸 and

𝐸 ∖ 𝐶 = (𝐵 ∩ 𝐸) ∖ 𝐵 ∖ 𝑈 = 𝐵 ∩ (𝐸 ∩ 𝑈)
= (𝐵 ∩ 𝑈) ∖ (𝐵 ∖ 𝐸) ⊂ 𝑈 ∖ (𝐵 ∖ 𝐸)

and thus we can conclude ℒ(𝐸 ∖ 𝐶) < 𝜀.
Finally, for a general set 𝐸 ⊂ ℝ𝑑 and 𝑛 ∈ ℕ abbreviate the

annulus by
𝐴𝑛 ≔ 𝐵(0, 𝑛) ∖ 𝐵(0, 𝑛 − 1).

By the previous case exists a closed set 𝐶𝑛 ⊂ 𝐸 ∩ 𝐴𝑛 with ℒ(𝐸 ∩
𝐴𝑛 ∖𝐶𝑛) < 2−𝑛𝜀. Since 𝐶𝑛 and 𝐴𝑛 are closed, also their intersection
is closed. Note, that the annuli have no accumulation point, i.e. no
sequence 𝑥1, 𝑥2, … ∈ ℝ𝑑 with 𝑥𝑛 ∈ 𝐴𝑛 has a convergent subsequence.
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As a consequence, the set

𝐶 =
∞
⋃
𝑛=1

𝐶𝑛 ∩ 𝐴𝑛

is closed and satisfies

ℒ(𝐸 ∖ 𝐶) ≤
∞

∑
𝑛=0

ℒ(𝐸 ∩ 𝐴𝑛 ∖ 𝐶𝑛) ≤ 2𝜀.

Corollary 1.2.19. For each Lebesgue measurable set 𝐸 ⊂ ℝ𝑑 exists
Borel sets 𝐵0, 𝐵1 with 𝐵0 ⊂ 𝐸 ⊂ 𝐵1 such that ℒ(𝐵1 ∖ 𝐵0) = 0.

Conversely, for 𝐵0, 𝐵1 Borel with ℒ(𝐵1 ∖ 𝐵0) = 0, each 𝐵0 ⊂
𝐸 ⊂ 𝐵1 is measurable.

In this sense the set of Lebesgue measurable sets is the comple-
tion of the Borel 𝜎-algebra with respect to sets with Lebesgue outer
measure zero.
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Proof. For 𝐸 ⊂ ℝ𝑑 measurable and 𝜀 > 0 denote by 𝑈𝜀, 𝐶𝜀 the open
and closed sets from Proposition 1.2.18. Then

𝐵0 ≔ ⋂
𝑛∈ℕ

𝑈1/𝑛, 𝐵1 ≔ ⋃
𝑛∈ℕ

𝐶1/𝑛

have the required properties.
For the other implication, 𝐸 is the union of the Borel set 𝐵0 and

the set 𝐸 ∖ 𝐵0 which has zero Lebesgue measure, making 𝐸 a union
of two measurable sets and thus measurable itself.

2025-09-18
Proposition 1.2.18 also holds for Radon measures in general.

Proposition 1.2.20. Let 𝜇 be a Radon measure. Then for any
measurable set 𝐸 and any 𝜀 > 0 exists an open set 𝑈 ⊃ 𝐸 and a
closed set 𝐶 ⊂ 𝐸 such that

𝜇(𝑈 ∖ 𝐸) < 𝜀, 𝜇(𝐸 ∖ 𝐶) < 𝜀.
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If 𝜇 is a Radon outer measure then in addition for every 𝐸 ⊂ ℝ𝑑 we
have

𝜇(𝐸) = inf{𝜇(𝑈) ∶ 𝑈 open, 𝐸 ⊂ 𝑈}.
Before we can prove Proposition 1.2.20 we need two preliminary

results.

Lemma 1.2.21. Let 𝜇 be a Borel measure such that for every ball
𝐵 we have 𝜇(𝐵) < ∞. Then for any Borel set 𝐸 and any 𝜀 > 0
exists an open set 𝑈 ⊃ 𝐸 and a closed set 𝐶 ⊂ 𝐸 such that

𝜇(𝑈 ∖ 𝐸) < 𝜀, 𝜇(𝐸 ∖ 𝐶) < 𝜀.

Proof. First consider the case that 𝐸 is a countable union of closed
sets 𝐸 = 𝐶1 ∪ 𝐶2 ∪ …. Since finite unions of closed sets are closed,
it suffices to consider the case that the sequence is increasing, i.e.
𝐶1 ⊂ 𝐶2 ⊂ …. Take any 𝑥 ∈ Ω, let 𝜀 > 0 and 𝑛 ∈ ℕ and abbreviate
the annulus by

𝐴𝑛 ≔ 𝐵(𝑥, 𝑛) ∖ 𝐵(𝑥, 𝑛 − 1).
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Then since 𝜇(𝐴𝑛) is finite by assumption, by Lemma 1.2.7 there
exists an 𝑁(𝑛) such that

𝜇([𝐸 ∖ 𝐶𝑁(𝑛)] ∩ 𝐴𝑛) ≤ 2−𝑛𝜀.
Since 𝐶𝑁(𝑛) and 𝐴𝑛 are closed, also their intersection is closed.
Note, that the annuli have no accumulation point, i.e. no sequence
𝑥1, 𝑥2, … ∈ Ω with 𝑥𝑛 ∈ 𝐴𝑛 has a convergent subsequence. As a
consequence, the set

𝐶 =
∞
⋃
𝑛=1

𝐶𝑁(𝑛) ∩ 𝐴𝑛

is closed and satisfies

𝜇(𝐸 ∖ 𝐶) ≤
∞

∑
𝑛=1

2−𝑛𝜀 = 𝜀.

We now proceed essentially by induction. Denote by ℳ the set
of sets 𝐸 that satisfy the conclusion of the lemma. It suffices to
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show that ℳ is a 𝜎-algebra which contains all open sets. So, let 𝑈
be open. Then we can write 𝑈 as a countable union of closed sets,

𝑈 =
∞
⋃
𝑛=1

{𝑥 ∈ 𝑈 ∶ d({𝑥}, Ω ∖ 𝑈) ≥ 1/𝑛}.

By the previous argument we can conclude 𝑈 ∈ ℳ.
Now we show that ℳ is a 𝜎-algebra. Since open and closed sets

are complements it follows that ℳ is closed under complement. It
remains to show that ℳ is closed under countable union. So, let
𝐸1, 𝐸2, … ∈ ℳ and set 𝐸 = 𝐸1 ∪𝐸2 ∪… and let 𝜀 > 0. By inductive
assumption for each 𝑛 ∈ ℕ exists an open set 𝑈𝑛 and a closed set
𝐶𝑛 with 𝜇(𝑈𝑛 ∖ 𝐸𝑛) < 2−𝑛𝜀 and 𝜇(𝐸𝑛 ∖ 𝐶𝑛) < 2−𝑛𝜀. That means
𝑈 = 𝑈1 ∪ 𝑈2 ∪ … and 𝐾 = 𝐶1 ∪ 𝐶2 ∪ … satisfy

𝜇(𝑈 ∖ 𝐸) ≤
∞

∑
𝑛=1

𝜇(𝑈𝑛 ∖ 𝐸𝑛) ≤
∞

∑
𝑛=1

2−𝑛𝜀 = 𝜀,
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𝜇(𝐸 ∖ 𝐾) ≤
∞

∑
𝑛=1

𝜇(𝐸𝑛 ∖ 𝐶𝑛) ≤
∞

∑
𝑛=1

2−𝑛𝜀 = 𝜀.

The set 𝑈 is open, but 𝐾 might not be. However, 𝐾 is a countable
union of closed sets and thus by the first argument there exists a
closed set 𝐶 ⊂ 𝐾 with 𝜇(𝐾 ∖ 𝐶) < 𝜀. We can conclude

𝜇(𝐸 ∖ 𝐶) ≤ 𝜇(𝐸 ∖ 𝐾) + 𝜇(𝐾 ∖ 𝐶) ≤ 2𝜀
and finish the proof.

Proposition 1.2.22. Let 𝜇 be a Borel regular (outer) measure on
ℝ𝑑. Let 𝐴 ⊂ ℝ𝑑 be measurable with 𝜇(𝐴) < ∞. Then 𝜇 𝐴 given by

𝜇 𝐴(𝐸) = 𝜇(𝐴 ∩ 𝐸)
is a Radon (outer) measure.
Proof. We prove the statement for a measure and an outer measure
in parallel. In the measure case let ℳ be the 𝜎 algebra of 𝜇, and in
the outer measure case we denote ℳ = 2ℝ𝑑 .
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Since 𝜇(𝐴) < ∞, for all compact sets 𝐾 we have 𝜇 𝐴(𝐾) < ∞.
Since 𝐴 ∈ ℳ is 𝜇-measurable, each 𝜇-measurable set 𝐸 is also 𝜇 𝐴-
measurable (why?). This is in particular true for Borel sets 𝐸. Thus,
it remains to show Borel regularity.

By the Borel regularity of 𝜇 exists a Borel set 𝐵 ⊃ 𝐴 with 𝜇(𝐴) =
𝜇(𝐵), and since 𝐴 is measurable,

𝜇(𝐵 ∖ 𝐴) = 𝜇(𝐵) − 𝜇(𝐴) = 0.

Thus, for any 𝐶 ∈ ℳ we have

𝜇(𝐵 ∩ 𝐶) = 𝜇(𝐵 ∩ 𝐶 ∩ 𝐴) + 𝜇(𝐵 ∩ 𝐶 ∖ 𝐴)
≤ 𝜇(𝐶 ∩ 𝐴) + 𝜇(𝐵 ∖ 𝐴) = 𝜇(𝐶 ∩ 𝐴)
≤ 𝜇(𝐵 ∩ 𝐶),

so the inequalities are equalities and 𝜇 𝐴(𝐶) = 𝜇 𝐵(𝐶). That
means it suffices to consider the case that 𝐴 = 𝐵, i.e. that 𝐴 is
Borel. It remains to show that for every 𝐶 ∈ ℳ exists a Borel set
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𝐷 ⊃ 𝐶 with 𝜇 𝐴(𝐷) = 𝜇 𝐴(𝐶). By the Borel regularity of 𝜇,
there exists a Borel set 𝐸 ⊃ 𝐴 ∩ 𝐶 with 𝜇(𝐸) = 𝜇(𝐴 ∩ 𝐶). Define
𝐷 = 𝐸 ∪ (ℝ𝑑 ∖ 𝐴). Then 𝐷 is Borel and 𝐶 ⊂ 𝐷. Finally, since
𝐷 ∩ 𝐴 = 𝐸 ∩ 𝐴 we can conclude

𝜇 𝐴(𝐷) = 𝜇(𝐸 ∩ 𝐷) = 𝜇(𝐸 ∩ 𝐴)
≤ 𝜇(𝐸) = 𝜇(𝐴 ∩ 𝐶) = 𝜇 𝐴(𝐶),

and the reverse inequality follows from 𝐶 ⊂ 𝐷.

Proof of Proposition 1.2.20. By definition of a Radon outer mea-
sure, for each 𝐸 ⊂ ℝ𝑑 exists a Borel set 𝐵 ⊃ 𝐸 with 𝜇(𝐸) = 𝜇(𝐵).
By Lemma 1.2.21 we can conclude

𝜇(𝐸) = 𝜇(𝐵) = inf{𝜇(𝑈) ∶ 𝑈 open, 𝐵 ⊂ 𝑈}
≥ inf{𝜇(𝑈) ∶ 𝑈 open, 𝐸 ⊂ 𝑈} ≥ 𝜇((𝐸).

If 𝐸 is measurable and 𝜇 is a Radon measure, then similarly by
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Lemma 1.2.21 for each 𝜀 > 0 exists an open set 𝑈 ⊃ 𝐵 ⊃ 𝐸 with

𝜇(𝑈 ∖ 𝐸) = 𝜇(𝑈 ∖ 𝐵) + 𝜇(𝐵 ∖ 𝐸) < 𝜀.

It remains to show that a measurable set 𝐸 can be approximated
by closed sets. First consider the case 𝜇(𝐸) < ∞. By Proposi-
tion 1.2.22, the restriction 𝜇 𝐸 is a Radon (outer) measure. Then by
the previous argument, for each 𝜀 > 0 exists an open set 𝑈 ⊃ ℝ𝑑 ∖ 𝐸
with 𝜇 𝐸(𝑈) < 𝜀, which means 𝐶 = ℝ𝑑 ∖ 𝑈 is closed with 𝐶 ⊂ 𝐸
and 𝜇(𝐸 ∖ 𝐶) = 𝜇(𝑈 ∩ 𝐸) < 𝜀.

If 𝜇(𝐸) = ∞ we proceed as in the proof of Lemma 1.2.21: For
each 𝑛 ∈ ℕ define 𝐸𝑛 = 𝐸 ∩ 𝐵(0, 𝑛 + 1) ∖ 𝐵(0, 𝑛). Since 𝜇 is Radon,
we have 𝜇(𝐸𝑛) < ∞, and thus by the finite case exists a closed set
𝐶𝑛 ⊂ 𝐸𝑛 ⊂ 𝐵(0, 𝑛 + 1) ∖ 𝐵(0, 𝑛) with 𝜇(𝐸𝑛 ∖ 𝐶𝑛) < 2−𝑛𝜀. Then
𝐶 ≔ 𝐶0 ∪ 𝐶1 ∪ … ⊂ 𝐸 is closed and

𝜇(𝐸 ∖ 𝐶) ≤
∞

∑
𝑛=0

𝜇(𝐸𝑛 ∖ 𝐶𝑛) = 2𝜀.
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2025-09-23

1.3 Measurable functions
1.3.1 Definition and extent of the class
Let (Ω, ℳ, 𝜇) be a measure space. We consider functions with values
in the extended real line, 𝑓 ∶ Ω → [−∞, ∞], i.e. real valued functions
that can also attain the values ±∞.

Definition 1.3.1. A function 𝑓 ∶ Ω → [−∞, ∞] is called (𝜇-)measurable
if for every 𝑎 ∈ ℝ the set

{𝑓 < 𝑎} ≔ 𝑓−1([−∞, 𝑎)) ≔ {𝑥 ∈ Ω ∶ 𝑓(𝑥) ∈ [−∞, 𝑎)}
is (𝜇-)measurable, i.e. belongs to ℳ.
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Lemma 1.3.2. Let 𝑓 ∶ Ω → [−∞, ∞]. Then following are equivalent
to 𝑓 being measurable

(i) For every 𝑎 ∈ ℝ the set {𝑓 ≥ 𝑎} is measurable.

(ii) For every 𝑎 ∈ ℝ the set {𝑓 > 𝑎} is measurable.

(iii) For every 𝑎 ∈ ℝ the set {𝑓 ≤ 𝑎} is measurable.

(iv) The function −𝑓 is measurable.

If 𝑓 ∶ Ω → (−∞, ∞) then measurability is also equivalent to each of
the following:

(v) For every 𝑎, 𝑏 ∈ ℝ the set {𝑎 < 𝑓 < 𝑏} is measurable. Equiva-
lently we can replace < by ≤ in either instance.

(vi) For every open 𝑈 ⊂ ℝ the set 𝑓−1(𝑈) is measurable.

(vii) For every closed 𝐶 ⊂ ℝ the set 𝑓−1(𝐶) is measurable.
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(viii) For every Borel 𝐵 ⊂ ℝ the set 𝑓−1(𝐵) is measurable.
The latter also apply to functions 𝑓 ∶ Ω → [−∞, ∞] if in addition
we require 𝑓−1({−∞}) and 𝑓−1({∞}) to be measurable.
Proof. For every 𝑎 ∈ ℝ we have {𝑓 ≥ 𝑎} = Ω∖{𝑓 < 𝑎}. That means
{𝑓 ≥ 𝑎} is measurable if and only if {𝑓 < 𝑎} is measurable. This
proves (i).

The remaining items are exercises.

Lemma 1.3.3. Let Ω be a metric space and 𝜇 be a Borel measure
on Ω, i.e. its 𝜎-algebra ℳ contains the Borel 𝜎-algebra. Then every
continuous 𝑓 ∶ Ω → (−∞, ∞) is measurable.
Proof. A map 𝑓 ∶ Ω → (−∞, ∞) is continuous if and only if for
every open subset 𝑈 ⊂ ℝ, also 𝑓−1(𝑈) is open. Thus the result
follows from Lemma 1.3.2(vi).

Lemma 1.3.4. Let 𝑓1, 𝑓2, … ∶ Ω → [−∞, ∞] be measurable. Then
the following functions are measurable
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(i) 𝑥 ↦ sup𝑛 𝑓𝑛(𝑥)
(ii) 𝑥 ↦ inf𝑛 𝑓𝑛(𝑥)
(iii) 𝑥 ↦ lim sup𝑛 𝑓𝑛(𝑥)
(iv) 𝑥 ↦ lim inf𝑛 𝑓𝑛(𝑥)
(v) If (𝑓𝑛)𝑛 converges pointwise, then 𝑥 ↦ lim𝑛 𝑓𝑛(𝑥) is measur-

able.

Proof. Denote 𝑓 = sup𝑛 𝑓𝑛. Then

{𝑓 > 𝑎} = ⋃
𝑛

{𝑓𝑛 > 𝑎},

which is a union of measurable sets and thus measurable itself. This
proves (i).

The proof of the remaining items are exercises.
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Lemma 1.3.5. Let 𝑓 ∶ Ω → (−∞, ∞) be measurable and 𝑔 ∶ ℝ → ℝ
be continuous. Then 𝑔 ∘ 𝑓 is measurable.

Proof. Exercise.

Lemma 1.3.6. Let 𝑓, 𝑔 ∶ Ω → (−∞, ∞) be measurable. Then for
any 𝑐 ∈ ℝ the maps 𝑐𝑓 , 𝑓 + 𝑔 and 𝑓𝑔 are measurable.

Proof. It suffices to consider 𝑐 > 0. Then for any 𝑎 ∈ ℝ we have

{𝑐𝑓 < 𝑎} = {𝑓 < 𝑎/𝑐},

which is measurable.
Assume 𝑓(𝑥) + 𝑔(𝑥) < 𝑎. Then there exists an 𝜀 > 0 with

𝑓(𝑥) + 𝑔(𝑥) < 𝑎 + 𝜀 and an 𝑟 > 0 and an 𝑟 ∈ ℚ with 𝑓(𝑥) < 𝑟 <
𝑓(𝑥) + 𝜀. Thus, 𝑔(𝑥) < 𝑎 − 𝑓(𝑥) + 𝜀 < 𝑎 − 𝑟. Conversely, if 𝑓(𝑥) < 𝑟
and 𝑔(𝑥) < 𝑎 − 𝑟 then 𝑓(𝑥) + 𝑔(𝑥) < 𝑎. We can conclude

{𝑓 + 𝑔 < 𝑎} = ⋃
𝑟∈ℚ

{𝑓 < 𝑟} ∪ {𝑔 < 𝑎 − 𝑟},
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which is a countable union of measurable sets and thus measurable.
Moreover,

{𝑓2 < 𝑎} = {𝑓 < 𝑎1/2} ∖ {𝑓 ≤ −𝑎1/2}

is measurable, and therefore

𝑓𝑔 = (𝑓 + 𝑔)2 − (𝑓 − 𝑔)2

2
is measurable, too.

Definition 1.3.7. We say that a statement that involves 𝑥 ∈ Ω
holds (𝜇-)almost everywhere if the set of all 𝑥 ∈ Ω for which the
statement fails is 𝜇-measurable and has zero 𝜇-measure.

For example, given 𝑓, 𝑔 ∶ Ω → [−∞, ∞], we say that 𝑓(𝑥) = 𝑔(𝑥)
for 𝜇-almost everywhere 𝑥 if 𝜇({𝑥 ∈ Ω ∶ 𝑓(𝑥) ≠ 𝑔(𝑥)}) = 0.
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Lemma 1.3.8. Let 𝜇 be a complete measure and let 𝑓, 𝑔 ∶ Ω →
[−∞, ∞] such that 𝑓 is measurable and 𝑓(𝑥) = 𝑔(𝑥) for 𝜇-almost
every 𝑥. Then 𝑔 is 𝜇-measurable.

Proof. Exercise.

2025-09-25

1.3.2 Approximation
Definition 1.3.9. The most basic measurable functions are char-
acteristic functions, which are functions of the form

1𝐸(𝑥) ≔ {1 𝑥 ∈ 𝐸,
0 𝑥 ∉ 𝐸,
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for a measurable set 𝐸. For 𝑎1, …, 𝑎𝑛 ∈ ℝ, we call a weighted sum

𝑓 =
𝑛

∑
𝑘=1

𝑎𝑘1𝐸𝑘

a simple function. If the 𝐸1, …, 𝐸𝑛 are disjoint rectangles then 𝑓
is called a step functions.

Recall, that the Riemann integral is given in terms of step func-
tions. The Lebesgue integral will be defined in terms of the more
general simple functions. Because simple functions can approximate
the large class of measurable functions, the Lebesgue integral will
generalize the Riemann integral.
Definition 1.3.10. Let 𝑎 ∈ (0, ∞). Take 𝑁 ∈ ℤ maximal with
𝑎 < 2−𝑁 and for all 𝑛 ∈ ℤ with 𝑛 ≤ 𝑁 set 𝑎𝑛 = 0. For 𝑛 > 𝑁 we
define 𝑎𝑛 inductively as follows: Set 𝑎𝑛+1 = 0 if

𝑎 <
𝑛

∑
𝑘=𝑁+1

𝑎𝑘2−𝑘 + 2−(𝑛+1)
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and 𝑎𝑛+1 = 1 otherwise.
For 𝑎 = 0 set 𝑎𝑛 = 0 for all 𝑛 and for 𝑎 = ∞ set 𝑎𝑛 = 1 for all 𝑛.
The sequence (𝑎𝑛)𝑛∈ℤ is called the binary expansion of 𝑎 ∈

[0, ∞].
Lemma 1.3.11. Let 𝑎 ∈ [0, ∞). Then for any 𝑛 ∈ ℤ we have

0 ≤ 𝑎 −
𝑛

∑
𝑘=−∞

𝑎𝑘2−𝑘 < 2−𝑛. (1.3.1)

Proof. We proceed by induction. For 𝑛 ≤ 𝑁 (1.3.1) follows from

0 ≤ 𝑎 < 2−𝑁 ≤ 2−𝑛.

So, assume (1.3.1) holds for 𝑛. If 𝑎𝑛+1 = 0 then by inductive as-
sumption

𝑛+1
∑

𝑘=−∞
𝑎𝑘2−𝑘 =

𝑛
∑

𝑘=−∞
𝑎𝑘2−𝑘 ≤ 𝑎
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and by the defining condition of 𝑎𝑛+1 = 0 we have

𝑎 <
𝑛

∑
𝑘=−∞

𝑎𝑘2−𝑘 + 2−(𝑛+1) =
𝑛+1
∑

𝑘=−∞
𝑎𝑘2−𝑘 + 2−(𝑛+1).

It remains to consider the case 𝑎𝑛+1 = 1. Then by the defining
condition of 𝑎𝑛+1 = 1 we have

𝑛+1
∑

𝑘=−∞
𝑎𝑘2−𝑘 =

𝑛
∑

𝑘=−∞
𝑎𝑘2−𝑘 + 2−(𝑛+1) ≤ 𝑎

and by the inductive assumption and 2−𝑛 = 2−(𝑛+1) + 𝑎𝑛+12−(𝑛+1),
we have

𝑎 <
𝑛

∑
𝑘=−∞

𝑎𝑘2−𝑘 + 2−𝑛 =
𝑛+1
∑

𝑘=−∞
𝑎𝑘2−𝑘 + 2−(𝑛+1).
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Corollary 1.3.12. For all 𝑎 ∈ [0, ∞] we have

𝑎 =
∞

∑
𝑘=−∞

𝑎𝑘2−𝑘.

Lemma 1.3.13. For 𝑎 ∈ [0, ∞) and any 𝑛 ∈ ℤ, the subsequence
(𝑎𝑘)𝑛

𝑘=−∞ of the binary expansion of 𝑎 is the only sequence of num-
bers in {0, 1} for which (1.3.1) holds.

Proof. Let ( ̃𝑎𝑘)𝑛
𝑘=−∞ with ̃𝑎𝑘 ∈ {0, 1} for which (1.3.1) holds and

which is different from (𝑎𝑘)𝑛
𝑘=−∞. Then there exists an 𝑁 ∈ ℤ such

that for all 𝑘 ≤ 𝑁 we have ̃𝑎𝑘 = 0, and we take 𝑁 so small that
also 𝑎𝑘 = 0. So, take 𝐾 ∈ ℤ minimal for which ̃𝑎𝐾 ≠ 𝑎𝐾. From
| ̃𝑎𝑘 − 𝑎𝑘|2−𝑘 ≤ 2−𝑘 it follows by induction on 𝑚 ≥ 𝐾 that

∣
𝑚

∑
𝑘=−∞

̃𝑎𝑘2−𝑘 −
𝑚

∑
𝑘=−∞

𝑎𝑘2−𝑘∣ ≥ 2−𝑚.
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For 𝑚 = 𝑛, this means (1.3.1) cannot hold for both ( ̃𝑎𝑘)𝑛
𝑘=−∞ and

(𝑎𝑘)𝑛
𝑘=−∞ at the same time.

Theorem 1.3.14. Let 𝑓 ∶ Ω → [0, ∞] be measurable. Then there
exist measurable sets 𝐴1, 𝐴2, … and 𝑎1, 𝑎2, … ≥ 0 such that for every
𝑥 ∈ Ω we have

𝑓(𝑥) =
∞

∑
𝑛=1

𝑎𝑛1𝐴𝑛
.

Proof. For 𝑛 ∈ ℤ define the set

𝐴𝑛 = {𝑥 ∈ Ω ∶ 𝑓(𝑥)𝑛 = 1}
using the binary expansion of 𝑓(𝑥). Then by Corollary 1.3.12 we
have

𝑓(𝑥) = ∑
𝑛∈ℤ

2−𝑛1𝐴𝑛
(𝑥).

Given 𝑎 ∈ [0, ∞) by Lemmas 1.3.11 and 1.3.13 for each 𝑛 ∈ ℤ
we have 𝑎𝑛 = 1 if and only if there exists an 𝑁 ≤ 𝑛 and a tuple
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( ̃𝑎𝑁 , ̃𝑎𝑁+1, …, ̃𝑎𝑛−1) ∈ {0, 1}𝑛−𝑁 such that

0 ≤ 𝑎 −
𝑛−1
∑

𝑘=−𝑁
̃𝑎𝑘2−𝑘 < 2−𝑛.

That means

𝐴𝑛 = {𝑓 = ∞}∪
𝑛−1
⋃

𝑁=−∞
⋃

(𝑎𝑁,…,𝑎𝑛−1)∈{0,1}𝑛−𝑁
{𝑥 ∈ Ω ∶ 0 ≤ 𝑓(𝑥) −

𝑛−1
∑

𝑘=−𝑁
𝑎𝑘2−𝑘 < 2−𝑛},

which is a countable union of measurable sets and thus measurable.
Reenumerating (𝐴𝑛)𝑛∈ℤ as ( ̃𝐴𝑛)𝑛∈ℕ finishes the proof.

Corollary 1.3.15. Let 𝑓 ∶ Ω → [0, ∞] be measurable. Then there
exist simple functions 𝑓1, 𝑓2, … ∶ Ω → [0, ∞) such that for every
𝑥 ∈ Ω we have 𝑓𝑛(𝑥) ≤ 𝑓(𝑥) and

𝑓(𝑥) = lim
𝑛→∞

𝑓𝑛(𝑥).
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Proof. With 𝑎𝑛, 𝐴𝑛 from Theorem 1.3.18 take

𝑓𝑛 =
𝑛

∑
𝑘=1

𝑎𝑛1𝐴𝑛
.

Alternative independent proof. For 𝑛 ∈ ℕ and 0 ≤ 𝑚 < 22𝑛 set

𝐴𝑚
𝑛 = {𝑥 ∈ Ω ∶ 2−𝑛𝑚 ≤ 𝑓(𝑥) < 2−𝑛(𝑚 + 1)}, 𝐴22𝑛

𝑛 = {𝑥 ∈ Ω ∶ 2𝑛 ≤ 𝑓(𝑥)}.
Then 𝐴𝑚

𝑛 is measurable. Define the simple function

𝑓𝑛 =
22𝑛

∑
𝑚=0

2−𝑛𝑚1𝐴𝑚𝑛
.

For every 𝑥 ∈ Ω exists exactly one 0 ≤ 𝑚 ≤ 22𝑛 with 𝑥 ∈ 𝐴𝑚
𝑛 . This

means

𝑓𝑛(𝑥) = 2−𝑛𝑚 ≤ 𝑓(𝑥) < 2−𝑛(𝑚 + 1) = 𝑓𝑛(𝑥) + 2−𝑛,
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in case 𝑓(𝑥) < 2𝑛 and 𝑚 < 22𝑛. If 𝑓(𝑥) ≥ 2𝑛 then 𝑚 = 22𝑛 and
𝑓𝑚

𝑛 (𝑥) = 2𝑛. We can conclude

lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓(𝑥).

Remark 1.3.16. The function 𝑓𝑛 from Corollary 1.3.15 equals

𝑛
∑

𝑘=−𝑛+1
2−𝑘1𝐴𝑘

from the proof of Theorem 1.3.14.

Definition 1.3.17. For a function 𝑓 ∶ Ω → [−∞, ∞] define its
positive and negative part by

𝑓+(𝑥) = max{𝑓(𝑥), 0}, 𝑓−(𝑥) = max{−𝑓(𝑥), 0}.
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Note, that 𝑓 = 𝑓+ − 𝑓−.

Theorem 1.3.18. Let 𝑓 ∶ Ω → [−∞, ∞] be measurable. Then there
exists a sequence 𝜑1, 𝜑2, … of simple functions with |𝜑𝑛| ≤ |𝜑𝑛+1|
and such that

𝑓(𝑥) = lim
𝑛→∞

𝜑𝑛(𝑥).

Proof. By Corollary 1.3.15 there exist simple functions 𝜑+
1 , 𝜑+

2 , …
and 𝜑−

1 , 𝜑−
2 , … with 0 ≤ 𝜑±

1 ≤ 𝜑±
2 ≤ … ≤ 𝑓± and

lim
𝑛→∞

𝜑±
𝑛(𝑥) = 𝑓±(𝑥).

Then 𝜑𝑛 ≔ 𝜑+
𝑛 − 𝜑−

𝑛 have the required properties.

Definition 1.3.19. We say, that a measure space (Ω, ℳ, 𝜇) is 𝜎-
finite if there exists a sequence 𝐸1, 𝐸2, … ∈ ℳ with 𝜇(𝐸𝑛) < ∞ such
that Ω = 𝐸1 ∪ 𝐸2 ∪ ….
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For example ℝ𝑑 is 𝜎-finite with respect to Lebesgue measure,
since ℝ𝑑 = ⋃𝑛∈ℕ 𝐵(0, 𝑛) and ℒ(𝐵(0, 𝑛)) < ∞.

Lemma 1.3.20. Let (Ω, ℳ, 𝜇) be 𝜎-finite. Let 𝑓1, 𝑓2, … ∶ Ω →
[−∞, ∞] that converge to 𝑓 ∶ Ω → [−∞, ∞] almost everywhere, and
for each 𝑛 ∈ ℕ let 𝑓1

𝑛, 𝑓2
𝑛, … ∶ Ω → [−∞, ∞] that converge to 𝑓𝑛

almost everywhere. Then there exist 𝑘1, 𝑘2, … and 𝑛1, 𝑛2, … ∈ ℕ
such that 𝑓𝑘𝑛𝑚𝑛𝑚 converge to 𝑓 almost everywhere.

Proof. For 𝑚 ∈ ℕ and functions 𝑔, ℎ denote

𝐴𝑚(𝑔, ℎ) = {𝑥 ∈ ℝ𝑑 ∶ |ℎ(𝑥) − 𝑔(𝑥)| > 2−𝑚}
∪ {𝑥 ∈ ℝ𝑑 ∶ ℎ(𝑥) = ∞, 𝑔(𝑥) < 2𝑚}
∪ {𝑥 ∈ ℝ𝑑 ∶ ℎ(𝑥) = −∞, 𝑔(𝑥) > −2𝑚}.

Then

{𝑥 ∈ ℝ𝑑 ∶ lim
𝑛→∞

𝑓𝑛(𝑥) ≠ 𝑓(𝑥) or the limit does not exist.}
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= ⋃
𝑚∈ℕ

⋂
𝑘∈ℕ

⋃
𝑛≥𝑘

𝐴𝑚(𝑓𝑛, 𝑓). (1.3.2)

Recall Ω = 𝐸1 ∪ 𝐸2 ∪ …. We may redefine those sets such that
for all 𝑛 ∈ ℕ we have 𝐸𝑛 ⊂ 𝐸𝑛+1. Fix 𝑁 ∈ ℕ.

Since 𝑓𝑛 → 𝑓 almost everywhere, i.e. the left hand side of (1.3.2)
has zero Lebesgue measure, by Lemma 1.2.7 for every 𝑚 ∈ ℕ exists
an 𝑛𝑚 ≥ 𝑚, 𝑁 such that for all 𝑛 ≥ 𝑛𝑚 we have

ℒ(𝐸𝑁 ∩ 𝐴𝑚(𝑓𝑛, 𝑓)) ≤ 2−𝑚.
Also 𝜓𝑛 = 1𝐸𝑛

𝑓𝑛 converge to 𝑓 almost everywhere and 𝜓𝑘
𝑛 =

1𝐸𝑛
𝑓𝑘

𝑛 converge to 𝜓𝑛 almost everywhere. That means similarly, for
each 𝑛, 𝑚 exists a 𝑘𝑛,𝑚 ≥ 𝑛 such that for all 𝑘 ≥ 𝑘𝑛,𝑚 we have

ℒ(𝐴𝑚(𝜓𝑘
𝑛, 𝜓𝑛)) ≤ 2−𝑚.

Then

|𝑓(𝑥) − 𝑔𝑚(𝑥)| ≤ |𝑓(𝑥) − 𝑓𝑛𝑚
(𝑥)| + |𝑓𝑛𝑚

(𝑥) − 𝑓𝑘𝑛𝑚,𝑚
𝑛𝑚 (𝑥)|.
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Note, that for every 𝑙, 𝑚, 𝑘 ∈ ℤ and 𝑛 ≥ 𝑁 we have

𝐸𝑁 ∩ 𝐴𝑙(𝑓𝑘
𝑛, 𝑓) ⊂ 𝐴𝑙+1(𝑓𝑛, 𝑓) ∪ 𝐴𝑙+1(𝜓𝑘

𝑛, 𝜓𝑛).
In particular, for all 𝑚 ≥ 𝑙+1 sufficiently large so that, 𝑛𝑚 ≥ 𝑙+1, 𝑁 ,
we obtain

ℒ(𝐸𝑁 ∩ (𝐴𝑙(𝑓𝑛𝑚
, 𝑓) ∪ 𝐴𝑙(𝜓

𝑘𝑛𝑚,𝑚
𝑛𝑚 , 𝜓𝑛𝑚

)))
≤ ℒ(𝐸𝑁 ∩ (𝐴𝑙(𝑓𝑛𝑚

, 𝑓) ∪ 𝐴𝑙(𝜓
𝑘𝑛𝑚,𝑚
𝑛𝑚 , 𝜓𝑛𝑚

)))
≤ 2−𝑚+1.

We can conclude

ℒ({𝑥 ∈ 𝐸𝑁 ∶ lim
𝑚→∞

𝑓𝑘𝑛𝑚,𝑚
𝑛𝑚 (𝑥) ≠ 𝑓(𝑥)})

≤ ℒ(⋃
𝑙∈ℕ

⋂
𝑘∈ℕ

⋃
𝑚≥𝑘

𝐸𝑁 ∩ (𝐴𝑙(𝑓𝑛𝑚
, 𝑓) ∪ 𝐴𝑙(𝜓

𝑘𝑛𝑚,𝑚
𝑛𝑚 , 𝜓𝑛𝑚

)))

≤ ∑
𝑙∈ℕ

lim
𝑘→∞

∑
𝑚≥𝑘

2−𝑚+1 = 0.
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That means the 𝑓𝑘𝑛𝑚,𝑚
𝑛𝑚 converge to 𝑓 pointwise for almost every

𝑥 ∈ 𝐸𝑁 . Since 𝑁 was arbitrary, they in fact converge for almost
every 𝑥 ∈ ℝ𝑑.

2025-09-30

Theorem 1.3.21. Let 𝑓 ∶ ℝ𝑑 → [−∞, ∞] be measurable. Then there
exist step functions 𝜓1, 𝜓2, … such that for almost every 𝑥 ∈ ℝ𝑑 we
have

lim
𝑛→∞

𝜓𝑛(𝑥) = 𝑓(𝑥).

Proof. We first consider the case that for 𝐸 ⊂ ℝ𝑑 measurable with
ℒ(𝐸) < ∞ we have 𝑓 = 1𝐸. The by an exercise, for every 𝑛 ∈ ℕ
exists a finite set 𝒬𝑛 if disjoint dyadic cubes with ℒ(𝐸Δ ⋃ 𝒬𝑛) <
2−𝑛. Then

𝑓𝑛 = ∑
𝑄∈𝒬

1𝑄
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is a step function such that

𝐴𝑛 ≔ {𝑥 ∈ ℝ𝑑 ∶ 𝑓𝑛(𝑥) ≠ 1𝐸(𝑥)}
satisfies ℒ(𝐴𝑛) < 2−𝑛. We can conclude for

𝐴 ≔
{𝑥 ∈ ℝ𝑑 ∶ lim

𝑛→∞
𝑓𝑘(𝑥) ≠ 1𝐸(𝑥) or the limit does not exist.}

by Lemma 1.2.7 and (1.3.2) that

ℒ(𝐴) ≤ ℒ( ⋂
𝑘∈ℕ

⋃
𝑛≥𝑘

𝐴𝑛) ≤ lim
𝑘→∞

∞
∑
𝑛=𝑘

ℒ(𝐴𝑛)

≤ lim
𝑘→∞

∞
∑
𝑛=𝑘

2−𝑛 = lim
𝑘→∞

2−𝑘+1 = 0.

Next, consider the case that 𝑎1, …, 𝑎𝑁 ∈ ℝ and 𝐴1, …, 𝐴𝑁 ⊂ ℝ𝑑

are measurable with ℒ(𝐴𝑘) < ∞ and 𝑓 = 𝑎11𝐴1
+…+𝑎𝑁1𝐴𝑁

. Then
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by the previous case for each 𝑘 = 1, …, 𝑁 exists a sequence of step
functions 𝑓𝑛

𝑘 with 𝑓𝑛
𝑘 → 1𝐴𝑘

pointwise almost everywhere as 𝑛 → ∞.
Thus, 𝑎1𝑓𝑛

1 + … + 𝑎𝑁𝑓𝑛
𝑁 are step functions that converge to 𝑓 .

Finally, let 𝑓 ∶ ℝ𝑑 → [−∞, ∞] be measurable. By Theorem 1.3.18
there exist simple functions 𝜑1, 𝜑2, … that converge to 𝑓 everywhere.
Then 𝜓𝑛 = 1𝐵(0,𝑛)𝜑𝑛 also converge to 𝑓 everywhere, and 𝜓𝑛 is a fi-
nite sum of characteristic functions with finite measure. That means,
by the previous case there exist step functions 𝜓1

𝑛, 𝜓2
𝑛, … that con-

verge to 𝜓𝑛 almost everywhere. An application of Lemma 1.3.20
concludes the proof.

Theorem 1.3.22 (Egorov). Let 𝜇 be a measure on Ω with 𝜇(Ω) <
∞. Let 𝑓, 𝑓1, 𝑓2, … ∶ Ω → (−∞, ∞) measurable s.t. 𝑓𝑛 → 𝑓 a.e..
Then for every 𝜀 > 0 exists a set 𝐶 with 𝜇(Ω ∖ 𝐶) < 𝜀 such that
𝑓𝑛 → 𝑓 uniformly on 𝐶.

If 𝜇 is a Radon measure then we can take 𝐶 closed.

Proof. By Lemma 1.2.7 and (1.3.2) for every 𝑚 ∈ ℕ exists a 𝑘𝑚 ∈ ℕ
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such that
ℒ( ⋃

𝑛≥𝑘𝑚

𝐴𝑚(𝑓𝑛, 𝑓)) ≤ 2−𝑚.

Take 𝑁 ∈ ℕ such that

∑
𝑚≥𝑁

2−𝑚 < 𝜀/2

and define
𝐴 = ⋃

𝑚≥𝑁
⋃

𝑛≥𝑘𝑚

𝐴𝑛,𝑚

which means ℒ(𝐴) < 𝜀. If 𝜇 is a Radon measure then by Proposi-
tion 1.2.20 there exists a closed set 𝐶 ⊂ Ω ∖ 𝐴 with ℒ(Ω ∖ 𝐶) < 𝜀.
For a general measure just set 𝐶 = Ω ∖ 𝐴.

Let 𝑚 ≥ 𝑁 . Then for all 𝑛 ≥ 𝑘𝑚 and 𝑥 ∈ 𝐶 we have 𝑥 ∉
𝐴𝑛,𝑚 which means |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 2−𝑚. This means 𝑓𝑛 → 𝑓
uniformly.
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Theorem 1.3.23 (Lusin). Let 𝐸 ⊂ ℝ𝑑 be measurable with ℒ(𝐸) <
∞ and 𝑓 ∶ 𝐸 → (−∞, ∞). Then for every 𝜀 > 0 exists a closed set
𝐶 ⊂ 𝐸 with ℒ(𝐸 ∖𝐶) < 𝜀 such that 𝑓 ∶ 𝐶 → (−∞, ∞) is continuous.

This does not mean that 𝑓 ∶ 𝐸 → (−∞, ∞) is continuous in every
𝑥 ∈ 𝐶.

Proof. By Theorem 1.3.21 exists a sequence 𝑓1, 𝑓2, … of step func-
tions that converge to 𝑓 almost everywhere. For any 𝑛 ∈ ℕ exists a
set 𝐸𝑛 such that ℒ(𝐸𝑛) < 2−𝑛𝜀 and 𝑓𝑛 is continuous on 𝐸 ∖ 𝐸𝑛. By
Egorov’s theorem exists a set 𝐴 with ℒ(𝐸 ∖𝐴) < 𝜀 on which 𝑓𝑛 → 𝑓
uniformly. Then on

𝐵 = 𝐴 ∖ ⋃
𝑛∈ℕ

𝐸𝑛

𝑓 is a uniform limit of continuous functions, and thus continuous
itself. By Proposition 1.2.18 exists a closed set 𝐶 ⊂ 𝐵 with ℒ(𝐵 ∖
𝐶) < 𝜀. Then 𝑓 is continuous on 𝐶 and ℒ(𝐸 ∖ 𝐶) < 3𝜀.
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Chapter 2

Integration

2.1 The Lebesgue integral
In this section we assume (Ω, ℳ, 𝜇) to be a measure space. Our goal
is to define and integral for a large class of measurable functions
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𝑓 ∶ Ω → [−∞, ∞] from Ω to the extended real line.

2.1.1 Simple functions
In Section 1.3.2 we saw that any measurable function can be approx-
imated pointwise by simple functions. The latter have a convenient
definition of their integral.

Definition 2.1.1. Let 𝑓 be a simple function. Then there exists an
𝑛 ∈ ℕ ∪ {0} such that 𝑓 assumes 𝑛 unique distinct 𝑎1 < … < 𝑎𝑛
with 𝑎𝑘 ∈ [−∞, ∞]. Define 𝐸𝑘 = 𝑓−1({𝑎𝑘}). We call those numbers
𝑎1, …, 𝑎𝑛 and sets 𝐸1, …, 𝐸𝑘 the canonical form of 𝑓 .

Note, that

𝑓 =
𝑛

∑
𝑘=1

𝑎𝑘1𝐸𝑘
.

Definition 2.1.2. In the context of this definition we set 0 ⋅ ∞ = 0.
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Let 𝑓 be a nonnegative simple function with canonical form
𝑎1, …, 𝑎𝑛, 𝐸1, …, 𝐸𝑛. We call 𝑓 𝜇-integrable if there are no 𝑘, 𝑚
with 𝑎𝑘𝜇(𝐸𝑘) = ∞ and 𝑎𝑚𝜇(𝐸𝑚) = −∞.

For a simple function 𝑓 that is 𝜇-integrable we define its Lebesgue
integral by

∫ 𝑓 d𝜇 =
𝑛

∑
𝑘=1

𝑎𝑘𝜇(𝐸𝑘). (2.1.1)

For 𝐸 ⊂ Ω measurable define

∫
𝐸

𝑓 d𝜇 = ∫ 𝑓1𝐸 d𝜇.

Note, that 𝑓 is 𝜇-integrable if and only if the sum in (2.1.1) is
well defined.

2025-10-02
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Proposition 2.1.3. Let

𝑓 =
𝑛

∑
𝑘=1

𝑎𝑘1𝐸𝑘

be a simple function such that there are no 𝑘, 𝑚 with 𝑎𝑘𝜇(𝐸𝑘) = ∞
and 𝑎𝑚𝜇(𝐸𝑚) = −∞. Then

∫ 𝑓 d𝜇 =
𝑛

∑
𝑘=1

𝑎𝑘𝜇(𝐸𝑘),

where we again set 0 ⋅ ∞ = 0.

That means (2.1.1) holds not only for the canonical form but for
any expression that yields the same simple function, provided the
sum in (2.1.1) is well defined.
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Proof. Let ̃𝑎1, …, ̃𝑎𝑛̃ and ̃𝐸1, …, ̃𝐸𝑛̃ be the canonical form of 𝑓 , i.e.

𝑓 =
𝑛̃

∑
𝑘=1

̃𝑎𝑘1𝐸𝑘
.

First, assume that the sets 𝐸1, …, 𝐸𝑛 are disjoint. Then for each
𝑘̃ = 1, …, 𝑛̃ the set 𝐸𝑘̃ equals the disjoint union of all 𝐸𝑘 for which
𝑎𝑘 = ̃𝑎𝑘̃ which means

𝜇(𝐸𝑘̃) = ∑
𝑘∶𝑎𝑘=𝑎̃𝑘̃

𝜇(𝐸𝑘)

and thus,
𝑛

∑
𝑘=1

𝑎𝑘𝜇(𝐸𝑘) =
𝑛̃

∑
𝑘=1

̃𝑎𝑘𝜇( ̃𝐸𝑘).

It remains to consider the general case that the 𝐸1, …, 𝐸𝑛 may
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overlap. For 𝐴 ⊂ {1, …, 𝑛} define the collection of sets

𝐸𝐴 = ⋂
𝑘∈𝐴

𝐸𝑘 ∖ ⋃
𝑚∉𝐴

𝐸𝑚.

Let 𝐴, 𝐵 ∈ {1, …, 𝑛} with 𝐴 ≠ 𝐵. Assume #𝐴 ≤ #𝐵. Then there
exists a 𝑘 with 𝑘 ∈ 𝐵 ∖ 𝐴. That means 𝐸𝐵 ⊂ 𝐸𝑘 and 𝐸𝐴 ∩ 𝐸𝑘 = ∅,
and therefore we have 𝐸𝐴 ∩ 𝐸𝐵 = ∅. Next, let 𝑘 ∈ {1, …, 𝑛}. Then
for each 𝐴 with 𝑘 ∈ 𝐴 we have 𝐸𝐴 ⊂ 𝐸𝑘. Conversely, let 𝑥 ∈ 𝐸𝑘 and
let 𝐴 be the set of those 𝑚 ∈ {1, …, 𝑛} with 𝑥 ∈ 𝐸𝑚. Then 𝑥 ∈ 𝐸𝐴
and 𝑘 ∈ 𝐴. That means 𝐸𝑘 = ⋃𝐴∋𝑘 𝐸𝐴 and we can conclude

𝜇(𝐸𝑘) = ∑
𝐴∈{1,…,𝑛}∶𝑘∈𝐴

𝜇(𝐸𝐴).

Thus,
𝑛

∑
𝑘=1

𝑎𝑘𝜇(𝐸𝑘) = ∑
𝐴⊂{1,…,𝑛}

∑
𝑘∈𝐴

𝑎𝑘𝜇(𝐸𝐴).
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Since
𝑓 = ∑

𝐴⊂{1,…,𝑘}
( ∑

𝑚∈𝐴
𝑎𝑚)1𝐸𝐴

writes 𝑓 as a simple function with disjoint sets, by the previous case
we can conclude

∫ 𝑓 d𝜇 =
𝑛

∑
𝑘=1

𝑎𝑘𝜇(𝐸𝑘).

We collect a few basic properties of the Lebesgue integral of
simple functions.

Proposition 2.1.4. (i) (linearity) Let 𝑎, 𝑏 ∈ [−∞, ∞] and 𝑓, 𝑔
be simple functions. Then

∫ 𝑎𝑓 + 𝑏𝑔 d𝜇 = 𝑎 ∫ 𝑓 d𝜇 + 𝑏 ∫ 𝑔 d𝜇,
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provided the right hand side is well defined, i.e. not of the form
”∞ − ∞”.

(ii) (additivity) Let and 𝐸, 𝐹 ⊂ Ω be disjoint and 𝑓1𝐸∪𝐹 be simple
and nonnegative. Then

∫
𝐸∪𝐹

𝑓 d𝜇 = ∫
𝐸

𝑓 d𝜇 + ∫
𝐹

𝑓 d𝜇.

(iii) (monotonicity) Let 𝑓, 𝑔 be simple and integrable such that 𝑓 ≤
𝑔. Then

∫ 𝑓 d𝜇 ≤ ∫ 𝑔 d𝜇.

Proof. (i) This follows from the linearity of the formula in Propo-
sition 2.1.3.

(ii) This follows from linearity and 𝑓1𝐸∪𝐹 = 𝑓1𝐸 + 𝑓1𝐹 .
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(iii) Since 𝑔 − 𝑓 ≥ 0, the assumptions of the linearity conditions
are satisfied for the summands 𝑓 and 𝑔 − 𝑓 . Thus the result
follows from linearity and ∫ 𝑔 − 𝑓 d𝜇 ≥ 0.

2.1.2 Nonnegative functions
Definition 2.1.5. For 𝑓 ∶ Ω → [0, ∞] measurable define its Lebesgue
integral by

∫ 𝑓 d𝜇 ≔ sup{∫ 𝑔 d𝜇 ∶ 𝑔 ∶ Ω → [0, ∞] simple, 𝑔 ≤ 𝑓}.

Remark 2.1.6. By Proposition 2.1.4(iii), for a simple function 𝑓 this
definition coincides with the definition of the Lebesgue integral of a
simple function.

Proposition 2.1.4 carries over to nonnegative functions. Before
we are able to prove that pointwise convergence implies convergence
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of the integral in a bounded setting.

Lemma 2.1.7. Let 𝜇(Ω) < ∞ and let 𝑁 ≥ 0. Let 𝑓 ∶ Ω → [0, 𝑁]
be measurable and 𝑓1, 𝑓2, … ∶ Ω → [0, 𝑁] be simple functions such
that 𝑓𝑛(𝑥) → 𝑓(𝑥) for a.e. 𝑥 ∈ Ω. Then

lim
𝑛→∞

∫ 𝑓𝑛 d𝜇 = ∫ 𝑓 d𝜇.

Proof. First, we show that the limit exists. Abbreviate 𝐼𝑛 = ∫ 𝑓𝑛 d𝜇
and let 𝜀 > 0. By Egorov’s theorem exists a measurable set 𝐶 ⊂ Ω
with 𝜇(Ω ∖ 𝐶) < 𝜀 such that 𝑓𝑛 → 𝑓 uniformly on 𝐶. Then for 𝑛, 𝑚
sufficiently large, for all 𝑥 ∈ 𝐶 we have |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤ 𝜀. Thus,

|𝐼𝑛 − 𝐼𝑚| ≤ ∫
𝐶

|𝑓𝑛 − 𝑓𝑚| d𝜇 + 2𝑁𝜇(Ω ∖ 𝐶)

≤ ∫
𝐶

2𝜀 d𝜇 + 2𝑁𝜀 ≤ 2(𝑁 + 𝜇(Ω))𝜀.
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Since 𝜀 was arbitrarily small, this means (𝐼𝑛)𝑛 is a Cauchy sequence
and hence converges.

In particular, this means any above sequence 𝑓1, 𝑓2, … converges
to the same limit, because otherwise we could be interlacing two
sequences with different limits that would not converge. That means
it suffices to find one sequence of functions 𝑓𝑛 that satisfies the
assumptions of this lemma and whose integrals converge to ∫ 𝑓 d𝜇.

To that end, take 𝜑𝑛 from Corollary 1.3.15 and a maximizing
sequence 𝑔𝑛 from the definition of ∫ 𝑓 d𝜇, i.e. such that ∫ 𝑔𝑛 d𝜇 →
∫ 𝑓 d𝜇. Then 𝑓𝑛(𝑥) ≔ max{𝜑𝑛(𝑥), 𝑔𝑛(𝑥)} ≤ 𝑓 is a step function for
which 𝜓𝑛 → 𝑓 pointwise and ∫ 𝜓𝑛 d𝜇 → ∫ 𝑓 d𝜇.

Definition 2.1.8. For 𝑓 ∶ Ω → [−∞, ∞] the support of 𝑓 is

spt(𝑓) ≔ 𝑓−1([−∞, ∞] ∖ {0}),

i.e. the set of points 𝑥 ∈ Ω for which 𝑓(𝑥) ≠ 0.

Theorem 2.1.9. Let 𝜇 be a measure on Ω.
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(i) (linearity) Let 𝑎, 𝑏 ≥ 0 and 𝑓, 𝑔 ≥ 0 be measurable. Then

∫ 𝑎𝑓 + 𝑏𝑔 d𝜇 = 𝑎 ∫ 𝑓 d𝜇 + 𝑏 ∫ 𝑔 d𝜇.

(ii) (additivity) Let and 𝐸, 𝐹 ⊂ Ω be disjoint and 𝑓 ≥ 0 be mea-
surable. Then

∫
𝐸∪𝐹

𝑓 d𝜇 = ∫
𝐸

𝑓 d𝜇 + ∫
𝐹

𝑓 d𝜇.

(iii) (monotonicity) Let 𝑓, 𝑔 ≥ 0 be measurable such that 𝑓 ≤ 𝑔.
Then

∫ 𝑓 d𝜇 ≤ ∫ 𝑔 d𝜇.

(iv) If 𝑓 ≥ 0 is measurable and ∫ 𝑓 d𝜇 < ∞ then for a.e. 𝑥 ∈ Ω we
have 𝑓(𝑥) < ∞.
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(v) Let 𝑓 ≥ 0 be measurable. Then ∫ 𝑓 d𝜇 = 0 if and only if a.e.
𝑥 ∈ Ω we have 𝑓(𝑥) = 0.

2025-10-07

Proof. We first prove linearity. Let 𝜑, 𝜓 be simple functions with
𝜑 ≤ 𝑓 and 𝜓 ≤ 𝑔. Then 𝑎𝜑+𝑏𝜓 is a simple function with 𝑎𝜑+𝑏𝜓 ≤
𝑎𝑓 + 𝑏𝑔, and thus by linearity and monotonicity of the Lebesgue
integral of a simple function we can conclude

𝑎 ∫ 𝑓 d𝜇 + 𝑏 ∫ 𝑔 d𝜇 ≤ ∫ 𝑎𝑓 + 𝑏𝑔 d𝜇.

For the reverse inequality it suffices to consider the case that 𝑎 ∫ 𝑓 d𝜇, 𝑏 ∫ 𝑔 d𝜇 <
∞. That means for every 𝜆 > 0 we have 𝜇({𝑎𝑓+𝑏𝑔 > 𝜆}) ≤ 𝜇({𝑎𝑓 >
𝜆/2}) + 𝜇({𝑏𝑔 > 𝜆/2}) < ∞. Let 𝜂 ≤ 𝑎𝑓 + 𝑏𝑔 be a simple function.
Then by the previous sentence we have 𝜇(spt(𝜂)) < ∞ and ∫ 𝜂 d𝜇 <
∞. Define 𝜂1 = min{𝜂, 𝑎𝑓} ≤ 𝑎𝑓 and 𝜂2 = 𝜂 − 𝜂1 ≤ 𝑏𝑔. Then
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for 𝑖 = 1, 2 we have spt(𝜂𝑖) ⊂ spt(𝜂) which implies 𝜇(spt(𝜂𝑖)) < ∞.
Thus, by Corollary 1.3.15 and Lemma 2.1.7, for 𝑖 = 1, 2 exist se-
quences 𝜑𝑖

1, 𝜑𝑖
2, … of simple functions with 0 ≤ 𝜑1

𝑛 + 𝜑2
𝑛 ≤ 𝜂 and

∫ 𝜑1
𝑛 + 𝜑2

𝑛 d𝜇 → ∫ 𝜂 d𝜇. Since by definition we have

1
𝑎 ∫ 𝜑1

𝑛 d𝜇 = ∫ 𝜑1
𝑛

𝑎 d𝜇 ≤ ∫ 𝑓 d𝜇,

1
𝑏 ∫ 𝜑2

𝑛 d𝜇 = ∫ 𝜑2
𝑛
𝑏 d𝜇 ≤ ∫ 𝑔 d𝜇,

We can conclude

𝑎 ∫ 𝑓 d𝜇 + 𝑏 ∫ 𝑔 d𝜇 ≥ lim
𝑛→∞

∫ 𝜑1
𝑛 d𝜇 + ∫ 𝜑2

𝑛 d𝜇 = ∫ 𝜂 d𝜇.

Since 𝜂 ≤ 𝑎𝑓 + 𝑏𝑔 was an arbitrary simple function this implies

𝑎 ∫ 𝑓 d𝜇 + 𝑏 ∫ 𝑔 d𝜇 ≥ ∫ 𝑎𝑓 + 𝑏𝑔 d𝜇.
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Additivity follows from linearity and 𝑓1𝐸∪𝐹 = 𝑓1𝐸 + 𝑓1𝐹 .
Monotonicity follows from the fact that for any simple functions

𝜑 ≤ 𝑓 we also have 𝜑 ≤ 𝑔.
Denote 𝐸 = {𝑥 ∈ Ω ∶ 𝑓(𝑥) = ∞}. If 𝐸 has positive measure then

the simple function ∞⋅𝐸 is pointwise bounded by 𝑓 and ∫ ∞⋅𝐸 d𝜇 =
∞ ⋅ 𝜇(𝐸) = ∞. Therefore ∫ 𝑓 d𝜇 = ∞.

Assume 𝜇({𝑓 > 0}) > 0 and for 𝑛 ∈ ℕ let 𝐸𝑛 = {𝑥 ∈ Ω ∶ 𝑓(𝑥) ≥
1/𝑛}. Then {𝑥 ∈ Ω ∶ 𝑓(𝑥) > 0} = 𝐸1 ∪ 𝐸2 ∪ …. That means there
exists an 𝑛 ∈ ℕ for which 𝜇(𝐸𝑛) > 0. Now, the simple function
1𝐸𝑛

/𝑛 is pointwise bounded by 𝑓 and thus ∫ 𝑓 d𝜇 ≥ ∫ 1𝐸𝑛
/𝑛 d𝜇 =

𝜇(𝐸𝑛)/𝑛 > 0.
Assume 𝜇({𝑓 > 0}) = 0. And let 𝑎1, …, 𝑎𝑛, 𝐸1, …, 𝐸𝑛 be the

canonical form of a simple function 𝜑 ≤ 𝑓 . Then for any 𝑘 with
𝑎𝑘 > 0 we must have 𝜇(𝐸𝑘) = 0. Thus by definition ∫ 𝜑 d𝜇 = 0

The convergence result Lemma 2.1.7 had the two boundedness
assumptions that the domain has finite measure, and that all func-
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tions are bounded from below and from above. Next investigate
what happens if we relax those conditions.

Example 2.1.10. For 𝑛 ∈ ℕ let 𝑓𝑛 = 1[𝑛,𝑛+1]. Then for every 𝑥 ∈ ℝ
we have 𝑓𝑛(𝑥) → 0 and 0 ≤ 𝑓𝑛 ≤ 1, but

lim
𝑛→0

∫ 𝑓𝑛 dℒ = 1 > 0 = ∫ lim
𝑛→∞

𝑓𝑛(𝑥) dℒ(𝑥).

That means the pointwise limit of nonnegative functions can have
a strictly smaller integral than the limit of the integrals. However,
it cannot be strictly larger.

Theorem 2.1.11 (Fatou’s lemma). Let 𝜇 be a measure on Ω and
let 𝑓1, 𝑓2, … ∶ Ω → [0, ∞]. Then

∫ lim inf
𝑛→∞

𝑓𝑛 d𝜇 ≤ lim inf
𝑛→∞

∫ 𝑓𝑛 d𝜇.
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Proof. Let

0 ≤ 𝜑 =
𝑘

∑
𝑗=1

𝑎𝑗1𝐴𝑗
≤ lim inf

𝑛→∞
𝑓𝑛

be a simple function. As in the proof of Proposition 2.1.3 we can
make 𝐴1, …, 𝐴𝑘 disjoint.

Let 0 < 𝑡 < 1. Define

𝐵𝑗,𝑛 = {𝑥 ∈ 𝐴𝑗 ∶ ∀𝑚 ≥ 𝑛 𝑓𝑚(𝑥) > 𝑡𝑎𝑗}.
Then for any 𝑗 we have

𝐵𝑗,1 ⊂ 𝐵𝑗,2 ⊂ … ⊂ 𝐴𝑗,
∞
⋃
𝑛=1

𝐵𝑗,𝑛 = 𝐴𝑗

and for any 𝑛 we have

𝑓𝑛 >
𝑘

∑
𝑗=1

𝑡𝑎𝑗1𝐵𝑗,𝑛
⇒ ∫ 𝑓𝑛 d𝜇 >

𝑘
∑
𝑗=1

𝑡𝑎𝑗𝜇(𝐵𝑗,𝑛).
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Thus, by Lemma 1.2.7

lim inf
𝑛→∞

∫ 𝑓𝑛 d𝜇 ≥
𝑘

∑
𝑗=1

𝑡𝑎𝑗 lim inf
𝑛→∞

𝜇(𝐵𝑗,𝑛) = 𝑡 ∫ 𝜑 d𝜇.

Since 0 < 𝑡 < 1 and 𝜑 ≤ lim inf𝑛→∞ 𝑓𝑛 were arbitrary this finishes
the proof.

Corollary 2.1.12. Let 𝑓, 𝑓1, 𝑓2, … ∶ Ω → [0, ∞] with 𝑓𝑛 ≤ 𝑓 and
𝑓𝑛 → 𝑓 almost everywhere. Then

∫ 𝑓 d𝜇 = lim
𝑛→∞

∫ 𝑓𝑛 d𝜇.

Proof. We have

lim sup
𝑛→∞

∫ 𝑓𝑛 d𝜇 ≤ ∫ 𝑓 d𝜇 ≤ lim inf
𝑛→∞

∫ 𝑓𝑛 d𝜇.
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Corollary 2.1.13 (Monotone convergence theorem). Let 𝑓1, 𝑓2, … ∶
Ω → [0, ∞] with 𝑓1 ≤ 𝑓2 ≤ …. Then

∫ lim
𝑛→∞

𝑓𝑛 d𝜇 = lim
𝑛→∞

∫ 𝑓𝑛 d𝜇.

2.1.3 Measurable functions
For 𝑓 ∶ Ω → [−∞, ∞] recall its positive and negative parts 𝑓+ and
𝑓− from Definition 1.3.17. Then 𝑓± ≥ 0, so its Lebesgue integral is
defined.
Definition 2.1.14. We say that 𝑓 is integrable if ∫ 𝑓+ d𝜇 < ∞ or
∫ 𝑓− d𝜇 < ∞, in which case we define its Lebesgue measure by

∫ 𝑓 d𝜇 ≔ ∫ 𝑓+ d𝜇 − ∫ 𝑓− d𝜇,

using the definition of the Lebesgue measure of the nonnegative func-
tions 𝑓±.
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Lemma 2.1.15. Let 𝑓1, 𝑓2 ≥ 0 be measurable such that for at least
one 𝑖 ∈ {1, 2} we have ∫ 𝑓𝑖 d𝜇 < ∞. Then

∫ 𝑓 d𝜇 = ∫ 𝑓1 d𝜇 − ∫ 𝑓2 d𝜇.

Proof. We have

𝑓+ = (𝑓1 − 𝑓2)1{𝑓1≥𝑓2}, 𝑓− = (𝑓2 − 𝑓1)1{𝑓1<𝑓2}.
By the linearity of the integral for nonnegative function we have

∫ 𝑓11{𝑓1≥𝑓2} d𝜇 = ∫(𝑓1 − 𝑓2)1{𝑓1≥𝑓2} + 𝑓21{𝑓1≥𝑓2} d𝜇

= ∫(𝑓1 − 𝑓2)1{𝑓1≥𝑓2} d𝜇 + ∫ 𝑓21{𝑓1≥𝑓2} d𝜇

which means

∫(𝑓1 − 𝑓2)1{𝑓1≥𝑓2} d𝜇 = ∫ 𝑓11{𝑓1≥𝑓2} d𝜇 − ∫ 𝑓21{𝑓1≥𝑓2} d𝜇.
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Argueing similarly for 𝑓− we have

∫(𝑓2 − 𝑓1)1{𝑓1<𝑓2} d𝜇 = ∫ 𝑓21{𝑓1<𝑓2} d𝜇 − ∫ 𝑓11{𝑓1<𝑓2} d𝜇

and we can conclude

∫ 𝑓 d𝜇 = ∫ 𝑓+ d𝜇 − ∫ 𝑓− d𝜇

= ∫ 𝑓11{𝑓1≥𝑓2} d𝜇 − ∫ 𝑓21{𝑓1≥𝑓2} d𝜇

− ∫ 𝑓21{𝑓1<𝑓2} d𝜇 + ∫ 𝑓11{𝑓1<𝑓2} d𝜇

= ∫ 𝑓1 d𝜇 − ∫ 𝑓2 d𝜇.

Proposition 2.1.16. Let 𝜇 be a measure on Ω.
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(i) (linearity) Let 𝑎, 𝑏 ∈ [−∞, ∞] and 𝑓, 𝑔 ∶ Ω → [−∞, ∞] be
integrable. Then

∫ 𝑎𝑓 + 𝑏𝑔 d𝜇 = 𝑎 ∫ 𝑓 d𝜇 + 𝑏 ∫ 𝑔 d𝜇,

provided the right hand side is well defined, i.e. not of the form
”∞ − ∞”.

(ii) (additivity) Let and 𝐸, 𝐹 ⊂ Ω be disjoint and 𝑓 be integrable.
Then

∫
𝐸∪𝐹

𝑓 d𝜇 = ∫
𝐸

𝑓 d𝜇 + ∫
𝐹

𝑓 d𝜇.

(iii) (monotonicity) Let 𝑓, 𝑔 be integrable such that 𝑓 ≤ 𝑔. Then

∫ 𝑓 d𝜇 ≤ ∫ 𝑓 d𝜇.
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(iv) (triangle inequality) Lef 𝑓 be integrable. Then |𝑓| is integrable
and

∣∫ 𝑓 d𝜇∣ ≤ ∫ |𝑓| d𝜇.

Proof. Since (−𝑓)+ = 𝑓− and (−𝑓)− = 𝑓+ it follows that ∫(−𝑓) d𝜇 =
− ∫ 𝑓 d𝜇. Similarly we can prove ∫ 𝑎𝑓 d𝜇 = 𝑎 ∫ 𝑓 d𝜇. Thus, in order
to prove linearity it remains to show ∫ 𝑓 + 𝑔 d𝜇 = ∫ 𝑓 d𝜇 + ∫ 𝑔 d𝜇,
provided the right hand side is well defined. Now, (𝑓 +𝑔)+ ≤ 𝑓+ +𝑔+

and (𝑓 + 𝑔)− ≤ 𝑓− + 𝑔−, which means that if ∫ 𝑓 d𝜇 + ∫ 𝑔 d𝜇 is well
defined then so is ∫ 𝑓 + 𝑔 d𝜇. Now, 𝑓 + 𝑔 = 𝑓+ + 𝑔+ − (𝑓− + 𝑔−).
Hence by Lemma 2.1.15 and linearity for nonnegative functions we
can conclude

∫ 𝑓 + 𝑔 d𝜇 = ∫ 𝑓+ + 𝑔+ d𝜇 − ∫ 𝑓− + 𝑔− d𝜇

= ∫ 𝑓+ d𝜇 + ∫ +𝑔+ d𝜇 − ∫ 𝑓− d𝜇 − ∫ 𝑔− d𝜇
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= ∫ 𝑓 d𝜇 + ∫ 𝑔 d𝜇.

As before, additivity follows from linearity.
For monotonicity we observe 𝑓+ ≤ 𝑔+ and 𝑓− ≥ 𝑔− and mono-

tonicity follows from monotonicity of the integral of nonnegative
functions.

The triangle inequality follows from 𝑓 ≤ |𝑓|, −𝑓 ≤ |𝑓| linearity
and monotonicity.

Proposition 2.1.17. Let (Ω, ℳ, 𝜇) be 𝜎-finite and 𝑓 ∶ Ω → [0, ∞]
with ∫ 𝑓 d𝜇 < ∞ and let 𝜀 > 0.

(i) There exists a set 𝐵 ∈ ℳ with 𝜇(𝐵) < ∞ such that

∫
Ω∖𝐵

𝑓 d𝜇 < 𝜀.
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(ii) There exists a 𝛿 > 0 such that for all 𝐸 ∈ ℳ with 𝜇(𝐸) < 𝛿
we have

∫
𝐸

𝑓 d𝜇 < 𝜀.

Proof. Exercise.

Theorem 2.1.18 (Dominated convergence). Let 𝑔 ≥ 0 with ∫ 𝑔 d𝜇 <
∞ and 𝑓, 𝑓1, 𝑓2, … ∶ Ω → [−∞, ∞] such that for all 𝑛 we have
|𝑓𝑛| ≤ 𝑔 almost everywhere and 𝑓𝑛 → 𝑓 almost everywhere. Then

lim
𝑛→∞

∫ |𝑓𝑛 − 𝑓| d𝜇 = 0.

Proof. By Fatou’s lemma Theorem 2.1.11 we have

∫ 2𝑔 d𝜇 = ∫ lim inf
𝑛→∞

2𝑔 − |𝑓 − 𝑓𝑛| d𝜇

≤ lim inf
𝑛→∞

∫ 2𝑔 − |𝑓 − 𝑓𝑛| d𝜇
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= ∫ 2𝑔 d𝜇 − lim sup
𝑛→∞

∫ |𝑓 − 𝑓𝑛| d𝜇

which means
lim sup

𝑛→∞
∫ |𝑓 − 𝑓𝑛| d𝜇 = 0.

2025-10-09

2.2 𝐿𝑝-spaces
Let (Ω, ℳ, 𝜇) be a measure space and let 1 ≤ 𝑝 ≤ ∞. Then for any
𝜇-measurable 𝑓 ∶ Ω → [−∞, ∞], the function |𝑓|𝑝 is measurable and
nonnegative and thus integrable. Define

‖𝑓‖𝐿𝑝(Ω,ℳ,𝜇) = (∫ |𝑓|𝑝 d𝜇)
1
𝑝 , 1 ≤ 𝑝 < ∞,
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‖𝑓‖𝐿∞(Ω,ℳ,𝜇) = inf{𝜆 ≥ 0 ∶ 𝜇({|𝑓| > 𝜆}) = 0} .

For brevity we omit ℳ in the notation. If 𝑔 = 𝑓 𝜇-almost everywhere
then ‖𝑔‖𝐿𝑝(Ω,𝜇) = ‖𝑓‖𝐿𝑝(Ω,𝜇) and ‖𝑓−𝑔‖𝐿𝑝(Ω,𝜇) = 0. For 𝑓 measurable
denote by [𝑓] the equivalence class of functions 𝑔 that equal 𝑓 𝜇-
almost everywhere. We define

𝐿𝑝(Ω, ℳ, 𝜇) = {[𝑓] ∶ 𝑓 ∶ Ω → [−∞, ∞] measurable, ‖𝑓‖𝐿𝑝(Ω,ℳ,𝜇) < ∞}.

For [𝑓] ∈ 𝐿𝑝(Ω, ℳ, 𝜇) we will also slightly abuse notation and write
𝑓 ∈ 𝐿𝑝(Ω, ℳ, 𝜇).

You will show in an exercise that 𝐿𝑝(Ω, ℳ, 𝜇) is a normed space
with norm ‖ ⋅ ‖𝐿𝑝(Ω,ℳ,𝜇). In fact, the normed space is complete,
making it a Banach space. You will probably see it in the functional
analysis course.

Part of being a norm is the triangle inequality,

‖𝑓 + 𝑔‖𝐿𝑝(Ω,ℳ,𝜇) ≤ ‖𝑓‖𝐿𝑝(Ω,ℳ,𝜇) + ‖𝑔‖𝐿𝑝(Ω,ℳ,𝜇).
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For 1 ≤ 𝑝 ≤ ∞ denote 𝑝′ = 𝑝
1−𝑝 so that 1

𝑝 + 1
𝑝′ = 1. Note, that

(𝑝′)′ = 𝑝. You will also show Hölder’s inequality, that for 𝑓 ∈
𝐿𝑝(Ω, ℳ, 𝜇) and 𝑔 ∈ 𝐿𝑝′(Ω, ℳ, 𝜇) we have 𝑓𝑔 ∈ 𝐿1(Ω, ℳ, 𝜇) with

‖𝑓𝑔‖𝐿1(Ω,ℳ,𝜇) ≤ ‖𝑓‖𝐿𝑝(Ω,ℳ,𝜇)‖𝑔‖𝐿𝑝′ (Ω,ℳ,𝜇).

Proposition 2.2.1. Let 1 ≤ 𝑝 ≤ ∞, 𝑓 ∈ 𝐿𝑝(Ω, ℳ, 𝜇) and 𝜀 > 0.
Then

(i) exists a simple function 𝜑 with ‖𝜑 − 𝑓‖𝐿𝑝(Ω,ℳ,𝜇) < 𝜀

(ii) if Ω = ℝ𝑑 and 𝑝 < ∞ exists a step function 𝜑 with ‖𝜑 −
𝑓‖𝐿𝑝(ℝ𝑑,ℒ) < 𝜀

(iii) if Ω = ℝ𝑑 and 𝑝 < ∞ exists a compactly supported continuous
function 𝜑 with ‖𝜑 − 𝑓‖𝐿𝑝(ℝ𝑑,ℒ) < 𝜀.

Proof. (i) For 𝑥 ∈ Ω define by 𝜎(𝑥) = 1 if 𝑓(𝑥) ≥ 0 and 𝜎(𝑥) = −1
if 𝑓(𝑥) < 0. We first consider 𝑝 = ∞. Apply Corollary 1.3.15
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to |𝑓|, take 𝑓𝑛 from the proof of Corollary 1.3.15. Then 𝑔𝑛 =
𝜎𝑓𝑛 is a simple function. If 𝑛 such that 2𝑛 ≥ ‖𝑓‖𝐿∞(Ω,ℳ,𝜇)
then 𝜇(𝐴22𝑛

𝑛 ) = 0, and thus for 𝜇-almost every 𝑥 ∈ Ω we have

|𝑔𝑛(𝑥) − 𝑓(𝑥)| = |𝑓(𝑥)| − 𝑓𝑛(𝑥) ≤ 2−𝑛.

Hence ‖𝑔𝑛 − 𝑓‖𝐿∞(Ω,ℳ,𝜇) ≤ 2−𝑛.
Now consider 1 ≤ 𝑝 < ∞. By Corollary 1.3.15 applied to
|𝑓|𝑝 exist a sequence of simple functions 𝑓1, 𝑓2, … that mono-
toneously converge to |𝑓|𝑝 from below. Define the step function
𝑔𝑛 = 𝜎(𝑓𝑛)1/𝑝. Then |𝑓−𝑔𝑛|𝑝 goes to zero 𝜇-almost everywhere
and 0 ≤ |𝑓 − 𝑔𝑛|𝑝 ≤ |𝑓|𝑝. Thus, by dominated convergence we
have ‖𝑓 − 𝑔𝑛‖𝐿𝑝(Ω,ℳ,𝜇) → 0.

(ii) Take 𝜑 from (i). Then 𝜑 is a weighted sum of characteristic
functions of sets with finite measure. By the triangle inequality
it thus suffices to show that for each 𝐸 ⊂ ℝ𝑑 with ℒ(𝐸) < ∞
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exists a finite set 𝒬 of disjoint rectangles with

∥1𝐸 − ∑
𝑄∈𝒬

1𝑄∥
𝐿𝑝(ℝ𝑑,ℒ)

< 𝜀.

Since ∑𝑄∈𝒬 1𝑄 = 1⋃ 𝒬 and

‖1𝐸 − 1⋃ 𝒬‖𝐿𝑝(ℝ𝑑,ℒ) = ℒ(𝐸Δ ⋃ 𝒬) 1
𝑝 ,

the existence of such 𝒬 is a consequence of Proposition 1.2.18
(v).

(iii) Let 𝑓 = 1𝑄 for some cube 𝑄. Let Then 𝜑𝑄,𝛿 given by

𝜑𝑄,𝛿(𝑥) = min{1, inf{|𝑥 − 𝑦| ∶ 𝑦 ∈ ℝ𝑑 ∖ 𝑄}/𝛿}
is continuous, supported on 𝑄, and, for 𝛿 sufficiently small
satisfies

‖1𝑄 − 𝜑𝑄,𝛿‖𝐿𝑝(ℝ𝑑,ℒ) ≤ ‖1𝑄 − 1{𝑥∶inf{|𝑥−𝑦|∶𝑦∈ℝ𝑑∖𝑄}<𝛿}‖𝐿𝑝(ℝ𝑑,ℒ) < 𝜀
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by an explicit calculation or the monotone convergence theo-
rem. By the triangle inequality, the proof of (ii), and since
finite sums of compactly supported continuous functions are
compactly supported and continuous, this suffices to conclude
the proof.

2.3 Fubini’s theorem
Definition 2.3.1. For 𝑖 = 0, 1 let 𝜇𝑖 be an outer measure on Ω𝑖.
Define the product (outer) measure of 𝜇0 and 𝜇1, 𝜇0 × 𝜇1 ∶
2Ω0×Ω1 → [0, ∞], by

(𝜇0 × 𝜇1)(𝐸) = inf{
∞

∑
𝑛=1

𝜇0(𝐴𝑛
0 )𝜇1(𝐴𝑛

1 ) ∶ 𝐴𝑛
𝑖 ⊂ Ω𝑖 𝜇𝑖-measurable, 𝐸 ⊂

∞
⋃
𝑛=1

𝐴𝑛
0 × 𝐴𝑛

1 }.
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Definition 2.3.2. Let (Ω, ℳ, 𝜇) be a complete measure space and
𝐸 ⊂ Ω with 𝜇(𝐸) = 0. Then for 𝑓 ∶ Ω ∖ 𝐸 → [−∞, ∞] we say that
𝑓 is measurable or integrable if

̄𝑓(𝑥) = {𝑓(𝑥) 𝑥 ∈ Ω ∖ 𝐸,
0 𝑥 ∈ 𝐸

is measurable or integrable respectively and we define

∫ 𝑓 d𝜇 = ∫ ̄𝑓 d𝜇.

Theorem 2.3.3. Let 𝜇0 and 𝜇1 be 𝜎-finite and complete.

(i) Then 𝜇0 × 𝜇1 is a 𝜎-finite measure and for each 𝜇𝑖-measurable
sets 𝐴𝑖 ⊂ 2Ω𝑖 their product 𝐴0 ×𝐴1 is 𝜇0 ×𝜇1-measurable with

(𝜇0 × 𝜇1)(𝐴0 × 𝐴1) = 𝜇0(𝐴0)𝜇1(𝐴1).
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(ii) For any 𝜇0 × 𝜇1-measurable 𝐸 ⊂ 2Ω0×Ω1 their cross-sections

𝐸𝑖,𝑥 = {𝑎𝑖 ∶ (𝑎0, 𝑎1) ∈ 𝐸, 𝑎1−𝑖 = 𝑥}

are 𝜇𝑖-measurable for 𝜇1−𝑖-almost every 𝑥 ∈ Ω1−𝑖. Moreover,
the maps 𝑥 ↦ 𝜇𝑖(𝐸𝑖,𝑥) are 𝜇1−𝑖-measurable and

(𝜇0 × 𝜇1)(𝐸) = ∫ 𝜇𝑖(𝐸𝑖,𝑥) d𝜇1−𝑖(𝑥).

Note, that here we need to make use of Definition 2.3.2.

(iii) For 𝑓 ∶ Ω0 × Ω1 → [−∞, ∞] and 𝑥 ∈ Ω1−𝑖 denote 𝑓𝑖,𝑥(𝑦) =
𝑓(𝑥, 𝑦). If 𝑓 is 𝜇0 × 𝜇1-integrable then for 𝜇1−𝑖-almost every
𝑥 ∈ Ω1−𝑖 the map 𝑓𝑖,𝑥 ∶ Ω𝑖 → [−∞, ∞] is 𝜇𝑖-integrable, the
map

𝑥 ↦ ∫ 𝑓𝑖,𝑥 d𝜇𝑖
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is 𝜇1−𝑖-integrable and

∫ 𝑓 d(𝜇0 × 𝜇1) = ∫[∫ 𝑓𝑖,𝑥(𝑦) d𝜇𝑖(𝑦)] d𝜇1−𝑖(𝑥).

In particular, (iii) means

∫ ∫ 𝑓(𝑥, 𝑦) d𝜇0(𝑥) d𝜇1(𝑦) = ∫ ∫ 𝑓(𝑥, 𝑦) d𝜇1(𝑦) d𝜇0(𝑥).

Before we start with the proof we consider the case of Lebesgue
measure. Denote by ℒ𝑛

∗ Lebesgue outer measure on ℝ𝑛. You will
show in an exercise that ℒ𝑛

∗ × ℒ𝑘
∗ = ℒ𝑛+𝑘

∗ . In particular, they have
the same measurable sets and also agree as measures. That means
for an ℒ𝑛+𝑘-integrable function 𝑓 ∶ ℝ𝑛+𝑘 → ℝ we have

∫
ℝ𝑛+𝑘

𝑓 dℒ𝑛+𝑘 = ∫
ℝ𝑘

∫
ℝ𝑛

𝑓(𝑥, 𝑦) dℒ𝑛(𝑥) dℒ𝑘(𝑦)
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= ∫
ℝ𝑛

∫
ℝ𝑘

𝑓(𝑥, 𝑦) dℒ𝑘(𝑦) dℒ𝑛(𝑥).

2025-10-14

Proof. Define

𝒫0 = {𝐴0 × 𝐴1 ∶ 𝐴𝑖 ⊂ Ω𝑖 𝜇𝑖-measurable}

𝒫1 = {
∞
⋃
𝑛=1

𝐸𝑛 ∶ 𝐸𝑛 ∈ 𝒫0}

𝒫2 = {
∞
⋂
𝑛=1

𝐸𝑛 ∶ 𝐸𝑛 ∈ 𝒫1}.

For 𝑖, 𝑛 = 0, 1 let 𝐴𝑛
𝑖 ⊂ Ω𝑖 be 𝜇𝑖-measurable. Then

(𝐴0
0 × 𝐴0

1) ∩ (𝐴1
0 × 𝐴1

1) = (𝐴0
0 ∩ 𝐴1

0) × (𝐴0
1 × 𝐴1

1),
(𝐴0

0 × 𝐴0
1) ∖ (𝐴1

0 × 𝐴1
1) = ([𝐴0

0 ∖ 𝐴1
0] × 𝐴0

1)
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∪ ([𝐴0
0 ∩ 𝐴1

0] × [𝐴0
1 ∖ 𝐴1

1]).

That means both intersections and set differences of two elements
from 𝒫0 can be written as finite disjoint unions of elements from 𝒫0.
Let 𝐸1, 𝐸2, … ∈ 𝒫0.

Claim 1. Each element in 𝒫1 can be written as a countable disjoint
union of elements from 𝒫0.

Proof. We show by induction that for each 𝑛 ∈ ℕ exists a collection
𝒜𝑛 of disjoint elements from 𝒫0 such that

𝐸1 ∪ … ∪ 𝐸𝑛 = ⋃ 𝒜𝑛

and 𝐴𝑛 ⊂ 𝐴𝑛+1. Then we can conclude that 𝒜 = 𝒜1 ∪ 𝒜2 ∪ … is a
countable set of disjoint elements from 𝒫0 and ⋃ 𝒜 = 𝐸1 ∪ 𝐸2 ∪ ….

For 𝑛 ∈ ℕ take 𝒜𝑛 = {𝐹1, …, 𝐹𝑁} from the inductive hypothesis.
First we prove by an induction argument within that for each 𝑘 =
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0, …, 𝑁 exists a finite set ℬ𝑘 of disjoint elements from 𝒫0 with

⋃ ℬ𝑘 = 𝐸𝑛+1 ∪ 𝐹1 ∪ … ∪ 𝐹𝑘,
ℬ𝑘 ⊃ {𝐹1, …, 𝐹𝑘} ∶

Take ℬ𝑘 from the inductive hypothesis. For each 𝐸 ∈ ℬ𝑘 we may
write 𝐸∪𝐹𝑘+1 as the disjoint union 𝐹𝑘+1∪(𝐸∖𝐹𝑘+1). By the previous
argument this disjoint union can be written as a finite disjoint union
of elements from 𝒫0. We collect in ℬ𝑘+1 all the resulting sets. They
are all disjoint, cover 𝐹1 ∪ … ∪ 𝐹𝑘+1. Among its members are 𝐹𝑘+1,
and also 𝐹𝑚 for all 𝑚 ≤ 𝑘 because they appear as 𝐹𝑚 ∖ 𝐹𝑘+1 =
𝐹𝑚. This proves the inner induction argument. In particular, the
conclusion holds for 𝑘 = 𝑁 and we can set 𝒜𝑛+1 = ℬ𝑁 , finishing
the outer induction.

Let ℱ be the collection of sets 𝐸 ⊂ Ω0 × Ω1 for which

𝑥 ↦ 1𝐸(𝑥, 𝑦)
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is 𝜇0-measurable for 𝜇1-almost every 𝑦 ∈ Ω1, and

𝑦 ↦ ∫ 1𝐸(𝑥, 𝑦) d𝜇0(𝑥)

is 𝜇1-measurable. That means 𝒫0 ⊂ ℱ. For 𝐸 ∈ ℱ define

𝜌(𝐸) = ∫[∫ 1𝐸(𝑥, 𝑦) d𝜇0(𝑥)] d𝜇1(𝑦).

Claim 2. Let 𝐸, 𝐹 ∈ ℱ with 𝐸 ⊂ 𝐹 .

(i) Then 𝜌(𝐸) ≤ 𝜌(𝐹).
(ii) Let 𝐸1 ∪ 𝐸2 ∪ … ∈ 𝒫0. Then 𝐸1 ∪ 𝐸2 ∪ … ∈ ℱ and

𝜌(𝐸1 ∪ 𝐸2 ∪ …) ≤
∞

∑
𝑛=1

𝜌(𝐸𝑛).

In particular, 𝒫1 ⊂ ℱ.
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(iii) If 𝐸1, 𝐸2, … ∈ 𝒫0 are disjoint then

𝜌(𝐸1 ∪ 𝐸2 ∪ …) =
∞

∑
𝑛=1

𝜌(𝐸𝑛).

(iv) If 𝐸1, 𝐸2, … ∈ 𝒫1 with 𝜌(𝐸1) < ∞ then 𝐸1 ∩ 𝐸2 ∩ … ∈ ℱ with

𝜌(𝐸1 ∩ 𝐸2 ∩ …) = lim
𝑛→∞

𝜌(𝐸1 ∩ … ∩ 𝐸𝑛).

In particular, 𝒫2 ⊂ ℱ.

Proof. If 𝐸 ⊂ 𝐹 then for 𝜇1-almost every 𝑦 ∈ Ω1 we have {𝑥 ∶
(𝑥, 𝑦) ∈ 𝐸} ⊂ {𝑥 ∶ (𝑥, 𝑦) ∈ 𝐹} and monotonicity follows from mono-
tonicity of the integrals.

Let 𝐸1, 𝐸2, … ∈ 𝒫0 and let 𝑛 ∈ ℕ. Then for 𝑦 ∈ Ω1 the
map 𝑥 ↦ ∑𝑛

𝑘=1 1𝐸𝑘
(𝑥, 𝑦) is a finite sum of 𝜇0-measurable maps

and thus measurable, and converges pointwise monotoneously to

120



𝑥 ↦ ∑∞
𝑘=1 1𝐸𝑘

(𝑥, 𝑦). By linearity and monotone convergence he
same is true for

𝑦 ↦ ∫
𝑛

∑
𝑘=1

1𝐸𝑘
(𝑥, 𝑦) d𝜇0(𝑥) → ∫

∞
∑
𝑘=1

1𝐸𝑘
(𝑥, 𝑦) d𝜇0(𝑥)

and again by linearity and monotone convergence we obtain

∫ ∫ lim
𝑛→∞

𝑛
∑
𝑘=1

1𝐸𝑘
(𝑥, 𝑦) d𝜇0(𝑥) d𝜇1(𝑦) = lim

𝑛→∞

𝑛
∑
𝑘=1

𝜌(𝐸𝑘). (2.3.1)

If 𝐸1, 𝐸2, … are disjoint then

1𝐸1∪𝐸2∪…(𝑥, 𝑦) = lim
𝑛→∞

𝑛
∑
𝑘=1

1𝐸𝑘
(𝑥, 𝑦)

and we can conclude

𝜌(𝐸1 ∪ 𝐸2 ∪ …) =
∞

∑
𝑘=1

𝜌(𝐸𝑘),
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finishing the proof in the disjoint case.
If they are not disjoint, we can make them disjoint, thereby es-

tablishing the required measurability properties from the previous
case. Moreover, since 1𝐸1∪𝐸2∪… ≤ ∑∞

𝑘=1 1𝐸𝑘
we obtain from (2.3.1)

that
𝜌(𝐸1 ∪ 𝐸2 ∪ …) ≤

∞
∑
𝑘=1

𝜌(𝐸𝑘).

Finally, let 𝐸1, 𝐸2, … ∈ 𝒫1. Then for each 𝑛 exist disjoint
rectangles 𝐹 1

𝑛 , 𝐹 2
𝑛 , … ∈ 𝒫0 with 𝐸𝑛 = 𝐹 1

𝑛 ∪ 𝐹 2
𝑛 ∪ …. That means

𝐸1 ∩ … ∩ 𝐸𝑛 equals the union of all sets of the form 𝐹 𝑘1
1 ∩ … ∩ 𝐹 𝑘𝑛𝑛

with 𝑘1, …, 𝑘𝑛 ∈ ℕ, which is a countable union of disjoint rectangles.
By the previous case this establishes the measurability of

𝑥 ↦ 1𝐸1∩…∩𝐸𝑛
(𝑥, 𝑦) → 1𝐸1∩𝐸𝑛∩…(𝑥, 𝑦)

and
𝑦 ↦ ∫ 1𝐸1∩…∩𝐸𝑛

(𝑥, 𝑦) d𝜇0(𝑥)
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Since 𝜌(𝐸1) < ∞ then for 𝜇1-almost every 𝑦 ∈ Ω1 we have

∫ 1𝐸1
(𝑥, 𝑦) ∫ 𝜇0(𝑥) < ∞.

Similarly as in the previous case we can now argue by dominated
convergence or the measure continuity lemma that

𝑦 ↦ ∫ 1𝐸1∩𝐸2∩…(𝑥, 𝑦) d𝜇0(𝑥) = lim
𝑛→∞

∫ 1𝐸1∩…∩𝐸𝑛
(𝑥, 𝑦) d𝜇0(𝑥)

is 𝜇1-measurable and

𝜌(𝐸1 ∩ 𝐸2 ∩ …) = ∫ lim
𝑛→∞

∫ 1𝐸1∩…∩𝐸𝑛
(𝑥, 𝑦) d𝜇0(𝑥) d𝜇1(𝑦)

= lim
𝑛→∞

𝜌(𝐸1 ∩ … ∩ 𝐸𝑛).
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Claim 3. For each 𝐸 ⊂ Ω0 × Ω1 we have

(𝜇0 × 𝜇1)(𝐸) = inf{(𝜇0 × 𝜇1)(𝐺) ∶ 𝐸 ⊂ 𝐺 ∈ 𝒫1}
= inf{𝜌(𝐺) ∶ 𝐸 ⊂ 𝐺 ∈ 𝒫1}.

Proof. By Claim 1 for any 𝐺 ⊂ 𝒫1 exist measurable 𝐴𝑛
𝑖 ⊂ Ω𝑖 such

that
𝐺 =

∞
⋃
𝑛=1

𝐴𝑛
0 × 𝐴𝑛

1 ,

where the union is disjoint. Thus

(𝜇0 × 𝜇1)(𝐺) ≤
∞

∑
𝑛=1

𝜇0(𝐴𝑛
0 )𝜇1(𝐴𝑛

1 ) = 𝜌(𝐺).

Since 𝜇0 × 𝜇1 is monotone we can conclude the claim with ”≤”
instead of equalities.

124



In order to prove ”≥” let 𝜀 > 0. Then there exist 𝐴𝑛
𝑖 with

𝐸 ⊂ ⋃∞
𝑛=1 𝐴𝑛

0 × 𝐴𝑛
1 ∈ 𝒫1 and

(𝜇0 × 𝜇1)(𝐸) + 𝜀 ≥
∞

∑
𝑛=1

𝜇0(𝐴𝑛
0 )𝜇1(𝐴𝑛

1 ) ≥ 𝜌(
∞
⋃
𝑛=1

𝐴𝑛
0 × 𝐴𝑛

1 ).

Let 𝐴0 × 𝐴1 ∈ 𝒫0 and let 𝜀 > 0. Then by Claim 3 exists 𝐺 ∈ 𝒫1
with

(𝜇0 × 𝜇1)(𝐴0 × 𝐴1) ≤ 𝜇0(𝐴0)𝜇1(𝐴1) = 𝜌(𝐴0 × 𝐴1)
≤ 𝜌(𝐺) ≤ (𝜇0 × 𝜇1)(𝐴0 × 𝐴1) + 𝜀.

Letting 𝜀 → 0 we obtain

(𝜇0 × 𝜇1)(𝐴0 × 𝐴1) = 𝜇0(𝐴0)𝜇1(𝐴1).
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In order to finish the proof of (i) it remains to show that 𝐴0 × 𝐴1 is
𝜇0 × 𝜇1-measurable. To that end let 𝐸 ⊂ Ω0 × Ω1 and 𝜀 > 0. Then
there exists a 𝐺 ∈ 𝒫1 with 𝐺 ⊃ 𝐸 and

𝜌(𝐺) ≤ (𝜇0 × 𝜇1)(𝐸) + 𝜀.
Since 𝐺 ∩ (𝐴0 × 𝐴1) and 𝐺 ∖ (𝐴0 × 𝐴1) are disjoint and belong to
𝑃1 we have

(𝜇0 × 𝜇1)(𝐸 ∩ (𝐴0 × 𝐴1)) + (𝜇0 × 𝜇1)(𝐸 ∖ (𝐴0 × 𝐴1))
≤ 𝜌(𝐺 ∩ (𝐴0 × 𝐴1)) + 𝜌(𝐺 ∖ (𝐴0 × 𝐴1))
= 𝜌(𝐺)

and letting 𝜀 → 0 we can conclude that 𝐴0×𝐴1 is 𝜇0×𝜇1-measurable
and finish the proof of (i).

Claim 4. We have 𝒫2 ⊂ ℱ and for each 𝐸 ⊂ Ω0 × Ω1 with (𝜇0 ×
𝜇1)(𝐸) < ∞ exists a 𝐸 ⊂ 𝐺 ∈ 𝒫2 with

(𝜇0 × 𝜇1)(𝐸) = 𝜌(𝐺) = (𝜇0 × 𝜇1)(𝐺).
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Proof. By Claim 3 for each 𝑛 ∈ ℕ exists 𝐸 ⊂ 𝐺𝑛, 𝐹𝑛 ∈ 𝒫1 with

(𝜇0 × 𝜇1)(𝐸) ≤ 𝜌(𝐺𝑛), (𝜇0 × 𝜇1)(𝐹𝑛)
≤ (𝜇0 × 𝜇1)(𝐸) + 2−𝑛 < ∞.

Set 𝐺 = 𝐺1 ∩𝐹1 ∩𝐺2 ∩𝐹2 ∩… ∈ 𝒫2. It follows from the monotonicity
of (𝜇0 × 𝜇1) that (𝜇0 × 𝜇1)(𝐸) = (𝜇0 × 𝜇1)(𝐺), and

(𝜇0 × 𝜇1)(𝐸) ≤ 𝜌(𝐺) ≤ lim
𝑛→∞

𝜌(𝐺1 ∩ … ∩ 𝐺𝑛) = (𝜇0 × 𝜇1)(𝐸).

Let 𝐸 ⊂ Ω0 × Ω1 be 𝜇0 × 𝜇1-measurable with (𝜇0 × 𝜇1)(𝐸) < ∞.
Then take 𝐺 ⊃ 𝐸 from Claim 4 so that (𝜇0 × 𝜇1)(𝐺 ∖ 𝐸) = 0.
Then there exists 𝐺 ∖ 𝐸 ⊂ 𝐹 ∈ 𝒫2 with 𝜌(𝐹) = 0. That means
for 𝜇1-almost every 𝑦 ∈ Ω1 we have 𝜇0(𝐹0,𝑦) = 0. Since 𝐺0,𝑦 is
𝜇0-measurable and 𝜇0 is complete this means that also 𝐸0,𝑦 is 𝜇0-
measurable with

𝜇0(𝐺0,𝑦) = 𝜇0(𝐸0,𝑦)
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and thus

(𝜇0 × 𝜇1)(𝐸) = (𝜇0 × 𝜇1)(𝐺) = ∫ 𝜇0(𝐺0,𝑦) d𝜇1(𝑦)

= ∫ 𝜇0(𝐸0,𝑦) d𝜇1(𝑦),

proving (ii) in case (𝜇0 × 𝜇1)(𝐸) < ∞. If (𝜇0 × 𝜇1)(𝐸) = ∞ then
since 𝜇𝑖 is 𝜎-additive so is 𝜇0 × 𝜇1, which means we can decompose
𝐸 into countably many pieces with finite measure and apply (ii) to
each piece. By monotone convergence this implies (ii) for 𝐸.

Observe, that (iii) is (ii) in the case 𝑓 = 1𝐸. If 𝑓 is nonnegative
we can hence deduce (iii) from (ii), Theorem 1.3.14, linearity of the
integral and the monotone convergence theorem. If 𝑓 is integrable
we can deduce (iii) from 𝑓 = 𝑓+ − 𝑓− and the nonnegative case.

2025-10-16
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Chapter 3

Differentiation and
integration on ℝ

3.1 The Lebesgue differentiation theorem
Let 𝐹 ∶ ℝ → ℝ be differentiable everywhere with continuous deriva-
tive 𝑓 = 𝐹 ′. The fundamental theorem of calculus states that for
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any 𝑎 < 𝑏 we have

𝐹(𝑏) − 𝐹(𝑎) = ∫
[𝑎,𝑏]

𝑓 dℒ.

Conversely, if 𝑓 ∶ ℝ → ℝ is continuous then the map 𝐹 ∶ ℝ → ℝ
given by

𝐹(𝑥) = {∫𝑥
0 𝑓 dℒ 𝑥 ≥ 0,

− ∫0
𝑥 𝑓 dℒ 𝑥 < 0 (3.1.1)

is differentiable with 𝐹 ′ = 𝑓 . The latter is straightforward to prove:
Let 𝑥 ∈ ℝ. Then for any 𝜀 > 0 exists a 𝛿 > 0 such that for all
0 < 𝛾 ≤ 𝛿 we have |𝑓(𝑦) − 𝑓(𝑥)| ≤ 𝜀. As a consequence,

𝐹(𝑥 + ℎ) − 𝐹(𝑥)
ℎ = 1

ℎ ∫
[𝑥,𝑥+ℎ]

𝑓 dℒ ∈ [ inf
𝑦∈[𝑥,𝑥+ℎ]

𝑓(𝑦), sup
𝑦∈[𝑥,𝑥+ℎ]

𝑓(𝑦)]

⊂ [𝑓(𝑥) − 𝜀, 𝑓(𝑥) + 𝜀].
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Hence (𝐹(𝑥 + ℎ) − 𝐹(𝑥))/ℎ → 𝑓(𝑥).
We want to push this. First, we can generalize to higher dime-

nions. For a continuous function 𝑓 ∶ ℝ𝑑 → ℝ, by a similar argument
we have

lim
𝑟→0

1
ℒ(𝐵(𝑥, 𝑟)) ∫

𝐵(𝑥,𝑟)
𝑓 dℒ = 𝑓(𝑥). (3.1.2)

But we are now able to integrate much more general functions than
continuous functions.

Definition 3.1.1. We say that a map 𝑓 ∶ ℝ𝑑 → ℝ is locally 𝐿1-
integrable, or 𝑓 ∈ 𝐿1

loc(ℝ𝑑), if for every ball 𝐵 we have ∫𝐵 𝑓 dℒ <
∞.

That means for 𝑓 ∈ 𝐿1
loc(ℝ) we may define 𝐹 as in (3.1.1). Can

we still recover 𝐹 ′(𝑥) = 𝑓? More generally, is (3.1.2) still true? In
general, no, for example take 𝑓 = −1(−∞,0) + 1[0,∞). Then 𝐹 is not
even differentiable in 0, and the averages of 𝑓 around 0 are all 0 and
do not converge to 𝑓(0) = 1.
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However, we can prove the following:
Theorem 3.1.2 (Lebesgue differentiation theorem). Let 𝑓 ∈ 𝐿1

loc(ℝ𝑑).
Then for ℒ-almost every 𝑥 ∈ ℝ𝑑 we have

lim
𝑟→0

1
ℒ((𝐵(𝑥, 𝑟))) ∫

𝐵(𝑥,𝑟)
𝑓 dℒ = 𝑓(𝑥). (3.1.3)

The proof will take a while. We denote by M the Hardy-
Littlewood maximal operator which maps a function 𝑓 ∈ 𝐿1

loc(ℝ𝑑)
to M𝑓 ∶ ℝ𝑑 → [0, ∞] given by

M𝑓(𝑥) = sup
𝑟>0

1
ℒ(𝐵(𝑥, 𝑟)) ∫

𝐵(𝑥,𝑟)
|𝑓| dℒ.

Theorem 3.1.3 (Hardy-Littlewood maximal function theorem).
Let 𝑓 ∈ 𝐿1(ℝ𝑑, ℒ). Then M𝑓 ∶ ℝ𝑑 → ℝ is measurable and there
exists a 𝐶𝑑 ∈ ℝ such that for every 𝜆 > 0 we have

ℒ({M𝑓 > 𝜆}) ≤ 𝐶𝑑
‖𝑓‖𝐿1(ℝ𝑑,ℒ)

𝜆 .
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Letting 𝜆 → ∞ we in particular obtain that M𝑓 is finite almost
everywhere.
Remark 3.1.4. The conclusion of Theorem 3.1.3 can be written as
the weak bound

‖M𝑓‖𝐿1,∞(ℝ𝑑,ℒ) ≤ 𝐶𝑑‖𝑓‖𝐿1(ℝ𝑑,ℒ).

Moreover, it is straightforward to see, that if 𝑓 ∈ 𝐿∞(ℝ𝑑, ℒ) then
for every 𝑥 ∈ ℝ𝑑 we have M𝑓(𝑥) ≤ ‖𝑓‖𝐿∞(ℝ𝑑,ℒ), which means

‖M𝑓‖𝐿∞(ℝ𝑑,ℒ) ≤ ‖𝑓‖𝐿∞(ℝ𝑑,ℒ).

By the Marcinkiewicz interpolation theorem this implies that
for every 1 < 𝑝 ≤ ∞ exists a 𝐶𝑑,𝑝 ∈ ℝ such that

‖M𝑓‖𝐿𝑝(ℝ𝑑,ℒ) ≤ 𝐶𝑑,𝑝‖𝑓‖𝐿𝑝(ℝ𝑑,ℒ).

For the proof of Theorem 3.1.3 we use the
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Lemma 3.1.5 (Vitali covering lemma). Let ℬ be a finite set of balls
in ℝ𝑑. Then there exists a subset 𝒞 ⊂ ℬ such that the balls in 𝒞 are
disjoint and

⋃ ℬ ⊂ ⋃
𝐵∈𝒞

3𝐵.

Here, 3𝐵 is the ball with the same center as 𝐵 and three times
its radius.

Proof. We inductively find balls 𝐵1, …, 𝐵𝑛 ∈ ℬ as follows: For 𝑘 =
0, 1, … denote by 𝒫𝑘 the set of balls 𝐵 ∈ ℬ which do not intersect
any of the balls 𝐵1, …, 𝐵𝑘. If 𝒫𝑘 is empty, stop. Otherwise take
𝐵𝑘+1 to be a ball in 𝒫𝑘 with maximal radius.

This process will terminate at some number 𝑛 since ℬ is finite
and we set 𝒞 = {𝐵1, …, 𝐵𝑛}. That means 𝒫𝑛 is empty. Note, that
𝒫0 = ℬ. That means for each 𝐵 ∈ ℬ exists a 𝑘 with 𝐵 ∈ 𝒫𝑘 ∖ 𝒫𝑘+1.
That means 𝐵 intersects 𝐵𝑘+1. Since 𝐵𝑘+1 has maximal radius in
𝒫𝑘 it has radius at least as large as 𝐵. This means 𝐵 ⊂ 3𝐵𝑘+1.
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Proof of Theorem 3.1.3. Let 𝑟 > 0 and 𝑥 ∈ ℝ𝑑. Then

lim
𝑦→𝑥

ℒ(𝐵(𝑥, 𝑟)Δ𝐵(𝑦, 𝑟)) = 0.

As a consequence of Proposition 2.1.17 (ii) we can conclude that the
map

𝑥 ↦ ∫
𝐵(𝑥,𝑟)

|𝑓| dℒ

is continuous.
For each 𝑥 ∈ ℝ𝑑 with M𝑓(𝑥) > 𝜆 exists a ball 𝐵𝑥,𝜆 = 𝐵(𝑥, 𝑟)

with 1
ℒ(𝐵(𝑥, 𝑟)) ∫

𝐵(𝑥,𝑟)
|𝑓| dℒ > 𝜆.

By the above continuity that means there exists an 𝜀 > 0 such that
for all 𝑦 ∈ 𝐵(𝑥, 𝜀) we have

1
ℒ(𝐵(𝑦, 𝑟)) ∫

𝐵(𝑦,𝑟)
|𝑓| dℒ > 𝜆.
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This means {M𝑓 > 𝜆} is open and in particular measurable.
Moreover,

{M𝑓 > 𝜆} ⊂ ⋃
𝑥∈ℝ𝑑

𝐵𝑥,𝜆.

Let 𝐾 ⊂ {M𝑓 > 𝜆} be compact. Then 𝐾 has a finite subcover ℬ of
balls from {𝐵𝑥,𝜆 ∶ 𝑥 ∈ ℝ𝑑}. Take 𝒞 from Lemma 3.1.5. Then

ℒ(𝐾) ≤ ℒ(⋃ ℬ) ≤ ℒ( ⋃
𝐵∈𝒞

3𝐵) ≤ ∑
𝐵∈𝒞

ℒ(3𝐵) = 3𝑑 ∑
𝐵∈𝒞

ℒ(𝐵)

< 3𝑑

𝜆 ∑
𝐵∈𝒞

∫
𝐵

|𝑓| dℒ ≤ 3𝑑

𝜆 ‖𝑓‖𝐿1(ℝ𝑑,ℒ).

By an exercise we can take compact sets 𝐾𝑛 ⊂ {M𝑓 > 𝜆} with
ℒ(𝐾𝑛) → ℒ({M𝑓 > 𝜆}), finishing the proof.

Finally, we can prove the Lebesgue differentiation theorem.

137



Proof of Theorem 3.1.2. For 𝜆 > 0 set

𝐸𝜆(𝑓) = {𝑥 ∈ ℝ𝑑 ∶ lim sup
𝑟→0

∣ 1
ℒ(𝐵(𝑥, 𝑟)) ∫

𝐵(𝑥,𝑟)
𝑓 dℒ − 𝑓(𝑥)∣ > 𝜆}.

Then we can write the set of points where (3.1.3) fails as ⋃𝑛 𝐸1/𝑛.
Thus it is enough to show that for every 𝜆 > 0 we have ℒ(𝐸𝜆(𝑓)) =
0. To that end, it suffices to show that for each 𝑛 ∈ ℕ we have
ℒ(𝐸𝜆(𝑓) ∩ 𝐵(0, 𝑛)) = 0. Since 𝐸𝜆(𝑓) ∩ 𝐵(0, 𝑛) = 𝐸𝜆(𝑓1𝐵(0,𝑛+1)) ∩
𝐵(0, 𝑛) and 𝑓1𝐵(0,𝑛+1) ∈ 𝐿1(ℝ𝑑, ℒ) this means it suffices to consider
the case that 𝑓 ∈ 𝐿1(ℝ𝑑, ℒ).

Let 𝜀 > 0. Then by Proposition 2.2.1 (iii) exists a continuous
function 𝑔 with compact support such that ‖𝑓 − 𝑔‖𝐿1(ℝ𝑑,ℒ) < 𝜀. As
noted in (3.1.2), for every 𝑥 ∈ ℝ𝑑 we have

lim
𝑟→0

1
ℒ(𝐵(𝑥, 𝑟)) ∫

𝐵(𝑥,𝑟)
𝑔 dℒ = 𝑔(𝑥).
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Since
1

ℒ(𝐵(𝑥, 𝑟)) ∫
𝐵(𝑥,𝑟)

𝑓 dℒ − 𝑓(𝑥)

= 1
ℒ(𝐵(𝑥, 𝑟)) ∫

𝐵(𝑥,𝑟)
𝑓 − 𝑔 dℒ + 1

ℒ(𝐵(𝑥, 𝑟)) ∫
𝐵(𝑥,𝑟)

𝑔 dℒ − 𝑔(𝑥) + 𝑔(𝑥) − 𝑓(𝑥),

we can conclude, that

lim sup
𝑟→0

∣ 1
ℒ(𝐵(𝑥, 𝑟)) ∫

𝐵(𝑥,𝑟)
𝑓 dℒ − 𝑓(𝑥)∣ ≤ M(𝑓 − 𝑔)(𝑥) + |𝑓(𝑥) − 𝑔(𝑥)|.

That means

𝐸𝜆 ⊂ {M(𝑓 − 𝑔) > 𝜆/2} ∪ {|𝑓 − 𝑔| > 𝜆/2}.
By the Hardy-Littlewood maximal function theorem we have

ℒ({M(𝑓 − 𝑔) > 𝜆/2}) ≤ 2𝐶𝑑
‖𝑓 − 𝑔‖𝐿1(ℝ𝑑,ℒ)

𝜆
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and by Chebyshev’s inequality (see exercise) we have

ℒ(|𝑓 − 𝑔| > 𝜆/2}) ≤ 2
‖𝑓 − 𝑔‖𝐿1(ℝ𝑑,ℒ)

𝜆 .

We can conclude ℒ(𝐸𝜆) ≤ 2(𝐶𝑑 + 1)𝜀. Letting 𝜀 → 0 concludes the
proof.

We can in fact slightly strengthen Theorem 3.1.2.

Definition 3.1.6. We say that 𝑥 ∈ ℝ𝑑 is a Lebesgue point of
𝑓 ∈ 𝐿1(ℝ𝑑, ℒ) if

lim
𝑟→0

1
ℒ(𝐵(𝑥, 𝑟)) ∫

𝐵(𝑥,𝑟)
|𝑓 − 𝑓(𝑥)| dℒ = 0.

Corollary 3.1.7. Let 𝑓 ∈ 𝐿1(ℝ𝑑, ℒ). Then ℒ-almost every 𝑥 ∈ ℝ𝑑

is a Lebesgue point of 𝑓 .
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Proof. For 𝑞 ∈ ℚ denote by 𝐸𝑞 the set of points 𝑥 ∈ ℝ𝑑 for which

lim
𝑟→0

1
ℒ(𝐵(𝑥, 𝑟)) ∫

𝐵(𝑥,𝑟)
|𝑓 − 𝑞| dℒ ≠ |𝑓(𝑥) − 𝑞|

or the limit does not exist or |𝑓(𝑥)| = ∞. By the Lebesgue differ-
entiation theorem ℒ(𝐸𝑞) = 0. That means for 𝐸 = ⋃𝑞∈ℚ 𝐸𝑞 also
ℒ(𝐸) = 0.

Let 𝑥 ∈ ℝ𝑑 ∖ 𝐸 and 𝜀 > 0. Then there exists 𝑞 ∈ ℚ with |𝑓(𝑥) −
𝑞| < 𝜀. We can conclude

lim sup
𝑟→0

1
ℒ(𝐵(𝑥, 𝑟)) ∫

𝐵(𝑥,𝑟)
|𝑓 − 𝑓(𝑥)| dℒ

≤ lim sup
𝑟→0

1
ℒ(𝐵(𝑥, 𝑟)) ∫

𝐵(𝑥,𝑟)
|𝑓 − 𝑞| dℒ + |𝑓(𝑥) − 𝑞|

= 2|𝑓(𝑥) − 𝑞| < 2𝜀.
Letting 𝜀 → 0 we obtain that 𝑥 is a Lebesgue point of 𝑓 .
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Note, that for measurable 𝐸 ⊂ ℝ𝑑 we have 1𝐸 ∈ 𝐿1
loc(ℝ𝑑) and

1
ℒ(𝐵(𝑥, 𝑟)) ∫

𝐵(𝑥,𝑟)
1𝐸 dℒ = ℒ(𝐵(𝑥, 𝑟) ∩ 𝐸)

ℒ(𝐵(𝑥, 𝑟)) .

Corollary 3.1.8. Let 𝐸 ⊂ ℝ𝑑 be Lebesgue measurable. Then for
ℒ-almost every 𝑥 ∈ 𝐸 we have

lim
𝑟→0

ℒ(𝐵(𝑥, 𝑟) ∩ 𝐸)
ℒ(𝐵(𝑥, 𝑟)) = 1

and for ℒ-almost every 𝑥 ∈ ℝ𝑑 ∖ 𝐸 we have

lim
𝑟→0

ℒ(𝐵(𝑥, 𝑟) ∩ 𝐸)
ℒ(𝐵(𝑥, 𝑟)) = 0.

This can be seen as Lebesgue measurable sets being ”clumpy”.
For example they cannot fill exactly half of every ball. Instead, in a
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sense most small enough balls are either almost full of 𝐸 or almost
fully disjoint from 𝐸.

Coming back to our original question in one dimension, we can
conclude that for any 𝑓 ∈ 𝐿1

loc(ℝ), the function 𝐹 ∶ ℝ → ℝ given
as its integral, (3.1.1), is differentiable in ℒ-almost every 𝑥 ∈ ℝ and
𝐹 ′ = 𝑓 . In particular

𝐹(𝑏) − 𝐹(𝑎) = ∫
[𝑎,𝑏]

𝑓 dℒ = ∫
[𝑎,𝑏]

𝐹 ′ dℒ.

That means we have generalized the fundamental theorem of calcu-
lus to functions 𝐹 given as integrals of 𝑓 ∈ 𝐿1

loc(ℝ).
Next, we consider more general functions 𝐹 ∶ ℝ → ℝ.
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3.2 Radon measures
For any measurable 𝑓 ∈ 𝐿1

loc(ℝ𝑑) with 𝑓 ≥ 0 define a map 𝑓ℒ by

(𝑓ℒ)(𝐸) = ∫
𝐸

𝑓 dℒ.

Observe, that 𝑓ℒ is a measure on the 𝜎-algebra of Lebesgue mea-
surable sets and finite on bounded sets. This makes 𝑓ℒ a Radon
measure, with the property that for 𝐹 given by

𝐹(𝑥) = {∫𝑥
0 𝑓 dℒ 𝑥 ≥ 0,

− ∫0
𝑥 𝑓 dℒ 𝑥 < 0 ,

for any interval (𝑎, 𝑏] we have (𝑓ℒ)((𝑎, 𝑏]) = 𝐹(𝑏) − 𝐹(𝑎).
Definition 3.2.1. If 𝜇, 𝜈 are measures on the same 𝜎-algebra ℳ
and for every 𝐸 ∈ ℳ with 𝜈(𝐸) = 0 we have 𝜇(𝐸) = 0, we say that
𝜇 is absolutely continuous with respect to 𝜈 and write 𝜇 ≪ 𝜈.
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For example, the measure 𝑓ℒ is absolutely continuous with re-
spect to ℒ. Not all Radon measures on ℝ are absolutely continuous
with respect to Lebesgue measure. We show next that there is a one
to one correspondence between general Radon measures 𝜇 and gen-
eral increasing maps 𝐹 that do not necessarily arise as an integral
of a function.

Definition 3.2.2. We say that 𝐹 ∶ ℝ → ℝ is upper semicontinu-
ous in 𝑥 if for every 𝜀 > 0 exists a 𝛿 > 0 such that for all 𝑦 ∈ 𝐵(𝑥, 𝛿)
we have 𝑓(𝑦) < 𝑓(𝑥) + 𝜀.

Theorem 3.2.3. Let 𝐹 ∶ ℝ → ℝ be nondecreasing and upper semi-
continuous. Then there exists a unique Radon measure 𝜇 such that
for all 𝑎 ≤ 𝑏 we have 𝜇((𝑎, 𝑏]) = 𝐹(𝑏) − 𝐹(𝑎).

Conversely, if 𝜇 is a Radon measure on ℝ then 𝐹 ∶ ℝ → ℝ given
by

𝐹(𝑥) = {𝜇((0, 𝑥]) 𝑥 ≥ 0
−𝜇((𝑥, 0]) 𝑥 < 0
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is nonedecreasing and upper semicontinuous.

2025-10-23

Proof. We first show the second statement. Given a Radon measure
𝜇, the function 𝐹 is nondecreasing as a consequence of the mono-
tonicity of 𝜇. Let 𝑥 ∈ ℝ and 𝑛 ∈ ℕ. Then 𝐹(𝑥 + 1/𝑛) − 𝐹(𝑥) =
𝜇((𝑥, 𝑥 + 1/𝑛]), which is finite since 𝜇 is a Radon measure. Since
∅ = ⋂𝑛∈ℕ(𝑥, 𝑥 + 1/𝑛] we can conclude from the measure continu-
ity lemma that 𝐹(𝑥 + 1/𝑛) → 𝐹(𝑥). Since 𝐹 is nondecreasing this
proves upper semicontinuity.

For the difficult direction let 𝐹 ∶ ℝ → ℝ be nondecreasing and
upper semicontinuous and define

𝜇(𝐸) = inf{
∞

∑
𝑛=1

𝐹(𝑏𝑛) − 𝐹(𝑎𝑛) ∶
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𝑎𝑛 < 𝑏𝑛, 𝐸 ⊂
∞
⋃
𝑛=1

(𝑎𝑛, 𝑏𝑛]}.

Then 𝜇 is an outer measure on ℝ.

Claim 1. For any 𝑎 ≤ 𝑏 we have 𝜇((𝑎, 𝑏]) = 𝐹(𝑏) − 𝐹(𝑎).
Proof. Since (𝑎, 𝑏] covers (𝑎, 𝑏] follows ”≤”. For the reverse inequality
let 𝜀 > 0. Then there exist 𝑎𝑛 < 𝑏𝑛 such that (𝑎, 𝑏] ⊂ ⋃∞

𝑛=1(𝑎𝑛, 𝑏𝑛]
and ∞

∑
𝑛=1

𝐹(𝑏𝑛) − 𝐹(𝑎𝑛) ≤ 𝜇((𝑎, 𝑏]) + 𝜀.

Then by the upper semicontinuity of 𝐹 exists 𝑎′ > 𝑎 with 𝐹(𝑎′) ≤
𝐹(𝑎) + 𝜀 and for each 𝑛 exists 𝑏′

𝑛 > 𝑏𝑛 such that 𝐹(𝑏′
𝑛) ≤ 𝐹(𝑏𝑛) +

2−𝑛𝜀. Then the compact set [𝑎′, 𝑏] is covered by the union of open in-
tervals ⋃∞

𝑛=1(𝑎𝑛, 𝑏′
𝑛), which hence has a finite subcover ⋃𝑁

𝑛=1(𝑎𝑛, 𝑏′
𝑛).

Inductively remove superfluous intervals, so that each (𝑎𝑛, 𝑏′
𝑛) inter-

sects [𝑎′, 𝑏]∖⋃𝑘∈{1,…,𝑁}∖𝑛(𝑎𝑘, 𝑏′
𝑘). Next, reorder the intervals so that
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𝑎𝑛 ≤ 𝑎𝑛+1. Then for each 𝑛 we must have 𝑏′
𝑛 > 𝑎𝑛+1 for otherwise

there would be a gap [𝑏′
𝑛, 𝑎𝑛+1] ⊂ [𝑎′, 𝑏] that is not covered. More-

over, 𝑎1 < 𝑎′ and 𝑏 < 𝑏′
𝑁 . Since 𝐹 is nondecreasing we can conclude

𝐹(𝑏) − 𝐹(𝑎) − 𝜀 ≤ 𝐹(𝑏) − 𝐹(𝑎′)

= 𝐹(𝑎𝑛) − 𝐹(𝑎′) + (
𝑁−1
∑
𝑛=1

𝐹(𝑎𝑛+1) − 𝐹(𝑎𝑛)) + 𝐹(𝑏) − 𝐹(𝑎𝑁)

≤
𝑁

∑
𝑛=1

𝐹(𝑏′
𝑛) − 𝐹(𝑎𝑛) ≤ 𝜀 +

𝑁
∑
𝑛=1

𝐹(𝑏𝑛) − 𝐹(𝑎𝑛)

≤ 𝜇((𝑎, 𝑏]) + 2𝜀.

Letting 𝜀 → 0 we finish the proof.

Now, let 𝐸, 𝐹 ⊂ ℝ with d(𝐸, 𝐹) > 0. Similarly as for Lebesgue
measure we may restrict the the definition of 𝜇(𝐸 ∪ 𝐹) to intervals
with 𝑏𝑛 −𝑎𝑛 < d(𝐸, 𝐹)/2 in order to show 𝜇(𝐸 ∪𝐹) ≥ 𝜇(𝐸)+𝜇(𝐹),
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which means that 𝜇 is a metric outer measure. By Theorem 1.2.14
this makes 𝜇 a Borel measure. Let 𝐸 ⊂ ℝ. Then there exist se-
quences (𝑎𝑘

𝑛)𝑛,𝑘∈ℕ and (𝑏𝑘
𝑛)𝑛,𝑘∈ℕ such that 𝐸 ⊂ ⋃𝑛∈ℕ(𝑎𝑘

𝑛, 𝑏𝑘
𝑛] and

𝜇(𝐸) = lim
𝑘→∞

∞
∑
𝑛=1

𝐹(𝑏𝑘
𝑛) − 𝐹(𝑎𝑘

𝑛)

= lim
𝑘→∞

∞
∑
𝑛=1

𝜇((𝑎𝑘
𝑛, 𝑏𝑘

𝑛])

≥ lim
𝑘→∞

𝜇(
∞
⋃
𝑛=1

(𝑎𝑘
𝑛, 𝑏𝑘

𝑛])

≥ 𝜇(𝐸).

Therefore,

𝐵 =
∞
⋂
𝑘=1

∞
⋃
𝑛=1

(𝑎𝑘
𝑛, 𝑏𝑘

𝑛] ⊃ 𝐸
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is a Borel set with 𝜇(𝐵) = 𝜇(𝐸). This makes 𝜇 Borel regular. Since
for any −∞ < 𝑎 < 𝑏 < ∞ we have 𝜇((𝑎, 𝑏]) = 𝐹(𝑏) − 𝐹(𝑎) < ∞ the
measure 𝜇 is finite on compact sets, which finally makes 𝜇 a Radon
measure.

To show uniqueness, let 𝜇0, 𝜇1 be Radon measures with 𝜇𝑖((𝑎, 𝑏]) =
𝐹(𝑏) − 𝐹(𝑎). Now any open sets can be decomposed into disjoint
dyadic intervals, which were intervals of the form [2𝑛𝑘, 2𝑛(𝑘 + 1)).
By symmetry we can also decompose into intervals (2𝑛𝑘, 2𝑛(𝑘 + 1)],
and and we can conclude that for each open 𝑈 ⊂ ℝ we have 𝜇0(𝑈) =
𝜇1(𝑈). That means by Proposition 1.2.20 we can conclude that 𝜇0
and 𝜇1 agree on all sets as soon as we show that they have have the
same measurable sets, or rather, more precisely, that they can be
extended to a common 𝜎-algebra of measurable sets.

To that end, define the outer measure

𝜇∗(𝐸) = inf{𝜇0(𝑈) ∶ 𝐸 ⊂ 𝑈 open}.

For each 𝑖, by Proposition 1.2.20 it agrees with 𝜇𝑖 all 𝜇𝑖-measurable
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𝐸. By the same argument as Exercise 4, Question 1 applied to 𝜇𝑖 we
can conclude that all 𝜇𝑖-measuarable sets satisfy the Caratheodory
criterion for 𝜇∗, which means that the 𝜎-algebras of 𝜇𝑖-measurable
sets belongs to the 𝜎-algebra of 𝜇∗-Carathéodory measurable sets.
That means 𝜇∗ restricted to all 𝜇∗-Carathéodory measurable sets is
an extension of 𝜇𝑖. Since this is the case for both 𝑖 = 0, 1, this is the
common extension we wanted.

Corollary 3.2.4. Let 𝑓 ∈ 𝐿1
loc(ℝ) with 𝑓 ≥ 0 be measurable and

𝐹(𝑥) = {∫𝑥
0 𝑓 dℒ 𝑥 ≥ 0,

− ∫0
𝑥 𝑓 dℒ 𝑥 < 0.

Then 𝜇 from Theorem 3.2.3 is also given by

𝜇(𝐸) = ∫
𝐸

𝑓 dℒ.
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Proof. We already discussed that the map

𝐸 ↦ ∫
𝐸

𝑓 dℒ

is a Radon measure. That means by the uniqueness assertion from
Theorem 3.2.3 it equals 𝜇.

Definition 3.2.5. We say that a map 𝐹 ∶ ℝ → ℝ is absolutely
continuous if for any 𝑎 < 𝑏 and any 𝜀 > 0 exists a 𝛿 > 0 such that
for any 𝑎 ≤ 𝑎1… < 𝑎2𝑛 ≤ 𝑏 with

𝑛
∑
𝑘=1

𝑎2𝑘 − 𝑎2𝑘−1 < 𝛿

we have 𝑛
∑
𝑘=1

𝐹(𝑎2𝑘) − 𝐹(𝑎2𝑘−1) < 𝜀.
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Lemma 3.2.6. A Radon measure 𝜇 on ℝ is absolutely continuous
with respect to Lebesgue measure if and only if the map 𝐹 ∶ ℝ → ℝ
given by

𝐹(𝑥) = {𝜇((0, 𝑥]) 𝑥 ≥ 0
−𝜇((𝑥, 0]) 𝑥 < 0

is absolutely continuous.

Proof. Exercise.

Compare this with Proposition 2.1.17 (ii).
Remark 3.2.7. If 𝐹 ∶ ℝ → ℝ is absolutely continuous, then its deriva-
tive exists almost everywhere and

𝐹(𝑏) − 𝐹(𝑎) = ∫
𝑏

𝑎
𝐹 ′ dℒ.

We do not prove this. By Theorem 3.2.3 we can conclude that any
Radon measure 𝜇 on ℝ that is absolutely continuous with respect to

153



Lebesgue measure can be written as

𝜇(𝐸) = ∫
𝐸

𝑓 dℒ

for some 𝑓 ∈ 𝐿1
loc(ℝ𝑑).

In fact this is true in much generality.
Remark 3.2.8. For Radon measures 𝜇, 𝜈 we have 𝜇 ≪ 𝜈 if and only
if there exists 𝑓 ∈ 𝐿1

loc(𝜈) with 𝜇 = 𝑓𝜈. The map 𝑓 is called the
Radon-Nikodym derivative of 𝜇 with respect to 𝜈.

3.3 The Cantor set
For example, we know that the counting measure ℋ0 on ℝ, restricted
to ℕ ⊂ ℝ is a Radon measure. It arises from the function

𝐹 = ∑
𝑛∈ℕ

1[𝑛,∞) − ∑
𝑛∈ℕ

1(−∞,𝑛).
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This function has jumps, so it is very far from being absolutely
continuous, and the counting measure is very far from Lebesgue
measure because it is concentrated on single points. Next, we define
the Cantor function, which gives rise to a measure ”in between”
these two extremes.

Inductively define 𝐶0 = [0, 1] and 𝐶𝑛+1 = 1
3 (𝐶𝑛 ∪ (𝐶𝑛 + 2)). It

follows that 𝐶𝑛+1 ⊂ 𝐶𝑛. The set

𝐶 =
∞
⋂
𝑛=0

𝐶𝑛

is called the Cantor set. It is a subset of [0, 1]. Being an in-
tersection of closed sets, it is closed itself, in particular Lebesgue
measurable. Note, that ℒ(𝐶𝑛+1) = 2

3 ℒ(𝐶𝑛), and by the measure
continuity lemma it follows that ℒ(𝐶) = 0.

Another way to write 𝐶 is in terms of the ternary expansion of
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numbers. Precisely,

𝐶 = {
∞

∑
𝑘=1

𝑎𝑘3−𝑘 ∶ 𝑎1, 𝑎2, … ∈ {0, 2}}. (3.3.1)

We prove by induction that for each 𝑛 the set 𝐶𝑛 is the set of all
real numbers that have ternary expansions with 𝑎1, …, 𝑎𝑛 ∈ {0, 2}.
For 𝑛 = 0 this is immediate. Assume this is true for 𝐶𝑛. Then

𝐶𝑛+1 = 1
3𝐶𝑛 ∪ 1

3(𝐶𝑛 + 2)

= {
∞

∑
𝑘=1

𝑎𝑘3−𝑘 ∶ 𝑎1 = 0, 𝑎2, …, 𝑎𝑛+1 ∈ {0, 2}}

∪ {
∞

∑
𝑘=1

𝑎𝑘3−𝑘 ∶ 𝑎1 = 2, 𝑎2, …, 𝑎𝑛+1 ∈ {0, 2}}

= {
∞

∑
𝑘=1

𝑎𝑘3−𝑘 ∶ 𝑎1, …, 𝑎𝑛+1 ∈ {0, 2}}.
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Now (3.3.1) follows from 𝐶 = ⋂∞
𝑛=1 𝐶𝑛.

Note, that in this context we do allow expansions that for some
𝑁 have 𝑎𝑛 = 2 for all 𝑛 ≥ 𝑁 . That means 𝐶 contains also all
numbers of the form

𝑛
∑
𝑘=1

𝑎𝑘3−𝑘 +
∞

∑
𝑘=𝑛+1

2 ⋅ 3−𝑘 =
𝑛

∑
𝑘=1

𝑎𝑘3−𝑘 + 3−𝑛−1,

with 𝑎𝑘 ∈ {0, 2}, i.e. those who have finite a ternary expansion that
ends in 1, and with all other digits in {0, 2}.

Similarly, for 𝑈0 = ∅, 𝑈1 = (1/3, 2/3) and 𝑈𝑛+1 = 1
3 (𝑈𝑛 ∪ (𝑈𝑛 +

2)) we have 𝑈𝑛 = [0, 1] ∖ 𝐶𝑛 and

𝐶 = [0, 1] ∖
∞
⋃
𝑛=1

𝑈𝑛

and
𝑈𝑛 = ⋃

𝑎1,…,𝑎𝑛−1∈{0,2},𝑎𝑛=1
(0, 3−𝑛) +

𝑛
∑
𝑘=1

𝑎𝑘3−𝑘.
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Now, 𝐶 is very disconnected in the sense that for any 𝑎, 𝑏 ∈ 𝐶
with 𝑎 < 𝑏, there is an interval 𝐼 of length a constant times 𝑏−𝑎 that
sits between 𝑎 and 𝑏 and belongs to the complement of 𝐶: Let (𝑎𝑛)𝑛
and (𝑏𝑛)𝑛 be their ternary expansion that witness 𝑎, 𝑏 ∈ 𝐶. Let 𝑛
be the least digit in which they differ. Then 𝑎𝑛 = 0 and 𝑏𝑛 = 2.
That means the interval

(0, 3−𝑛) +
𝑛−1
∑
𝑘=1

𝑎𝑘3−𝑘 + 3−𝑛

sits between 𝑎 and 𝑏 and belongs to 𝑈𝑛 ⊂ [0, 1] ∖ 𝐶.
Moreover, 𝐶 does not contain any isolated point either, since for

every 𝑥 ∈ 𝐶 and 𝜀 > 0 exists a 𝑦 ∈ 𝐶 with |𝑥 − 𝑦| < 𝜀.
We define the Cantor function 𝐹 ∶ 𝐶 → [0, 1] by

𝐹(
∞

∑
𝑛=1

𝑎𝑛3−𝑛) =
∞

∑
𝑛=1

𝑎𝑛
2 2−𝑛.
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This map is well defined since the ternary expansion of a number
that witnesses membership to the Cantor set is unique. Since it maps
to any possible binary expansion of numbers in [0, 1] it is surjective.
This shows that 𝐶 is uncountable. The Cantor function is also
nondecreasing and continuous. Moreover, let (𝑎, 𝑏) be one of the
open intervals in 𝑈𝑛, i.e. there are 𝑎1, …, 𝑎𝑛−1 ∈ {0, 2} such that

𝑎 =
𝑛−1
∑
𝑘=1

𝑎𝑘3−𝑘 + 3−𝑛 =
𝑛−1
∑
𝑘=1

𝑎𝑘3−𝑘 +
∞

∑
𝑘=𝑛+1

2 ⋅ 3−𝑘

𝑏 =
𝑛−1
∑
𝑘=1

𝑎𝑘3−𝑘 + 2 ⋅ 3−𝑛.

Then 𝐹(𝑎) = 𝐹(𝑏). That means we can extend 𝐹 to a continuous,
nondecreasing map 𝐹 ∶ [0, 1] by setting 𝐹(𝑥) = 𝐹(𝑎) for all 𝑎 < 𝑥 <
𝑏. We further extend it to ℝ by setting 𝐹(𝑥) = 𝐹(0) = 0 for 𝑥 < 0
and 𝐹(𝑥) = 𝐹(1) = 1 for 𝑥 > 1.

By Theorem 3.2.3 𝐹 gives rise to a measure 𝜇𝐶 .
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Lemma 3.3.1. The measure 𝜇𝐶 has the following properties:

(i) 𝜇(𝐶) = 1.

(ii) 𝜇(ℝ ∖ 𝐶) = 0.

(iii) For every 𝑥 ∈ ℝ we have 𝜇({𝑥}) = 0.

That means 𝜇𝐶 is supported on a set with zero Lebesgue mea-
sure, but, unlike the counting measure, does not assign positive mea-
sure to any single point.

Proof. By the measure continuity lemma and the continuity of 𝐹 we
have

𝜇({𝑥}) = lim
𝑛→∞

𝜇((𝑥 − 1/𝑛, 𝑥]) = 𝐹(𝑥) − 𝐹(𝑥 − 1/𝑛) = 0.

Moreover,

𝜇(ℝ) = lim
𝑛→∞

𝐹(𝑛) − 𝐹(−𝑛) = 𝐹(1) − 𝐹(0) = 1.
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Similarly, we have 𝐹([1, ∞)) = 𝐹((−∞, 0]) = 0. In order to finish
the proof it remains to show 𝐹([0, 1] ∖ 𝐶) = 0. Since [0, 1] ∖ 𝐶 =
⋃∞

𝑛=1 𝑈𝑛 it suffices to show that for every 𝑛 we have 𝜇𝐶(𝑈𝑛) = 0.
By the way 𝐹 was extended from 𝐶 to [0, 1] we have

𝜇𝐶(𝑈𝑛) = ∑
𝑎1,…,𝑎𝑛−1∈{0,2},𝑎𝑛=1

𝜇𝐶((0, 3−𝑛) +
𝑛

∑
𝑘=1

𝑎𝑘3−𝑘)

≤ ∑
𝑎1,…,𝑎𝑛−1∈{0,2},𝑎𝑛=1

𝐹(3−𝑛 +
𝑛

∑
𝑘=1

𝑎𝑘3−𝑘) − 𝐹(
𝑛

∑
𝑘=1

𝑎𝑘3−𝑘)

= 0.
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3.4 Functions of bounded variation
For 𝜇 from Theorem 3.2.3 to be a measure we need 𝐹 to be nonde-
creasing. What if we relax this condition? We can still assign the
value 𝐹(𝑏) − 𝐹(𝑎) to any interval (𝑎, 𝑏], but can we extend this map
to all Lebesgue measurable sets?

Definition 3.4.1. Let 𝑎 < 𝑏 and 𝐹 ∶ [𝑎, 𝑏] → ℝ. We define

var
[𝑎,𝑏]

(𝐹) = sup{
𝑛

∑
𝑘=1

|𝐹 (𝑎𝑘)−𝐹(𝑎𝑘−1)| ∶ 𝑛 ∈ ℕ, 𝑎𝑘 ∈ [𝑎, 𝑏], 𝑎0 ≤ … ≤ 𝑎𝑛}.

We say that 𝐹 is of bounded variation if var[𝑎,𝑏](𝐹) < ∞.

For example, if 𝐹 is monotone and bounded by 𝑀 ≥ 0 then
𝑛

∑
𝑘=1

|𝐹 (𝑎𝑘)−𝐹(𝑎𝑘−1)| = ∣
𝑛

∑
𝑘=1

𝐹(𝑎𝑘)−𝐹(𝑎𝑘−1)∣ = |𝐹(𝑎𝑛)−𝐹(𝑎0)| ≤ 2𝑀,
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so var[𝑎,𝑏](𝐹) ≤ 2𝑀 . Similarly, if 𝐹 is nondecreasing and 𝐺 is non-
increasing and bounded by 𝑀 then

𝑛
∑
𝑘=1

|(𝐹+𝐺)(𝑎𝑘)−(𝐹+𝐺)(𝑎𝑘−1)| ≤
𝑛

∑
𝑘=1

|𝐹 (𝑎𝑘)−𝐹(𝑎𝑘−1)|+
𝑛

∑
𝑘=1

|𝐺(𝑎𝑘)−𝐺(𝑎𝑘−1)| ≤ 4𝑀.

In fact, also the reverse is true: Any function with bounded variation
is the sum of two monotone and bounded functions. To construct
those functions, for an interval 𝐼 ⊂ [𝑎, 𝑏] we define

+var
𝐼

(𝐹) = sup{
𝑛

∑
𝑘=1

max{0, 𝐹(𝑎𝑘) − 𝐹(𝑎𝑘−1)} ∶ 𝑛 ∈ ℕ, 𝑎𝑘 ∈ 𝐼, 𝑎1 ≤ … ≤ 𝑎𝑛},

−var
𝐼

(𝐹) = sup{
𝑛

∑
𝑘=1

max{0, 𝐹(𝑎𝑘−1) − 𝐹(𝑎𝑘)} ∶ 𝑛 ∈ ℕ, 𝑎𝑘 ∈ 𝐼, 𝑎1 ≤ … ≤ 𝑎𝑛}.

Lemma 3.4.2. Let 𝐹 ∶ [𝑎, 𝑏] → ℝ have bounded variation. Then
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for every 𝑥 ∈ [𝑎, 𝑏] we have

𝐹(𝑥) − 𝐹(𝑎) = +var
[𝑎,𝑥]

(𝐹) − −var
[𝑎,𝑥]

(𝐹)

and
var
[𝑎,𝑏]

(𝐹) = +var
[𝑎,𝑏]

(𝐹) + −var
[𝑎,𝑏]

(𝐹).

Proof. Note, that var+
[𝑎,𝑥](𝐹), var−

[𝑎,𝑥](𝐹) ≤ var[𝑎,𝑥](𝐹) < ∞. Let
𝜀 > 0. Then there exist 𝑎0 < … < 𝑎𝑛 such that

+var
[𝑎,𝑥]

(𝐹) −
𝑛

∑
𝑘=1

max{0, 𝐹(𝑎𝑘) − 𝐹(𝑎𝑘−1)} ≤ 𝜀.

Since the sum only increases if we refine the partition, i.e. add more
points to {𝑎0, …, 𝑎𝑛}, we may take it such that 𝑎0 = 𝑎, 𝑎𝑛 = 𝑥 and
also

−var
[𝑎,𝑥]

(𝐹) −
𝑛

∑
𝑘=1

max{0, 𝐹(𝑎𝑘−1) − 𝐹(𝑎𝑘)} ≤ 𝜀.
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Then

𝐹(𝑥) − 𝐹(𝑎) =
𝑛

∑
𝑘=1

𝐹(𝑎𝑘) − 𝐹(𝑎𝑘−1)

=
𝑛

∑
𝑘=1

max{0, 𝐹(𝑎𝑘) − 𝐹(𝑎𝑘−1)}

−
𝑛

∑
𝑘=1

max{0, 𝐹(𝑎𝑘−1) − 𝐹(𝑎𝑘)}

and thus
|𝐹 (𝑥) − 𝐹(𝑎) − +var

[𝑎,𝑥]
(𝐹) + −var

[𝑎,𝑥]
(𝐹)| < 2𝜀.

Letting 𝜀 → 0 finishes the proof of the first claim.
The second one is a consequence of

𝑛
∑
𝑘=1

|𝐹 (𝑎𝑘) − 𝐹(𝑎𝑘−1)| =
𝑛

∑
𝑘=1

max{0, 𝐹(𝑎𝑘) − 𝐹(𝑎𝑘−1)}
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+
𝑛

∑
𝑘=1

max{0, 𝐹(𝑎𝑘−1) − 𝐹(𝑎𝑘)}.
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Chapter 4

Further topics

4.1 Signed measures
Definition 4.1.1. Let Ω be a set and ℳ ⊂ 2Ω be a 𝜎-algebra. A
set function 𝜇 ∶ ℳ → (−∞, ∞] is called a signed measure if for
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disjoint 𝐸1, 𝐸2, … ∈ ℳ we have

𝜇(
∞
⋃
𝑛=1

𝐸𝑛) =
∞

∑
𝑛=1

𝜇(𝐸𝑛).

Remark 4.1.2. Assume we had a signed measure with 𝜇(𝐴) = −∞
and 𝜇(𝐵) = ∞. Then by additivity 𝜇(𝐵 ∖𝐴) = ∞ or 𝜇(𝐵 ∩𝐴) = ∞,
and 𝜇(𝐴 ∖ 𝐵) = −∞ or 𝜇(𝐴 ∩ 𝐵) = −∞. In either case there exist
two disjoint sets 𝐶, 𝐷 with 𝜇(𝐶) = ∞ and 𝜇(𝐷) = −∞. But then
𝜇(𝐶 ∪ 𝐷) = 𝜇(𝐶) + 𝜇(𝐷) fails.

Of course we could also define signed measures to assume values
in [−∞, ∞) instead.
Remark 4.1.3. The additivity for signed measures requires that the
sum on the right hand side does not depend on the order of summa-
tion.

Example 4.1.4. (i) If 𝜇0 and 𝜇1 are measures on Ω with the

169



same 𝜎-algebra and 𝜇1(Ω) < ∞ then 𝜇0 − 𝜇1 is a signed mea-
sure.

(ii) If 𝑓 ∈ 𝐿1(Ω, 𝜇) then 𝐸 ↦ ∫𝐸 𝑓 d𝜇 is a signed measure.

(iii) And 𝐹 ∶ ℝ → ℝ which is continuous from the right, i.e.

lim
𝑦→𝑥,𝑦>𝑥

𝐹(𝑦) = 𝐹(𝑥)

and has bounded variation generates a signed measure 𝜇 with

𝐹(𝑏) − 𝐹(𝑎) = 𝜇((𝑎, 𝑏])
as follows: All of the maps 𝑥 ↦ var[𝑎,𝑥](𝐹), 𝑥 ↦ var+

[𝑎,𝑥](𝐹)
and 𝑥 ↦ var−

[𝑎,𝑥](𝐹) are continuous from the right. Since they
are also nondecreasing that makes them upper semicontinuous.
That means by Theorem 3.2.3 they give rise to measures which
we denote by |𝜇|, 𝜇+ and 𝜇−, and by Lemma 3.4.2 we have
|𝜇| = 𝜇+ + 𝜇−. The map 𝜇 = 𝜇+ − 𝜇− gives a signed measure
with and |𝜇(𝐸)| ≤ |𝜇|(𝐸).
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Remark 4.1.5. If 𝜇 is given as 𝑓ℒ for some 𝑓 ∈ 𝐿1
loc(ℝ) we say

that 𝑓 is the weak derivative of 𝐹 . We call the space of functions
𝐹 ∈ 𝐿𝑝(ℝ, ℒ) whose weak derivative also belongs to 𝐿𝑝(ℝ, ℒ) the
Sobolev space 𝑊 1,𝑝(ℝ). That means the space of functions with
bounded variation can be seen as an extension of 𝑊 1,1(ℝ) to those
functions whose derivative is a finite signed Radon measure. All
those spaces can also defined on ℝ𝑑.

Next, we show the converse of Example 4.1.4 (i), i.e. that any
signed measure is the difference of two measures.

2025-10-30

Definition 4.1.6. Let 𝜇 be a signed measure. We define the total
variation measure |𝜇| of 𝜇 by

|𝜇|(𝐸) = sup{
∞

∑
𝑛=1

|𝜇(𝐸𝑛)| ∶ 𝐸1, 𝐸2, … are disjoint with 𝐸 = 𝐸1∪𝐸2∪…}.
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Proposition 4.1.7. The total variation measure |𝜇| of a signed
measure 𝜇 is in fact a measure with |𝜇(𝐸)| ≤ |𝜇|(𝐸).

Moreover, |𝜇| is the smallest such measure.

Proof. First, we show the minimality of |𝜇|. For any 𝐸 and disjoint
𝐸1, 𝐸2, … with 𝐸 = 𝐸1 ∪ 𝐸2 ∪ … and any measure 𝜈 with 𝜈(𝐸𝑛) ≥
|𝜇(𝐸𝑛)| we have

𝜈(𝐸) =
∞

∑
𝑛=1

𝜈(𝐸𝑛) ≥=
∞

∑
𝑛=1

|𝜇(𝐸𝑛)|.

This shows |𝜇| ≤ 𝜈.
In order to prove the countable additivity of |𝜇| let 𝐸1, 𝐸2, … ∈

ℳ be disjoint. Let 𝜀 > 0. Then for each 𝑛 exist a partition 𝐸1
𝑛, 𝐸2

𝑛, …
of 𝐸𝑛 with

|𝜇|(𝐸𝑛) − 2−𝑛𝜀 ≤
∞

∑
𝑘=1

|𝜇(𝐸𝑘
𝑛)|.
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Thus,
∞

∑
𝑛=1

|𝜇|(𝐸𝑛) ≤
∞

∑
𝑛=1

∞
∑
𝑘=1

|𝜇(𝐸𝑘
𝑛)| − 𝜀

≤ |𝜇|(
∞
⋃
𝑛=1

𝐸𝑛) − 𝜀.

Now we let 𝜀 → 0.
For the reverse inequality let 𝐹1, 𝐹2, … be a partition of 𝐸𝑛. Then

for each 𝑛 the sets {𝐹𝑘 ∩𝐸𝑛 ∶ 𝑘 ∈ ℕ} are a partition of of 𝐸𝑛 and for
each 𝑘 the sets {𝐹𝑘 ∩ 𝐸𝑛 ∶ 𝑛 ∈ ℕ} are a partition of 𝐹𝑘. Therefore,

∞
∑
𝑘=1

|𝜇(𝐹𝑘)| ≤
∞

∑
𝑘=1

∞
∑
𝑛=1

|𝜇(𝐹𝑘 ∩ 𝐸𝑛)|

=
∞

∑
𝑛=1

∞
∑
𝑘=1

|𝜇(𝐹𝑘 ∩ 𝐸𝑛)|
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≤
∞

∑
𝑛=1

|𝜇|(𝐸𝑛).

Now, we can define the positive and negative parts 𝜇+ and
𝜇− of a sigend measure 𝜇 by

𝜇+ = 1
2(|𝜇| + 𝜇), 𝜇− = 1

2(|𝜇| − 𝜇).

Note, that 𝜇+ and 𝜇− are measures with 𝜇 = 𝜇+ − 𝜇−. Since |𝜇| is
the smallest measure with |𝜇|(𝐸) ≥ |𝜇(𝐸)| we can conclude that 𝜇±

are the smallest measures with 𝜇 = 𝜇+ − 𝜇−.
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4.2 Convolution and approximation of the
identity

Definition 4.2.1. Let 𝑓, 𝑔 ∶ ℝ𝑑 → [−∞, ∞] be measurable. We
define their convolution by

(𝑓 ∗ 𝑔)(𝑥) = ∫
ℝ𝑑

𝑓(𝑥 − 𝑦)𝑔(𝑦) dℒ(𝑦),

for those 𝑥 for which the integrand is integrable.

There are different ways to ensure the convolution is defined
almost everywhere. One way is assuming 𝑓 ∈ 𝐿1

loc(ℝ𝑑) and 𝑔 ∈
𝐿∞

c (ℝ𝑑), as in the following situation.

Proposition 4.2.2. Let 𝑓 ∈ 𝐿1
loc(ℝ𝑑) and 𝑔 ∈ 𝐶𝑘

c (ℝ𝑑). Then 𝑓 ∗𝑔 ∈
𝐶𝑘(ℝ𝑑).
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Proof. Let 𝑥, 𝜈 ∈ ℝ𝑑, |𝜈| = 1 and ℎ > 0. Then

(𝑓 ∗ 𝑔)(𝑥 + ℎ𝜈) − (𝑓 ∗ 𝑔)(𝑥)
ℎ = 1

ℎ(∫
ℝ𝑑

𝑓(𝑥 − 𝑦)𝑔(𝑦) dℒ(𝑦) − ∫
ℝ𝑑

𝑓(𝑥 − 𝑦)𝑔(𝑦 + ℎ𝜈) dℒ(𝑦))

= ∫
ℝ𝑑

𝑓(𝑥 − 𝑦)𝑔(𝑦) − 𝑔(𝑦 + ℎ𝜈)
ℎ dℒ(𝑦)

→ (𝑓 ∗ 𝜕𝜈𝑔)(𝑥)

by dominated convergence, as ‖𝜕𝜈𝑔‖∞ < ∞, 𝑔 has compact support
and 𝑓 ∈ 𝐿1

loc.

Theorem 4.2.3. Let 1 ≤ 𝑝, 𝑞, 𝑟 ≤ ∞ such that 1 + 1
𝑟 = 1

𝑝 + 1
𝑞 . If

𝑓 ∈ 𝐿𝑝(ℝ𝑑) and 𝑔 ∈ 𝐿𝑞(ℝ𝑑) then 𝑓 ∗ 𝑔 ∈ 𝐿𝑟(ℝ𝑑) with

‖𝑓 ∗ 𝑔‖𝐿𝑟(ℝ𝑑) ≤ ‖𝑓‖𝐿𝑝(ℝ𝑑)‖𝑔‖𝐿𝑞(ℝ𝑑).

Proof. It suffices to consider the case that 𝑓, 𝑔 are nonnegative.
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Write

(𝑓∗𝑔)(𝑥) = ∫[𝑓(𝑥−𝑦)𝑝/𝑟𝑔(𝑦)𝑞/𝑟]𝑓(𝑥−𝑦)𝑝(1/𝑝−1/𝑟)𝑔(𝑦)𝑞(1/𝑞−1/𝑟) dℒ(𝑦).

By Hölder’s inequality with 𝑟, 1/𝑝1 = 1/𝑝−1/𝑟 and 1/𝑝2 = 1/𝑞−1/𝑟
applied to these three factors we obtain

(𝑓 ∗ 𝑔)(𝑥) ≤ (∫ 𝑓(𝑥 − 𝑦)𝑝𝑔(𝑦)𝑞 dℒ(𝑦))
1/𝑟

‖𝑓‖𝑝1/𝑝
𝑝 ‖𝑔‖𝑝2/𝑞

𝑞 ,

and thus

‖𝑓 ∗ 𝑔‖𝐿𝑟(ℝ𝑑) ≤ (∫ 𝑓(𝑥 − 𝑦)𝑝𝑔(𝑦)𝑞 dℒ(𝑦) dℒ(𝑥))
1/𝑟

‖𝑓‖𝑝1/𝑝
𝑝 ‖𝑔‖𝑝2/𝑞

𝑞

= ‖𝑓‖𝑝1/𝑝+𝑝/𝑟
𝑝 ‖𝑔‖𝑝2/𝑞+𝑞/𝑟

𝑞 = ‖𝑓‖𝑝‖𝑔‖𝑞.
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Let 𝑔 ∶ ℝ𝑑 → [−∞, ∞] be integrable with ∫ 𝑔ℒ = 1. For 𝑟 > 0
define

𝑔𝑟(𝑥) = 𝑔(𝑥/𝑟)
𝑟𝑑 .

Then ∫ 𝑔𝑟ℒ = ∫ 𝑔ℒ = 1.
Theorem 4.2.4. Let 𝑓 ∈ 𝐿1

loc and 𝑔 ∈ 𝐿∞
c with ∫ 𝑔ℒ = 1. Then

for every Lebesgue point 𝑥 of 𝑓 we have

lim
𝑟→0

(𝑓 ∗ 𝑔𝑟)(𝑥) = 𝑓(𝑥).

Proof. Let 𝑥 be a Lebesgue point. Then

|𝑓(𝑥) − (𝑓 ∗ 𝑔𝑟)(𝑥)| = ∣∫ 𝑓(𝑥)𝑔𝑟(𝑦) − 𝑓(𝑥 − 𝑦)𝑔𝑟(𝑦) dℒ(𝑦)∣

≤ ∫ |𝑓(𝑥) − 𝑓(𝑥 − 𝑦)||𝑔𝑟(𝑦)| dℒ(𝑦)

≤ ‖𝑔‖∞
𝑟𝑑 ∫

𝑟spt(𝑔)
|𝑓(𝑥) − 𝑓(𝑥 − 𝑦)| dℒ(𝑦)
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≤ ‖𝑔‖∞
𝑟𝑑 ∫

𝐵(0,𝐶𝑟)
|𝑓(𝑥) − 𝑓(𝑥 − 𝑦)| dℒ(𝑦) → 0

as 𝑟 → 0.

Theorem 4.2.4 has more general variants, without the assumption
that 𝑔 is compactly supported or uniformly bounded. However, often
also the integrability assumption on 𝑓 has to be strengthened.

Note, that taking 𝑔 ∈ 𝐶∞
c , Theorem 4.2.4 combined with Propo-

sition 4.2.2 gives an explicit pointwise approximation of any locally
integrable function by smooth functions. We have not shown that a
function 𝑔 ∈ 𝐶∞

c exists, but it does.
Under slightly different assumptions we also achieve approxima-

tion in 𝐿𝑝.

Theorem 4.2.5. Let 1 ≤ 𝑝 < ∞, 𝑓 ∈ 𝐿𝑝(ℝ𝑑) and 𝑔 ∈ 𝐿1(ℝ𝑑) with
∫ 𝑔 dℒ = 1. Then

lim
𝑟→0

‖𝑓 − 𝑓 ∗ 𝑔𝑟‖𝐿𝑝(ℝ𝑑) = 0.
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Since 𝐿𝑝 ⊂ 𝐿1
loc this means we can also approximate 𝑓 by smooth

functions in 𝐿𝑝.
For the proof we will use Minkowski’s integral inequality.

Theorem 4.2.6 (Minkowski’s integral inequality). For 𝑖 = 0, 1 let
(Ω𝑖, 𝜇𝑖) be 𝜎-finite measure spaces and let 𝐹 ∶ Ω0 × Ω1 → [−∞, ∞]
be measurable. Then for every 1 ≤ 𝑝 ≤ ∞ we have

[∫(∫ 𝐹(𝑥, 𝑦) d𝜇0(𝑥))
𝑝

d𝜇1(𝑦)]
1
𝑝 ≤ ∫(∫ 𝐹(𝑥, 𝑦)𝑝 d𝜇1(𝑦))

1
𝑝

d𝜇0(𝑥).

This may look complicated, but in fact it is barely more general
than the triangle inequality on 𝐿𝑝. For example, take Ω0 = {1, …, 𝑛}
and 𝜇0 the counting measure on Ω0. Then writing 𝑘 instead of 𝑥
and 𝑓𝑛(𝑦) = 𝐹(𝑛, 𝑦), Minkowski’s integral inequality becomes

∥
𝑛

∑
𝑘=1

𝑓𝑘∥
𝐿𝑝(Ω1,𝜇1)

≤
𝑛

∑
𝑘=1

‖𝑓𝑘‖𝐿𝑝(Ω1,𝜇1).
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We also need the following.

Proposition 4.2.7. Let 1 ≤ 𝑝 < ∞ and 𝑓 ∈ 𝐿𝑝(ℝ𝑑). Then

lim
𝑥→0

‖𝑓(⋅ − 𝑥) − 𝑓‖𝐿𝑝 = 0.

Proof. Let 𝜀 > 0. Then by Proposition 2.2.1 (ii) there exists a
step function 𝜑 = ∑𝑛

𝑘=1 𝑎𝑘1𝑄𝑘
with ‖𝑓 − 𝜑‖𝐿𝑝 < 𝜀. Thus, also

‖𝑓(⋅ − 𝑥) − 𝜑(⋅ − 𝑥)‖𝐿𝑝 < ∞. Moreover, for each 𝑘 we have ‖1𝑄𝑘
(⋅ −

𝑥) − 1𝑄𝑘
‖𝑝 = ℒ((𝑄𝑘 − 𝑥)Δ𝑄𝑘) 1

𝑝 → 0 as 𝑥 → 0. We can conclude

‖𝑓(⋅ − 𝑥) − 𝑓‖𝐿𝑝 ≤ ‖𝑓(⋅ − 𝑥) − 𝜑(⋅ − 𝑥)‖𝐿𝑝 + ‖𝜑(⋅ − 𝑥) − 𝜑‖𝐿𝑝 + ‖𝑓 − 𝜑‖𝐿𝑝

≤ 2𝜀 +
𝑛

∑
𝑘=1

𝑎𝑘‖1𝑄𝑘
(⋅ − 𝑥) − 1𝑄𝑘

‖𝑝 ≤ 3𝜀

for all 𝑥 small enough.
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Proof of Theorem 4.2.5. By a change of variables, 𝑟𝑧 = 𝑦 we have

(𝑓 ∗ 𝑔𝑟)(𝑥) − 𝑓(𝑥) = ∫(𝑓(𝑥 − 𝑦) − 𝑓(𝑥))𝑔𝑟(𝑦) dℒ(𝑦)

= ∫(𝑓(𝑥 − 𝑟𝑧) − 𝑓(𝑥))𝑔(𝑧) dℒ(𝑧).

By Minkowski’s integral inequality, we obtain

‖𝑓 ∗ 𝑔𝑟 − 𝑓‖𝑝 ≤ ∫ ‖𝑓(⋅ − 𝑟𝑧) − 𝑓‖𝑝|𝑔(𝑧)| dℒ(𝑧).

Now, ‖𝑓(⋅ − 𝑟𝑧) − 𝑓‖𝑝 ≤ 2‖𝑓‖𝑝, and by Proposition 4.2.7, for every
𝑧 ∈ ℝ𝑑 we have ‖𝑓(⋅−𝑟𝑧)−𝑓‖𝑝 ≤→ 0 as 𝑟 → 0. Thus, by dominated
convergence we can conclude ‖𝑓 ∗ 𝑔𝑟 − 𝑓‖𝑝 → 0.
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