Exercise 8 Due: Thursday, 2025-11-06

1/2

Total:

1. Prove Lemma 3.2.6: Show, that a Radon measure μ on \mathbb{R} is absolutely continuous with respect to Lebesgue measure if and only if the map $F: \mathbb{R} \to \mathbb{R}$ given by

$$F(x) = \begin{cases} \mu((0,x]) & x \ge 0 \\ -\mu((x,0]) & x < 0 \end{cases}$$

is an absolutely continuous map.

2. (a) For i=0,1 let $E_i\subset\mathbb{R}_i$ be \mathcal{L}^1 -measurable. Show, that

$$\mathcal{L}^1(E_0) \cdot \mathcal{L}^1(E_1) \ge \mathcal{L}^2_*(E_0 \times E_1),$$

with the interpretation $0 \cdot \infty = 0$. Note, that we have not yet shown that $E_0 \times E_1$ is \mathcal{L}^2_* -measurable.

Hint: Work directly with the definition of Lebesgue outer measure.

(b) Conclude that $\mathcal{L}^1 \times \mathcal{L}^1$ and \mathcal{L}^2_* agree as outer measures on \mathbb{R}^2 .

Hint: Use that we know from the lecture that for E_0, E_1 measurable we know $(\mathcal{L}^1 \times \mathcal{L}^1)(E_0 \times E_1) = \mathcal{L}^1(E_0) \cdot \mathcal{L}^1(E_1)$.

/6

/3