Total:

/6

1. Prove Lemma 3.2.6: Show, that a Radon measure μ on \mathbb{R} is absolutely continuous with respect to Lebesgue measure if and only if the map $F : \mathbb{R} \to \mathbb{R}$ given by

$$F(x) = \begin{cases} \mu((0, x]) & x \ge 0 \\ -\mu((x, 0]) & x < 0 \end{cases}$$

is an absolutely continuous map.

Solution: Let F be absolutely continuous and let a < b. let $E \subset [a, b]$ with $\mathcal{L}(E) = 0$. Let $\varepsilon > 0$. Take δ from the absolute continuity of F. Then there exist a countable set \mathcal{B} of half open intervals (a, b] with $E \subset [\]\mathcal{B}$ and

$$\sum_{(a,b]\in\mathcal{B}}b-a<\delta.$$

Let $(a_1, b_1], ..., (a_n, b_n] \in \mathcal{B}$. Then we can write

$$\bigcup_{k=1}^{n} (a_k, b_k]$$

as a finite union of disjoint intervals $(\tilde{a}_1, \tilde{b}_n], ..., (\tilde{a}_m, \tilde{b}_m]$ and

$$\sum_{k=1}^m \tilde{b}_k - \tilde{a}_k \leq \sum_{k=1}^n b_k - a_k < \delta.$$

We can conclude

$$\mu\Big(\bigcup_{k=1}^n (a_k,b_k]\Big) = \mu\Big(\bigcup_{k=1}^m (\tilde{a}_k,\tilde{b}_k]\Big) = \sum_{k=1}^m F(\tilde{b}_k) - F(\tilde{a}_k) < \varepsilon.$$

Letting $n \to \infty$ we obtain from the measure continuity of μ that

$$\mu(E) \leq \mu(\bigcup \mathcal{B}) < \varepsilon.$$

Now, for $E \subset \mathbb{R}$ with $\mathcal{L}(E) = 0$ we can conclude for every $n \in \mathbb{N}$ that $\mu(E \cap [-n, n]) = 0$ and hence $\mu(E) = 0$.

For the converse implication, assume that F is not absolutely continuous. Then there exists a < b and an $\varepsilon > 0$ such that for every $n \in \mathbb{N}$ exist disjoint intervals $\mathcal{B}_n = (a_1,b_1],...,(a_{m_n},b_{m_n}]$ with $\bigcup \mathcal{B} \subset (a,b]$ and $\mathcal{L}(\bigcup \mathcal{B}_n) < 2^{-n}$ but $\mu(\bigcup \mathcal{B}_n) \geq \varepsilon$. Define

$$B_n = \bigcup_{k > n} \bigcup \mathcal{B}_n.$$

Then $B_{n+1}\subset B_n$, $\mathcal{L}(B_n)<2^{-n}$, and $\mu(B_n)\geq \varepsilon$. Thus, for $B=\bigcap_{n=1}^\infty$ we have $\mathcal{L}(B)=0$, and since $B_n\subset (a,b]$ and $\mu((a,b])=F(b)-F(a)<\infty$ we can conclude by the measure continuity lemma that $\mu(B)\geq \varepsilon$. That means μ is not absolutely continuous with respect to Lebesgue measure.

2. (a) For i=0,1 let $E_i \subset \mathbb{R}_i$ be \mathcal{L}^1 -measurable. Show, that

$$\mathcal{L}^1(E_0) \cdot \mathcal{L}^1(E_1) \ge \mathcal{L}^2_*(E_0 \times E_1),$$

with the interpretation $0 \cdot \infty = 0$. Note, that we have not yet shown that $E_0 \times E_1$ is \mathcal{L}^2_* -measurable.

Hint: Work directly with the definition of Lebesgue outer measure.

(b) Conclude that $\mathcal{L}^1 \times \mathcal{L}^1$ and \mathcal{L}^2_* agree as outer measures on \mathbb{R}^2 . Hint: Use that we know from the lecture that for E_0, E_1 measurable we know $(\mathcal{L}^1 \times \mathcal{L}^1)(E_0 \times E_1) = \mathcal{L}^1(E_0) \cdot \mathcal{L}^1(E_1)$.

Solution: We show the statement for \mathcal{L}^{n_0} and \mathcal{L}^{n_1} instead of \mathcal{L}^1 , as promised in the lecture.

(i) Let $\varepsilon > 0$. Then for i = 0, 1 there exist cubes $Q_i^1, Q_i^2, \ldots \subset \mathbb{R}^{n_i}$ such that $E_i \subset Q_i^1 \cup Q_i^2 \cup \ldots$ and

$$\mathcal{L}^{n_i}(E_i) \le \sum_{k=1}^{\infty} |Q_i^k|_{n_i}.$$

Thus, $\mathcal{Q} = \{Q_0^k \times Q_1^m : k, m \in \mathbb{N}\}$ is a cover of $E_0 \times E_1$ and

$$\begin{split} \mathcal{L}_*^2(E_0 \times E_1) & \leq \sum_{Q \in \mathcal{Q}} |Q|_{n_0 + n_1} = \sum_{k=1}^\infty \sum_{m=1}^\infty |Q_0^k \times Q_1^m|_{n_0 + n_1} \\ & = \sum_{k=1}^\infty |Q_0^k|_{n_0} \sum_{m=1}^\infty |Q_1^m|_{n_1} \\ & \leq (\mathcal{L}^{n_0}(E_0) + \varepsilon)(\mathcal{L}^{n_1}(E_1) + \varepsilon) \\ & = \mathcal{L}^{n_0}(E_0) \mathcal{L}^{n_1}(E_1) + \varepsilon(\mathcal{L}^{n_0}(E_0) + \mathcal{L}^{n_1}(E_1) + \varepsilon), \end{split}$$

finishing the proof in every case except when $\mathcal{L}^{n_0}(E_0)=0$ and $\mathcal{L}^{n_1}(E_1)=\infty$ (or vice versa). In that case, we have to show $\mathcal{L}^{n_0+n_1}_*(E_0\times E_1)=0$. Since for N>0 and $E_1^R=E_1\cap B(0,N)$ we have $\mathcal{L}^{n_1}(E_1^R)<\infty$ we obtain $\mathcal{L}^{n_0+n_1}_*(E_0\times E_1)=0$ from the previos case, and we can finish the proof using the (outer) measure continuity lemma.

(ii) It follows directly from the definition that $(\mathcal{L}^{n_0} \times \mathcal{L}^{n_1})(E) \leq \mathcal{L}^2_*(E)$, since the infimum in the first one is over a larger set. For the reverse inequality let $\varepsilon > 0$ and take measurable $A_k^i \subset \mathbb{R}^{n_i}$ such that

$$\begin{split} (\mathcal{L}^{n_0} \times \mathcal{L}^{n_1})(E) + \varepsilon &\geq \sum_{k=1}^{\infty} \mathcal{L}^{n_0}(A_k^0) \mathcal{L}^{n_1}(A_k^1) \\ &\geq \sum_{k=1}^{\infty} \mathcal{L}^{n_0+n_1}(A_k^0 \times A_k^1) \\ &\geq \mathcal{L}^{n_0+n_1}\Big(\bigcup_{k=1}^{\infty} A_k^0 \times A_k^1\Big) \\ &\geq \mathcal{L}^{n_0+n_1}(E). \end{split}$$