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1. /6Prove Lemma 3.2.6: Show, that a Radon measure 𝜇 on ℝ is absolutely continuous with

respect to Lebesgue measure if and only if the map 𝐹 ∶ ℝ → ℝ given by

𝐹(𝑥) = {𝜇((0, 𝑥]) 𝑥 ≥ 0
−𝜇((𝑥, 0]) 𝑥 < 0

is an absolutely continuous map.

Solution: Let 𝐹 be absolutely continuous and let 𝑎 < 𝑏. let 𝐸 ⊂ [𝑎, 𝑏] with ℒ(𝐸) = 0.
Let 𝜀 > 0. Take 𝛿 from the absolute continuity of 𝐹 . Then there exist a countable set
ℬ of half open intervals (𝑎, 𝑏] with 𝐸 ⊂ ⋃ ℬ and

∑
(𝑎,𝑏]∈ℬ

𝑏 − 𝑎 < 𝛿.

Let (𝑎1, 𝑏1], …, (𝑎𝑛, 𝑏𝑛] ∈ ℬ. Then we can write

𝑛
⋃
𝑘=1

(𝑎𝑘, 𝑏𝑘]

as a finite union of disjoint intervals ( ̃𝑎1, ̃𝑏𝑛], …, ( ̃𝑎𝑚, ̃𝑏𝑚] and

𝑚
∑
𝑘=1

̃𝑏𝑘 − ̃𝑎𝑘 ≤
𝑛

∑
𝑘=1

𝑏𝑘 − 𝑎𝑘 < 𝛿.

We can conclude

𝜇(
𝑛

⋃
𝑘=1

(𝑎𝑘, 𝑏𝑘]) = 𝜇(
𝑚
⋃
𝑘=1

( ̃𝑎𝑘, ̃𝑏𝑘]) =
𝑚

∑
𝑘=1

𝐹(𝑏̃𝑘) − 𝐹( ̃𝑎𝑘) < 𝜀.

Letting 𝑛 → ∞ we obtain from the measure continuity of 𝜇 that

𝜇(𝐸) ≤ 𝜇(⋃ ℬ) < 𝜀.

Now, for 𝐸 ⊂ ℝ with ℒ(𝐸) = 0 we can conclude for every 𝑛 ∈ ℕ that 𝜇(𝐸∩[−𝑛, 𝑛]) = 0
and hence 𝜇(𝐸) = 0.
For the converse implication, assume that 𝐹 is not absolutely continuous. Then there
exists 𝑎 < 𝑏 and an 𝜀 > 0 such that for every 𝑛 ∈ ℕ exist disjoint intervals ℬ𝑛 =
(𝑎1, 𝑏1], …, (𝑎𝑚𝑛

, 𝑏𝑚𝑛
] with ⋃ ℬ ⊂ (𝑎, 𝑏] and ℒ(⋃ ℬ𝑛) < 2−𝑛 but 𝜇(⋃ ℬ𝑛) ≥ 𝜀. Define

𝐵𝑛 = ⋃
𝑘>𝑛

⋃ ℬ𝑛.

Then 𝐵𝑛+1 ⊂ 𝐵𝑛, ℒ(𝐵𝑛) < 2−𝑛, and 𝜇(𝐵𝑛) ≥ 𝜀. Thus, for 𝐵 = ⋂∞
𝑛=1 we have

ℒ(𝐵) = 0, and since 𝐵𝑛 ⊂ (𝑎, 𝑏] and 𝜇((𝑎, 𝑏]) = 𝐹(𝑏) − 𝐹(𝑎) < ∞ we can conclude
by the measure continuity lemma that 𝜇(𝐵) ≥ 𝜀. That means 𝜇 is not absolutely
continuous with respect to Lebesgue measure.

2. (a) /3For 𝑖 = 0, 1 let 𝐸𝑖 ⊂ ℝ𝑖 be ℒ1-measurable. Show, that

ℒ1(𝐸0) ⋅ ℒ1(𝐸1) ≥ ℒ2
∗(𝐸0 × 𝐸1),

with the interpretation 0 ⋅ ∞ = 0. Note, that we have not yet shown that 𝐸0 × 𝐸1 is
ℒ2

∗-measurable.



Hint: Work directly with the definition of Lebesgue outer measure.
(b) /3Conclude that ℒ1 × ℒ1 and ℒ2

∗ agree as outer measures on ℝ2.
Hint: Use that we know from the lecture that for 𝐸0, 𝐸1 measurable we know (ℒ1 ×
ℒ1)(𝐸0 × 𝐸1) = ℒ1(𝐸0) ⋅ ℒ1(𝐸1).

Solution: We show the statement for ℒ𝑛0 and ℒ𝑛1 instead of ℒ1, as promised in the
lecture.

(i) Let 𝜀 > 0. Then for 𝑖 = 0, 1 there exist cubes 𝑄1
𝑖 , 𝑄2

𝑖 , … ⊂ ℝ𝑛𝑖 such that
𝐸𝑖 ⊂ 𝑄1

𝑖 ∪ 𝑄2
𝑖 ∪ … and

ℒ𝑛𝑖(𝐸𝑖) ≤
∞

∑
𝑘=1

|𝑄𝑘
𝑖 |𝑛𝑖

.

Thus, 𝒬 = {𝑄𝑘
0 × 𝑄𝑚

1 ∶ 𝑘, 𝑚 ∈ ℕ} is a cover of 𝐸0 × 𝐸1 and

ℒ2
∗(𝐸0 × 𝐸1) ≤ ∑

𝑄∈𝒬
|𝑄|𝑛0+𝑛1

=
∞

∑
𝑘=1

∞
∑
𝑚=1

|𝑄𝑘
0 × 𝑄𝑚

1 |𝑛0+𝑛1

=
∞

∑
𝑘=1

|𝑄𝑘
0|𝑛0

∞
∑
𝑚=1

|𝑄𝑚
1 |𝑛1

≤ (ℒ𝑛0(𝐸0) + 𝜀)(ℒ𝑛1(𝐸1) + 𝜀)
= ℒ𝑛0(𝐸0)ℒ𝑛1(𝐸1) + 𝜀(ℒ𝑛0(𝐸0) + ℒ𝑛1(𝐸1) + 𝜀),

finishing the proof in every case except when ℒ𝑛0(𝐸0) = 0 and ℒ𝑛1(𝐸1) = ∞ (or
vice versa). In that case, we have to show ℒ𝑛0+𝑛1∗ (𝐸0 × 𝐸1) = 0. Since for 𝑁 > 0
and 𝐸𝑅

1 = 𝐸1 ∩ 𝐵(0, 𝑁) we have ℒ𝑛1(𝐸𝑅
1 ) < ∞ we obtain ℒ𝑛0+𝑛1∗ (𝐸0 × 𝐸1) = 0

from the previos case, and we can finish the proof using the (outer) measure
continuity lemma.

(ii) It follows directly from the definition that (ℒ𝑛0 × ℒ𝑛1)(𝐸) ≤ ℒ2
∗(𝐸), since the

infimum in the first one is over a larger set. For the reverse inequality let 𝜀 > 0
and take measurable 𝐴𝑖

𝑘 ⊂ ℝ𝑛𝑖 such that

(ℒ𝑛0 × ℒ𝑛1)(𝐸) + 𝜀 ≥
∞

∑
𝑘=1

ℒ𝑛0(𝐴0
𝑘)ℒ𝑛1(𝐴1

𝑘)

≥
∞

∑
𝑘=1

ℒ𝑛0+𝑛1(𝐴0
𝑘 × 𝐴1

𝑘)

≥ ℒ𝑛0+𝑛1(
∞
⋃
𝑘=1

𝐴0
𝑘 × 𝐴1

𝑘)

≥ ℒ𝑛0+𝑛1(𝐸).


