Julian Weigt November 15, 2025

Exercise 7 Due: Thursday, 2025-10-30

/10

Total:

1. Find a bounded Lebesgue integrable function on [0,1] which is not Riemann integrable and prove these properties.

and /3

Hint: A function of the form $\mathbf{1}_E$ will do.

2. Let $E \subset \mathbb{R}^d$ be \mathcal{L} -measurable. Show, that there exist compact sets $K_1, K_2, \ldots \subset E$ with $\mathcal{L}(K_n) \to \mathcal{L}(E)$.

/1

Solution: We already know that there exist closed sets $C_1, C_2, \ldots \subset E$ with $\mathcal{L}(C_n) \to \mathcal{L}(E)$. For each C_n and $k \in \mathbb{N}$ the set $K_{n,k} = C_n \cap \overline{B(0,k)} \subset C_n \subset E$ is compact with $\mathcal{L}(K_{n,k}) \to \mathcal{L}(C_n)$ as $k \to \infty$. Taking a diagonal sequence $K_n = K_{n,k_n}$ with k_n large enough we get what we want.

- 3. Let $f: \Omega \to [0, \infty]$ be μ -measurable.
 - (a) Show, that the area below the graph, $\{(x,t) \in \Omega \times \mathbb{R} : 0 \leq t < f(x)\}$, is $\mu \times \mathcal{L}$ -measurable. Hint: It can be written as a countable union of "rectangles" $E \times [0,t)$ for certain measurable $E \subset \Omega$ and $t \in \mathbb{R}$.

/3

(b) Show the layer cake formula / Cavalieri's principle,

/2

$$\int_{\Omega} f \,\mathrm{d}\mu = \int_0^{\infty} \mu(\{f > \lambda\}) \,\mathrm{d}\lambda.$$

Hint: Fubini

(c) For $1 \leq p < \infty$ prove the L^p -variant

/3

$$\int_{\Omega} f^{p} d\mu = p \int_{0}^{\infty} \lambda^{p-1} \mu(\{f > \lambda\}) d\lambda$$

and conclude Chebyshev's inequality:

$$\mu(\{f > \lambda\}) \le \frac{1}{\lambda^p} \int f^p \,\mathrm{d}\mu.$$

(d) The space of functions f for which $\sup_{\lambda\geq 0}\lambda^p\mu(\{|f|>\lambda\})<\infty$ is called $L^{p,\infty}(\Omega,\mu)$, or $\operatorname{\mathbf{weak-}} L^p(\Omega,\mu)$. Part (c) implies $L^p(\Omega,\mu)\subset L^{p,\infty}(\Omega,\mu)$. Show that the inclusion is strict for $\Omega=\mathbb{R}$ and $\mu=\mathcal{L}$, i.e. that there exists a measurable $f:\mathbb{R}\to[0,\infty]$ with $\sup_{\lambda>0}\lambda^p\mathcal{L}(\{f>\lambda\})<\infty$ but $\|f\|_{L^p(\mathbb{R},\mathcal{L})}=\infty$.

/2

4. For $\lambda > 0$ and $E \subset \mathbb{R}^d$ denote $\lambda E = \{\lambda x : x \in E\}$.

(a) Show, that

$$\mathcal{L}_{\downarrow}(\lambda E) = \lambda^d \mathcal{L}_{\downarrow}(E).$$

/2

(b) Show, that E is Lebesgue measurable if and only if λE is.

/2