/4

/2

/3

/2

/2

Exercise 6
Due: Thursday, 2025-10-23

- 1. Find an example of a sequence of functions $f_1, f_2, \ldots : (0,1) \to [0,\infty]$ such that for every $x \in (0,1)$ we have $\lim_{n \to \infty} f_n(x) = 0$, but $\int_{(0,1)} f_n \, \mathrm{d} \mathcal{L}$ does not converge to $0 = \int_{(0,1)} 0 \, \mathrm{d} \mathcal{L}$.
- 2. Let $f:\Omega\to [-\infty,\infty]$ be measurable and assume that there exists a $1\leq p<\infty$ such that $\|f\|_{L^p(\Omega,\mathcal{M},\mu)}<\infty$. Show, that

$$\lim_{p\to\infty}\|f\|_{L^p(\Omega,\mathcal{M},\mu)}=\|f\|_{L^\infty(\Omega,\mathcal{M},\mu)}.$$

Note, that $||f||_{L^{\infty}(\Omega,\mathcal{M},\mu)}$ may be infinite.

You receive partial points if you prove it under the assumption $\mu(\Omega) < \infty$. (In this case we do not need the assumption that there exists a $1 \le p < \infty$ such that $||f||_{L^p(\Omega,\mathcal{M},\mu)} < \infty$.)

Hint: First consider functions of the form $a1_E$, and then compare f with such functions.

3. Let $a,b \in \mathbb{R}$ with a < b and C > 0. Recall one definition of the Riemann integral of a bounded function $f:[a,b] \to [0,C]$. We say that a finite set $P = \{x_0,...,x_n\}$ is a partition if $a = x_0 < ... < x_n = b$. Given such a partition P define their lower and upper Riemann sums as

$$\underline{\mathcal{R}}_P(f) = \sum_{k=1}^n (x_n - x_{n-1}) \inf_{x_{n-1} \le x < x_n} f(x), \quad \ \overline{\mathcal{R}}_P(f) = \sum_{k=1}^n (x_n - x_{n-1}) \sup_{x_{n-1} \le x < x_n} f(x).$$

We say that f is Riemann-integrable if

$$\sup_P \underline{\mathcal{R}}_P(f) = \inf_P \overline{\mathcal{R}}_P(f)$$

in which case, we define this value to be its Riemann-integral $\mathcal{R}(f)$.

Let $f:[a,b] \to [0,C]$ be Riemann integrable.

(a) Given partition $P=\{x_0,...,x_n\}$ denote their associated lower and upper step functions by

$$\underline{S}_P(f) = \sum_{k=1}^n 1_{[x_{n-1},x_n)} \inf_{x_{n-1} \leq x < x_n} f(x), \quad \ \overline{S}_P(f) = \sum_{k=1}^n 1_{[x_{n-1},x_n)} \sup_{x_{n-1} \leq x < x_n} f(x).$$

Show, that for $P \subset Q$ we have

$$\underline{S}_P(f) \leq \underline{S}_Q(f), \qquad \qquad \overline{S}_P(f) \geq \overline{S}_Q(f).$$

(b) Use part (a) to show that there exists a sequence of $P_1 \subset P_2 \subset \dots$ of nested partitions with

$$\lim_{n\to\infty}\underline{\mathcal{R}}_{P_n}(f)=\lim_{n\to\infty}\overline{\mathcal{R}}_{P_n}(f)=\mathcal{R}(f).$$

(c) Show, that with P_n from part (b), that for every $a \le x \le b$ the limits

$$\underline{f}(x)\coloneqq \lim_{n\to\infty}\underline{S}_{P_n}(f)(x), \qquad \qquad \overline{f}(x)\coloneqq \lim_{n\to\infty}\overline{S}_{P_n}(f)(x)$$

exist, with

$$f(x) \le f(x) \le \overline{f}(x),$$

and show that f and \overline{f} are Lebesgue integrable with

$$\int \underline{f} \, d\mathcal{L} = \int \overline{f} \, d\mathcal{L} = \mathcal{R}(f).$$

(d) Use Theorem 2.1.9 (v) in order to conclude that f is measurable and Lebesgue integrable with

$$\int f \, \mathrm{d}\mathcal{L} = \mathcal{R}(f).$$