/2

/2

/2

/2

/2 /1

/3

/3

/2

1. Show that for any  $E \subset \mathbb{R}^d$  we have

 $\mathcal{L}_*(E) = \inf\Bigl\{\sum_{Q \in \mathcal{Q}} |Q| : \mathcal{Q} \text{ is a countable set of open cubes } Q \text{ with } E \subset \bigcup \mathcal{Q}\Bigr\}$ 

2. Show, that a collection of sets  $\mathcal{M} \subset 2^{\Omega}$  is a  $\sigma$ -algebra if and only if for each  $E \in \mathcal{M}$  we have  $\Omega \setminus E \in \mathcal{M}$ , and for each  $E_1, E_2, \ldots \in \mathcal{M}$  we have

$$\bigcap_{n=1}^{\infty} E_n \in \mathcal{M}.$$

- 3. Prove Lemma 1.2.6: Let  $(\Omega, \mathcal{M}, \mu)$  be a measure space and let  $E_1, E_2, \ldots \in \mathcal{M}$ .
  - (a) If  $E_1 \subset E_2 \subset \dots$  then

$$\lim_{n \to \infty} \mu(E_n) = \mu\Big(\bigcup_{n=1}^{\infty} E_n\Big),$$

where both sides may be infinite.

Hint: Consider the sequence given by  $A_1=E_1$  and  $A_n=E_n\setminus E_{n-1}$  and recall the definition of the infinite sum

$$\sum_{k=1}^{\infty} \mu(A_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(A_k).$$

(b) If  $\mu(E_1) < \infty$  and  $E_1 \supset E_2 \supset \dots$  then

$$\lim_{n\to\infty}\mu(E_n)=\mu\Bigl(\bigcap_{n=1}^\infty E_n\Bigr).$$

Hint: Use part (a).

(c) Find an example of sets  $\mathbb{R}^d \supset E_1 \supset E_2 \supset \dots$  with  $\mathcal{L}(E_1) = \infty$  for which

$$\lim_{n\to\infty}\mathcal{L}(E_n)\neq\mathcal{L}(\bigcap_{n=1}^\infty E_n).$$

4. We want to prove Fact 1.2.16 in one dimension. Let d=1 so that

$$\mathcal{D}_n = \{[2^n k, 2^n (k+1)) : k \in \mathbb{Z}\}, \qquad \qquad \mathcal{D} = \bigcup_{n \in \mathbb{Z}} \ \mathcal{D}_n$$

- (a) Show, that for any  $Q, P \in \mathcal{D}$  we have  $P \subset Q$  or  $Q \subset P$  or  $P \cap Q = \emptyset$ .
- (b) Let  $n \in \mathbb{Z}$ ,  $\mathcal{Q} \subset | | \mathcal{D}$

$$\mathcal{Q} \subset \bigcup_{k \in \mathbb{Z}, \ k \leq n} \mathcal{D}_k,$$

and

$$\tilde{\mathcal{Q}} \coloneqq \{Q \in \mathcal{Q} : \forall P \in \mathcal{Q} \ \neg Q \subsetneq P\},$$

the subset of maximal cubes.

Show, that for any  $Q, P \in \tilde{\mathcal{Q}}$  with  $P \neq Q$  we have  $Q \cap P = \emptyset$ .

- (c) For  $\tilde{\mathcal{Q}}$  from above, show that and for every  $Q \in \mathcal{Q}$  exists a  $P \in \tilde{\mathcal{Q}}$  with  $Q \subset P$ .
- (d) Show, that for any  $x \in \mathbb{R}$  and r > 0 exists a  $Q \in \mathcal{D}$  with  $x \in Q$  and  $Q \subset (x r, x + r)$ .
- (e) Conclude Fact 1.2.16 for d=1. Precisely, show, that for every open set  $U \subset \mathbb{R}$  with  $\mathcal{L}(U) < \infty$  exists a set  $\mathcal{Q} \subset \mathcal{D}$  of disjoint dyadic intervals with  $U = \bigcup \mathcal{Q}$ .
- (f) Show, that the restriction  $k \leq n$  in part (b) is necessary. More precisely, provide an example of a collection  $\mathcal{Q} \subset \mathbb{D}$  such that for any subcollection  $\tilde{\mathcal{Q}} \subset \mathcal{Q}$ , consisting of disjoint dyadic cubes, there exists a  $Q \in \mathcal{Q}$  such that there is no  $P \in \tilde{\mathcal{Q}}$  with  $Q \subset P$ .