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1. Show that for any £ C R? we have

L. (F) 1nf{z |Q| : Q is a countable set of open cubes @ with E C U Q}
QeQ

Solution: Let Q be a set of open cubes with E C [JQ. Then P = {Q : Q € O} is a
set of closed cubes with E C | J? and

Yo ler=>" 1Pl

Qe QeP

Hence the set over which the infimum above is taken contains the set over which the
infimum from the definition of Lebesgue outer measure is taken, and thus

£,.(F) < inf Z |Q| : Q is a countable set of open cubes @ with E C U Q}
QeQ

For the reverse inequality, let Q = {Q4, Q5,

...} be a set of closed cubes with E C |J Q.
Let & > 0. For each n there exists an open cube P, D @,, such that |P,| <|Q,|+2™"
and set P = {P;, P,,...}. Then

dIP[<e+ > QI

EclJoc|]»
PeP

QeQ
Therefore,

1nf{ Z |Q| : Q is a countable set of open cubes Q with E C U Q}
QeQ

< inf Z |Q| : Q is a countable set of closed cubes Q with E C U Q} L.(F),
Qe

finishing the proof.

2. Show, that a collection of sets M C 2% is a o-algebra if and only if for each E € M we
have Q\ E' € M, and for each E|, E,,... € M we have

ﬁEneM.

n=1

Solution: If M is a o-algebra then for each E € M we have Q\ E € M. For
E,E,, .. €M we have Q\ E{,Q\ E,, ... € M and thus

ﬁEn: G Q\E,)
n=1 n=1

The reverse implication follows similarly, using

GEn:Q\ ﬁ(Q\En)
n=1 n=1




3. Prove : Let (Q, 2, 1) be a measure space and let Ey, E,,... € M.
(a) If B, C By C ... then

s ) = (U ).

where both sides may be infinite.

Hint: Consider the sequence given by A, = E| and A, = E, \ E,_; and recall the

definition of the infinite sum

NgE

n—00

u(A) = Tim S (A
=1

B
Il

1

(b) If u(Fy) < o0 and E; D Ey D ... then
i ) =) .)
Hint: Use .

(c) Find an example of sets R? D E; D E, D ... with £(E;) = oo for which

38

Jm (8, # () B,

Solution:

(a) By definition of infinite sums we have

n (oo}

i
X

The sets A;, A,, ... are disjoint and for each n € N we have E,, = A;U...UA,, and
Ja,=Ue,

n=1
which implies

= > nlAy), w(UJE) =D nAy).
k=1 n=1 k=1
Combining with the definition of the infinite sum concludes the proof.
(b) Set A, =E;\E,. Then A,, A,, ... is an icreasing sequence as in and
1(A,) = p(Ey) — p(Ey,),

(042 = (1) =wie-o( 2)

After substracting u(FE;) < oo from both sides we can conclude the result from
part (a).
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(c) For d =1 set
E, =]k k+2).
kez

Then Fy D F, D ... and
[ Eu=0
n=0

which has zero Lebesgue measure. However, for each n we have £(E,) = cc.

4. We want to prove [Fact 1.2.17 in one dimension. Let d = 1 so that

D, ={[2"k,2"(k+ 1)) : k € Z}, =] D,

nez

(a) Show, that for any Q,P € D we have PC Qor Q C Por PNQ = 0.

(b) Let n € Z,
oc J o,
keZ, k<n
and .
0:={Qe0:VPe0—-QC P},
the subset of maximal cubes.
Show, that for any @, P € O with P # @Q we have QN P = 0.

(c¢) For 0 from above, show that and for every () € Q exists a P € 0 with QCP.
(d) Show, that for any z € Rand r > 0 exists a Q € D withzx € Q and Q C (x —r,z+7).

(e) Conclude for d = 1. Precisely, show, that for every open set U C R with
L(U) < oo exists a set Q C D of disjoint dyadic intervals with U = ] Q.

(f) Show, that the restriction k¥ < n in is necessary.

More precisely, provide an example of a collection Q C D such that for any subcollection
Q9 C 9, consisting of disjoint dyadic cubes, there exists a () € O such that there is no
PeQOwithQCP

Solution:

(a) Let @Qy,Qy € D. Then there are ny,n, € Z with Q; € D,, . By symmetry it suffices to
consider n; < ny. Moreover there exist k;, ky € Z such that Q; = [2™k;, 2™ (k;+1)). If
2™k > 2™2(ky+1) then Q,NQy = 0. If 2™k, < 2"2k, then ky < 2™ "2k, and since
the right hand side is an integer, also 2™ (k; +1) < 2”2k, and thus also Q;NQ, = 0. Tt
remains to consider the case 2"k, < 2™k, < 2"2(k, + 1). Then ky < 2" ™1 (ky + 1).
Since the right hand side is an integer, also 2™ (k; +1) < 2"2(k,+1). We can conclude
Q) C Qs
In fact, we have shown that for Q; € D,, with n; <n, we have Q; N Q5 € {0, Q5}.

(b) Let P,Q € 0 with P # Q. Then P,Q € Q and by the previous part we have
PCcQQQcCcPorPNQ=0. If PC Q then in fact P C Q since P # @, but this
is not possible by definition of Q. Similary we can exclude @@ C P, and thus only the
possibility P N @ remains.
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()

Let @ € 9N D,. Then there exists a maximal N < n for which there exists a
PeonDy with QNP # (. Since QNQ # 0 we have k < N. That means Q C P by
the first part. Now, there exists no m > k and R € QN D, with RN P # (}, because
then we would have Q C P C R, and in particular @ N R # (). For any m < k and
R € D,,, by the previous part we do not have P C R. We can conclude P € Q.

Take n € Z such that 2" < r. Take k € Z maximal with 2"k < . Then 2"(k+1) > z.
We can conclude

r—r<2Mk+1)—2"=2"k <z <2"k+1)=2"k+2"<z+r

and thus the claim is true for @ = [2"k, 2" (k + 1)).

In fact, we have show that for any n € Z with 2" < r exists such a @ € D, with
r€QC(x—r,z+r).

Let n € Z. If U is open then for any x € U exists an r > 0 such that B(z,r) C U.
By the previous part exists a k < n and a Q € D;, with z € Q C B(z,r) C U. This
means that for

n
0= |J{QeD,:3IweU, Ir>02€QC Bx,r) CU}

k=—o00

we have U = | J Q. That means 0 is a set of disjoint cubes and by the third part we
have U = J Q.

Set O = {[0,2") : n € Z}. The cubes in Q are nested, which means that any disjoint
subcollection consists of at most one cube. But | JQ = [0,000) is not a single cube or
empty.




