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1. /2Show that for any 𝐸 ⊂ ℝ𝑑 we have

ℒ∗(𝐸) = inf{∑
𝑄∈𝒬

|𝑄| ∶ 𝒬 is a countable set of open cubes 𝑄 with 𝐸 ⊂ ⋃ 𝒬}

Solution: Let 𝒬 be a set of open cubes with 𝐸 ⊂ ⋃ 𝒬. Then 𝒫 = {𝑄 ∶ 𝑄 ∈ 𝒬} is a
set of closed cubes with 𝐸 ⊂ ⋃ 𝒫 and

∑
𝑄∈𝒬

|𝑄| = ∑
𝑄∈𝒫

|𝑃 |.

Hence the set over which the infimum above is taken contains the set over which the
infimum from the definition of Lebesgue outer measure is taken, and thus

ℒ∗(𝐸) ≤ inf{∑
𝑄∈𝒬

|𝑄| ∶ 𝒬 is a countable set of open cubes 𝑄 with 𝐸 ⊂ ⋃ 𝒬}.

For the reverse inequality, let 𝒬 = {𝑄1, 𝑄2, …} be a set of closed cubes with 𝐸 ⊂ ⋃ 𝒬.
Let 𝜀 > 0. For each 𝑛 there exists an open cube 𝑃𝑛 ⊃ 𝑄𝑛 such that |𝑃𝑛| ≤ |𝑄𝑛| + 2−𝑛𝜀
and set 𝒫 = {𝑃1, 𝑃2, …}. Then

𝐸 ⊂ ⋃ 𝒬 ⊂ ⋃ 𝒫, ∑
𝑃∈𝒫

|𝑃 | ≤ 𝜀 + ∑
𝑄∈𝒬

|𝑄|.

Therefore,

inf{∑
𝑄∈𝒬

|𝑄| ∶ 𝒬 is a countable set of open cubes 𝑄 with 𝐸 ⊂ ⋃ 𝒬}

≤ inf{∑
𝑄∈𝒬

|𝑄| ∶ 𝒬 is a countable set of closed cubes 𝑄 with 𝐸 ⊂ ⋃ 𝒬} = ℒ∗(𝐸),

finishing the proof.

2. /2Show, that a collection of sets ℳ ⊂ 2Ω is a 𝜎-algebra if and only if for each 𝐸 ∈ ℳ we
have Ω ∖ 𝐸 ∈ ℳ, and for each 𝐸1, 𝐸2, … ∈ ℳ we have

∞
⋂
𝑛=1

𝐸𝑛 ∈ ℳ.

Solution: If ℳ is a 𝜎-algebra then for each 𝐸 ∈ ℳ we have Ω ∖ 𝐸 ∈ ℳ. For
𝐸1, 𝐸2, … ∈ ℳ we have Ω ∖ 𝐸1, Ω ∖ 𝐸2, … ∈ ℳ and thus

∞
⋂
𝑛=1

𝐸𝑛 = Ω ∖
∞
⋃
𝑛=1

(Ω ∖ 𝐸𝑛) ∈ ℳ.

The reverse implication follows similarly, using
∞
⋃
𝑛=1

𝐸𝑛 = Ω ∖
∞
⋂
𝑛=1

(Ω ∖ 𝐸𝑛).



3. Prove Lemma 1.2.7: Let (Ω, ℳ, 𝜇) be a measure space and let 𝐸1, 𝐸2, … ∈ ℳ.
(a) /4If 𝐸1 ⊂ 𝐸2 ⊂ … then

lim
𝑛→∞

𝜇(𝐸𝑛) = 𝜇(
∞
⋃
𝑛=1

𝐸𝑛),

where both sides may be infinite.
Hint: Consider the sequence given by 𝐴1 = 𝐸1 and 𝐴𝑛 = 𝐸𝑛 ∖ 𝐸𝑛−1 and recall the
definition of the infinite sum

∞
∑
𝑘=1

𝜇(𝐴𝑘) = lim
𝑛→∞

𝑛
∑
𝑘=1

𝜇(𝐴𝑘).

(b) /2If 𝜇(𝐸1) < ∞ and 𝐸1 ⊃ 𝐸2 ⊃ … then

lim
𝑛→∞

𝜇(𝐸𝑛) = 𝜇(
∞
⋂
𝑛=1

𝐸𝑛).

Hint: Use part (a).
(c) /2Find an example of sets ℝ𝑑 ⊃ 𝐸1 ⊃ 𝐸2 ⊃ … with ℒ(𝐸1) = ∞ for which

lim
𝑛→∞

ℒ(𝐸𝑛) ≠ ℒ(
∞
⋂
𝑛=1

𝐸𝑛).

Solution:
(a) By definition of infinite sums we have

lim
𝑛→∞

𝑛
∑
𝑘=1

𝜇(𝐴𝑘) =
∞

∑
𝑘=1

𝜇(𝐴𝑘).

The sets 𝐴1, 𝐴2, … are disjoint and for each 𝑛 ∈ ℕ we have 𝐸𝑛 = 𝐴1 ∪ … ∪ 𝐴𝑛 and

∞
⋃
𝑛=1

𝐴𝑛 =
∞
⋃
𝑛=1

𝐸𝑛,

which implies

𝜇(𝐸𝑛) =
𝑛

∑
𝑘=1

𝜇(𝐴𝑘), 𝜇(
∞
⋃
𝑛=1

𝐸𝑛) =
∞

∑
𝑘=1

𝜇(𝐴𝑘).

Combining with the definition of the infinite sum concludes the proof.

(b) Set 𝐴𝑛 = 𝐸1 ∖ 𝐸𝑛. Then 𝐴1, 𝐴2, … is an icreasing sequence as in part (a) and

𝜇(𝐴𝑛) = 𝜇(𝐸1) − 𝜇(𝐸𝑛),

𝜇(
∞
⋃
𝑛=1

𝐴𝑛) = 𝜇(𝐸1 ∖
∞
⋂
𝑛=1

𝐸𝑛) = 𝜇(𝐸1) − 𝜇(
∞
⋂
𝑛=1

𝐸𝑛)

After substracting 𝜇(𝐸1) < ∞ from both sides we can conclude the result from
part (a).



(c) For 𝑑 = 1 set
𝐸𝑛 = ⋃

𝑘∈ℤ
(𝑘, 𝑘 + 2−𝑛).

Then 𝐸1 ⊃ 𝐸2 ⊃ … and
∞
⋂
𝑛=0

𝐸𝑛 = ∅

which has zero Lebesgue measure. However, for each 𝑛 we have ℒ(𝐸𝑛) = ∞.

4. We want to prove Fact 1.2.17 in one dimension. Let 𝑑 = 1 so that

𝒟𝑛 = {[2𝑛𝑘, 2𝑛(𝑘 + 1)) ∶ 𝑘 ∈ ℤ}, 𝒟 = ⋃
𝑛∈ℤ

𝒟𝑛.

(a) /2Show, that for any 𝑄, 𝑃 ∈ 𝒟 we have 𝑃 ⊂ 𝑄 or 𝑄 ⊂ 𝑃 or 𝑃 ∩ 𝑄 = ∅.
(b) /1Let 𝑛 ∈ ℤ,

𝒬 ⊂ ⋃
𝑘∈ℤ, 𝑘≤𝑛

𝒟𝑘,

and
̃𝒬 ≔ {𝑄 ∈ 𝒬 ∶ ∀𝑃 ∈ 𝒬 ¬𝑄 ⊊ 𝑃},

the subset of maximal cubes.
Show, that for any 𝑄, 𝑃 ∈ ̃𝒬 with 𝑃 ≠ 𝑄 we have 𝑄 ∩ 𝑃 = ∅.

(c) /3For ̃𝒬 from above, show that and for every 𝑄 ∈ 𝒬 exists a 𝑃 ∈ ̃𝒬 with 𝑄 ⊂ 𝑃 .
(d) /1Show, that for any 𝑥 ∈ ℝ and 𝑟 > 0 exists a 𝑄 ∈ 𝒟 with 𝑥 ∈ 𝑄 and 𝑄 ⊂ (𝑥 − 𝑟, 𝑥 + 𝑟).
(e) /3Conclude Fact 1.2.17 for 𝑑 = 1. Precisely, show, that for every open set 𝑈 ⊂ ℝ with

ℒ(𝑈) < ∞ exists a set 𝒬 ⊂ 𝒟 of disjoint dyadic intervals with 𝑈 = ⋃ 𝒬.
(f) /2Show, that the restriction 𝑘 ≤ 𝑛 in part (b) is necessary.

More precisely, provide an example of a collection 𝒬 ⊂ 𝔻 such that for any subcollection
̃𝒬 ⊂ 𝒬, consisting of disjoint dyadic cubes, there exists a 𝑄 ∈ 𝒬 such that there is no

𝑃 ∈ ̃𝒬 with 𝑄 ⊂ 𝑃 .

Solution:
(a) Let 𝑄1, 𝑄2 ∈ 𝒟. Then there are 𝑛1, 𝑛2 ∈ ℤ with 𝑄𝑖 ∈ 𝒟𝑛𝑖

. By symmetry it suffices to
consider 𝑛1 ≤ 𝑛2. Moreover there exist 𝑘1, 𝑘2 ∈ ℤ such that 𝑄𝑖 = [2𝑛𝑖𝑘𝑖, 2𝑛𝑖(𝑘𝑖 +1)). If
2𝑛1𝑘1 ≥ 2𝑛2(𝑘2 +1) then 𝑄1 ∩𝑄2 = ∅. If 2𝑛1𝑘1 < 2𝑛2𝑘2 then 𝑘1 < 2𝑛1−𝑛2𝑘2, and since
the right hand side is an integer, also 2𝑛1(𝑘1 +1) ≤ 2𝑛2𝑘2 and thus also 𝑄1 ∩𝑄2 = ∅. It
remains to consider the case 2𝑛2𝑘2 ≤ 2𝑛1𝑘1 < 2𝑛2(𝑘2 + 1). Then 𝑘1 < 2𝑛2−𝑛1(𝑘2 + 1).
Since the right hand side is an integer, also 2𝑛1(𝑘1 +1) ≤ 2𝑛2(𝑘2 +1). We can conclude
𝑄1 ⊂ 𝑄2.
In fact, we have shown that for 𝑄𝑖 ∈ 𝒟𝑛𝑖

with 𝑛1 ≤ 𝑛2 we have 𝑄1 ∩ 𝑄2 ∈ {∅, 𝑄2}.

(b) Let 𝑃 , 𝑄 ∈ ̃𝒬 with 𝑃 ≠ 𝑄. Then 𝑃 , 𝑄 ∈ 𝒬 and by the previous part we have
𝑃 ⊂ 𝑄, 𝑄 ⊂ 𝑃 or 𝑃 ∩ 𝑄 = ∅. If 𝑃 ⊂ 𝑄 then in fact 𝑃 ⊊ 𝑄 since 𝑃 ≠ 𝑄, but this
is not possible by definition of ̃𝒬. Similary we can exclude 𝑄 ⊂ 𝑃 , and thus only the
possibility 𝑃 ∩ 𝑄 remains.



(c) Let 𝑄 ∈ 𝒬 ∩ 𝒟𝑘. Then there exists a maximal 𝑁 ≤ 𝑛 for which there exists a
𝑃 ∈ 𝒬 ∩ 𝒟𝑁 with 𝑄 ∩ 𝑃 ≠ ∅. Since 𝑄 ∩ 𝑄 ≠ ∅ we have 𝑘 ≤ 𝑁 . That means 𝑄 ⊂ 𝑃 by
the first part. Now, there exists no 𝑚 > 𝑘 and 𝑅 ∈ 𝒬 ∩ 𝒟𝑚 with 𝑅 ∩ 𝑃 ≠ ∅, because
then we would have 𝑄 ⊂ 𝑃 ⊂ 𝑅, and in particular 𝑄 ∩ 𝑅 ≠ ∅. For any 𝑚 ≤ 𝑘 and
𝑅 ∈ 𝔻𝑚, by the previous part we do not have 𝑃 ⊊ 𝑅. We can conclude 𝑃 ∈ ̃𝒬.

(d) Take 𝑛 ∈ ℤ such that 2𝑛 < 𝑟. Take 𝑘 ∈ ℤ maximal with 2𝑛𝑘 ≤ 𝑥. Then 2𝑛(𝑘 + 1) > 𝑥.
We can conclude

𝑥 − 𝑟 < 2𝑛(𝑘 + 1) − 2𝑛 = 2𝑛𝑘 ≤ 𝑥 ≤ 2𝑛(𝑘 + 1) = 2𝑛𝑘 + 2𝑛 < 𝑥 + 𝑟

and thus the claim is true for 𝑄 = [2𝑛𝑘, 2𝑛(𝑘 + 1)).
In fact, we have show that for any 𝑛 ∈ ℤ with 2𝑛 < 𝑟 exists such a 𝑄 ∈ 𝒟𝑛 with
𝑥 ∈ 𝑄 ⊂ (𝑥 − 𝑟, 𝑥 + 𝑟).

(e) Let 𝑛 ∈ ℤ. If 𝑈 is open then for any 𝑥 ∈ 𝑈 exists an 𝑟 > 0 such that 𝐵(𝑥, 𝑟) ⊂ 𝑈 .
By the previous part exists a 𝑘 ≤ 𝑛 and a 𝑄 ∈ 𝒟𝑘 with 𝑥 ∈ 𝑄 ⊂ 𝐵(𝑥, 𝑟) ⊂ 𝑈 . This
means that for

𝒬 =
𝑛

⋃
𝑘=−∞

{𝑄 ∈ 𝒟𝑘 ∶ ∃𝑥 ∈ 𝑈, ∃𝑟 > 0 𝑥 ∈ 𝑄 ⊂ 𝐵(𝑥, 𝑟) ⊂ 𝑈}

we have 𝑈 = ⋃ 𝒬. That means ̃𝒬 is a set of disjoint cubes and by the third part we
have 𝑈 = ⋃ ̃𝒬.

(f) Set 𝒬 = {[0, 2𝑛) ∶ 𝑛 ∈ ℤ}. The cubes in 𝒬 are nested, which means that any disjoint
subcollection consists of at most one cube. But ⋃ 𝒬 = [0, ∞) is not a single cube or
empty.


