Total:

/2

/2

1. Show that for any $E \subset \mathbb{R}^d$ we have

$$\mathcal{L}_*(E) = \inf\Bigl\{\sum_{Q \in \mathcal{Q}} |Q| : \mathcal{Q} \text{ is a countable set of open cubes } Q \text{ with } E \subset \bigcup \mathcal{Q}\Bigr\}$$

Solution: Let \mathcal{Q} be a set of open cubes with $E \subset \bigcup \mathcal{Q}$. Then $\mathcal{P} = \{\overline{Q} : Q \in \mathcal{Q}\}$ is a set of closed cubes with $E \subset \bigcup \mathcal{P}$ and

$$\sum_{Q \in \mathcal{Q}} |Q| = \sum_{Q \in \mathcal{P}} |P|.$$

Hence the set over which the infimum above is taken contains the set over which the infimum from the definition of Lebesgue outer measure is taken, and thus

$$\mathcal{L}_*(E) \leq \inf\Bigl\{\sum_{Q \in \mathcal{Q}} |Q| : \mathcal{Q} \text{ is a countable set of open cubes } Q \text{ with } E \subset \bigcup \mathcal{Q}\Bigr\}.$$

For the reverse inequality, let $\mathcal{Q}=\{Q_1,Q_2,\ldots\}$ be a set of closed cubes with $E\subset\bigcup\mathcal{Q}$. Let $\varepsilon>0$. For each n there exists an open cube $P_n\supset Q_n$ such that $|P_n|\leq |Q_n|+2^{-n}\varepsilon$ and set $\mathcal{P}=\{P_1,P_2,\ldots\}$. Then

$$E \subset \bigcup \mathcal{Q} \subset \bigcup \mathcal{P}, \qquad \qquad \sum_{P \in \mathcal{P}} |P| \leq \varepsilon + \sum_{Q \in \mathcal{Q}} |Q|.$$

Therefore,

 $\inf\Bigl\{\sum_{Q\in\mathcal{Q}}|Q|:\mathcal{Q}\text{ is a countable set of open cubes }Q\text{ with }E\subset\bigcup\mathcal{Q}\Bigr\}$

 $\leq \inf\Bigl\{\sum_{Q\in\mathcal{Q}}|Q|:\mathcal{Q}\text{ is a countable set of closed cubes }Q\text{ with }E\subset\bigcup\mathcal{Q}\Bigr\}=\mathcal{L}_*(E),$

finishing the proof.

2. Show, that a collection of sets $\mathcal{M} \subset 2^{\Omega}$ is a σ -algebra if and only if for each $E \in \mathcal{M}$ we have $\Omega \setminus E \in \mathcal{M}$, and for each $E_1, E_2, \ldots \in \mathcal{M}$ we have

$$\bigcap_{n=1}^{\infty} E_n \in \mathcal{M}.$$

Solution: If \mathcal{M} is a σ -algebra then for each $E \in \mathcal{M}$ we have $\Omega \setminus E \in \mathcal{M}$. For $E_1, E_2, \ldots \in \mathcal{M}$ we have $\Omega \setminus E_1, \Omega \setminus E_2, \ldots \in \mathcal{M}$ and thus

$$\bigcap_{n=1}^{\infty} E_n = \Omega \smallsetminus \bigcup_{n=1}^{\infty} (\Omega \smallsetminus E_n) \in \mathcal{M}.$$

The reverse implication follows similarly, using

$$\bigcup_{n=1}^{\infty} E_n = \Omega \smallsetminus \bigcap_{n=1}^{\infty} (\Omega \smallsetminus E_n).$$

(a) If
$$E_1 \subset E_2 \subset \dots$$
 then

$$\lim_{n\to\infty}\mu(E_n)=\mu\Big(\bigcup_{n=1}^\infty E_n\Big),$$

/4

/2

/2

where both sides may be infinite.

Hint: Consider the sequence given by $A_1=E_1$ and $A_n=E_n\setminus E_{n-1}$ and recall the definition of the infinite sum

$$\sum_{k=1}^\infty \mu(A_k) = \lim_{n \to \infty} \sum_{k=1}^n \mu(A_k).$$

(b) If
$$\mu(E_1) < \infty$$
 and $E_1 \supset E_2 \supset \dots$ then

$$\lim_{n\to\infty}\mu(E_n)=\mu\Bigl(\bigcap_{n=1}^\infty E_n\Bigr).$$

Hint: Use part (a).

(c) Find an example of sets $\mathbb{R}^d \supset E_1 \supset E_2 \supset \dots$ with $\mathcal{L}(E_1) = \infty$ for which

$$\lim_{n\to\infty}\mathcal{L}(E_n)\neq\mathcal{L}(\bigcap_{n=1}^\infty E_n).$$

Solution:

(a) By definition of infinite sums we have

$$\lim_{n\to\infty}\sum_{k=1}^n\mu(A_k)=\sum_{k=1}^\infty\mu(A_k).$$

The sets A_1,A_2,\dots are disjoint and for each $n\in\mathbb{N}$ we have $E_n=A_1\cup\dots\cup A_n$ and

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} E_n,$$

which implies

$$\mu(E_n) = \sum_{k=1}^n \mu(A_k), \qquad \qquad \mu\Big(\bigcup_{n=1}^\infty E_n\Big) = \sum_{k=1}^\infty \mu(A_k).$$

Combining with the definition of the infinite sum concludes the proof.

(b) Set $A_n = E_1 \setminus E_n$. Then A_1, A_2, \dots is an icreasing sequence as in part (a) and

$$\begin{split} \mu(A_n) &= \mu(E_1) - \mu(E_n), \\ \mu\Big(\bigcup_{n=1}^\infty A_n\Big) &= \mu\Big(E_1 \smallsetminus \bigcap_{n=1}^\infty E_n\Big) = \mu(E_1) - \mu\Big(\bigcap_{n=1}^\infty E_n\Big) \end{split}$$

After substracting $\mu(E_1) < \infty$ from both sides we can conclude the result from part (a).

(c) For d = 1 set

$$E_n=\bigcup_{k\in\mathbb{Z}}(k,k+2^{-n}).$$

Then $E_1 \supset E_2 \supset \dots$ and

$$\bigcap_{n=0}^{\infty} E_n = \emptyset$$

which has zero Lebesgue measure. However, for each n we have $\mathcal{L}(E_n) = \infty$.

4. We want to prove Fact 1.2.17 in one dimension. Let d=1 so that

$$\mathcal{D}_n = \{[2^n k, 2^n (k+1)) : k \in \mathbb{Z}\}, \qquad \qquad \mathcal{D} = \bigcup_{n \in \mathbb{Z}} \ \mathcal{D}_n.$$

- (a) Show, that for any $Q, P \in \mathcal{D}$ we have $P \subset Q$ or $Q \subset P$ or $P \cap Q = \emptyset$.
- (b) Let $n \in \mathbb{Z}$,

$$\mathcal{Q} \subset \bigcup_{k \in \mathbb{Z}, \ k \leq n} \mathcal{D}_k,$$

/2 /1

/2

and

$$\tilde{\mathcal{Q}} := \{ Q \in \mathcal{Q} : \forall P \in \mathcal{Q} \ \neg Q \subseteq P \},$$

the subset of maximal cubes.

Show, that for any $Q, P \in \tilde{\mathcal{Q}}$ with $P \neq Q$ we have $Q \cap P = \emptyset$.

- (c) For $\tilde{\mathcal{Q}}$ from above, show that and for every $Q \in \mathcal{Q}$ exists a $P \in \tilde{\mathcal{Q}}$ with $Q \subset P$.
- (d) Show, that for any $x \in \mathbb{R}$ and r > 0 exists a $Q \in \mathcal{D}$ with $x \in Q$ and $Q \subset (x r, x + r)$.
- (e) Conclude Fact 1.2.17 for d=1. Precisely, show, that for every open set $U \subset \mathbb{R}$ with $\mathcal{L}(U) < \infty$ exists a set $\mathcal{L} \subset \mathcal{D}$ of disjoint dyadic intervals with $U = \bigcup \mathcal{L}$.
- (f) Show, that the restriction $k \leq n$ in part (b) is necessary. More precisely, provide an example of a collection $\mathcal{Q} \subset \mathbb{D}$ such that for any subcollection $\tilde{\mathcal{Q}} \subset \mathcal{Q}$, consisting of disjoint dyadic cubes, there exists a $Q \in \mathcal{Q}$ such that there is no $P \in \tilde{\mathcal{Q}}$ with $Q \subset P$.

Solution:

(a) Let $Q_1,Q_2\in\mathcal{D}$. Then there are $n_1,n_2\in\mathbb{Z}$ with $Q_i\in\mathcal{D}_{n_i}$. By symmetry it suffices to consider $n_1\leq n_2$. Moreover there exist $k_1,k_2\in\mathbb{Z}$ such that $Q_i=[2^{n_i}k_i,2^{n_i}(k_i+1))$. If $2^{n_1}k_1\geq 2^{n_2}(k_2+1)$ then $Q_1\cap Q_2=\emptyset$. If $2^{n_1}k_1<2^{n_2}k_2$ then $k_1<2^{n_1-n_2}k_2$, and since the right hand side is an integer, also $2^{n_1}(k_1+1)\leq 2^{n_2}k_2$ and thus also $Q_1\cap Q_2=\emptyset$. It remains to consider the case $2^{n_2}k_2\leq 2^{n_1}k_1<2^{n_2}(k_2+1)$. Then $k_1<2^{n_2-n_1}(k_2+1)$. Since the right hand side is an integer, also $2^{n_1}(k_1+1)\leq 2^{n_2}(k_2+1)$. We can conclude $Q_1\subset Q_2$.

In fact, we have shown that for $Q_i \in \mathcal{D}_{n_i}$ with $n_1 \leq n_2$ we have $Q_1 \cap Q_2 \in \{\emptyset, Q_2\}$.

(b) Let $P,Q\in \tilde{\mathcal{Q}}$ with $P\neq Q$. Then $P,Q\in \mathcal{Q}$ and by the previous part we have $P\subset Q,Q\subset P$ or $P\cap Q=\emptyset$. If $P\subset Q$ then in fact $P\subsetneq Q$ since $P\neq Q$, but this is not possible by definition of $\tilde{\mathcal{Q}}$. Similarly we can exclude $Q\subset P$, and thus only the possibility $P\cap Q$ remains.

- (c) Let $Q \in \mathcal{Q} \cap \mathcal{D}_k$. Then there exists a maximal $N \leq n$ for which there exists a $P \in \mathcal{Q} \cap \mathcal{D}_N$ with $Q \cap P \neq \emptyset$. Since $Q \cap Q \neq \emptyset$ we have $k \leq N$. That means $Q \subset P$ by the first part. Now, there exists no m > k and $R \in \mathcal{Q} \cap \mathcal{D}_m$ with $R \cap P \neq \emptyset$, because then we would have $Q \subset P \subset R$, and in particular $Q \cap R \neq \emptyset$. For any $m \leq k$ and $R \in \mathbb{D}_m$, by the previous part we do not have $P \subsetneq R$. We can conclude $P \in \tilde{\mathcal{Q}}$.
- (d) Take $n \in \mathbb{Z}$ such that $2^n < r$. Take $k \in \mathbb{Z}$ maximal with $2^n k \le x$. Then $2^n (k+1) > x$. We can conclude

$$x - r < 2^n(k+1) - 2^n = 2^nk \le x \le 2^n(k+1) = 2^nk + 2^n < x + r$$

and thus the claim is true for $Q = [2^n k, 2^n (k+1))$.

In fact, we have show that for any $n \in \mathbb{Z}$ with $2^n < r$ exists such a $Q \in \mathcal{D}_n$ with $x \in Q \subset (x-r,x+r)$.

(e) Let $n \in \mathbb{Z}$. If U is open then for any $x \in U$ exists an r > 0 such that $B(x,r) \subset U$. By the previous part exists a $k \leq n$ and a $Q \in \mathcal{D}_k$ with $x \in Q \subset B(x,r) \subset U$. This means that for

$$\mathcal{Q} = \bigcup_{k=-\infty}^n \{Q \in \mathcal{D}_k : \exists x \in U, \ \exists r > 0 \ x \in Q \subset B(x,r) \subset U\}$$

we have $U = \bigcup \mathcal{Q}$. That means $\tilde{\mathcal{Q}}$ is a set of disjoint cubes and by the third part we have $U = \bigcup \tilde{\mathcal{Q}}$.

(f) Set $\mathcal{Q} = \{[0, 2^n) : n \in \mathbb{Z}\}$. The cubes in \mathcal{Q} are nested, which means that any disjoint subcollection consists of at most one cube. But $\bigcup \mathcal{Q} = [0, \infty)$ is not a single cube or empty.