
ICTP Real Analysis 2025
Julian Weigt Exam 2025-11-21

Total:

/40
Your name:

• Your total number of points will be the sum of points from those five out of the six questions for
which you will have received the highest number of points.
That means you can try to solve all questions, and then only your best five out of six solutions will
count, or you can leave one question completely unanswered.

• Please write your name on each paper.

• You may completely ignore the Remarks below.

1. /8Let Ω = {1, 2, 3} and let 𝜇 be a measure on Ω with

𝜇({1}) = 2, 𝜇({1, 2}) = 3, 𝜇({2, 3}) = 3.

Let 𝑓 ∶ Ω → ℝ with 𝑓(𝑥) = 𝑥 and compute ∫Ω 𝑓 d𝜇.

Solution: We have 𝜇({2}) = 𝜇({1, 2})−𝜇({1}) = 1 and 𝜇({3}) = 𝜇({2, 3})−𝜇({2}) = 2. Thus,

∫
Ω

𝑓 d𝜇 = 2 ⋅ 1 + 1 ⋅ 2 + 2 ⋅ 3 = 10.

2. /8Let (Ω, ℳ, 𝜇) be a measure space and let 𝑓1, 𝑓2, … ∶ Ω → [0, ∞] be measurable. Show, that 𝑓 ∶ ℝ →
[0, ∞] given by 𝑓(𝑥) = ∑∞

𝑛=1 𝑓𝑛(𝑥) is measurable and

∫ 𝑓 d𝜇 =
∞

∑
𝑛=1

∫ 𝑓𝑛 d𝜇.

Solution: By definition

𝑓(𝑥) = lim
𝑛→∞

𝑛
∑
𝑘=1

𝑓𝑘(𝑥).

Thus, 𝑓 is a pointwise limit of sums of measurable functions, which makes 𝑓 measurable, too. In
fact, 𝑓 is a monotone limit from below. Therefore, by the linearity of the Lebesgue integral we
have

∫ 𝑓 d𝜇 = lim
𝑛→∞

∫
𝑛

∑
𝑘=1

𝑓𝑘 d𝜇 = lim
𝑛→∞

∫
𝑛

∑
𝑘=1

𝑓𝑘 d𝜇 = ∫
∞

∑
𝑘=1

𝑓𝑘 d𝜇.

3. /8Let 𝜇, 𝜈 be Radon measures on ℝ. Assume that for every dyadic interval 𝐼 ⊂ ℝ we have 𝜇(𝐼) = 𝜈(𝐼).
Show, that for every Borel 𝐸 ⊂ ℝ we have 𝜇(𝐸) = 𝜈(𝐸).



Solution: Since 𝐸 is Borel, it is 𝜇 and 𝜈 measurable. Thus, by outer regularity we have

𝜇(𝐸) = inf{𝜇(𝑈) ∶ ℝ ⊃ 𝑈 open}

and the same for 𝜈. That means there exist sequences 𝑈1, 𝑈2, … ⊂ Ω and 𝑉1, 𝑉2, … ⊂ Ω open
such that 𝐸 ⊂ 𝑈𝑛, 𝑉𝑛 and 𝜇(𝑈𝑛) → 𝜇(𝐸) and 𝜈(𝑉𝑛) → 𝜈(𝐸). Since 𝑈𝑛 ∩ 𝑉𝑛 is open and a subset
of both 𝑈𝑛 and 𝑉𝑛 and 𝐸 ⊂ 𝑈𝑛 ∩ 𝑉𝑛 we have

𝜇(𝐸) ≤ 𝜇(𝑈𝑛 ∩ 𝑉𝑛) ≤ 𝜇(𝑈𝑛) → 𝜇(𝐸)

and thus also 𝜇(𝑈𝑛 ∩ 𝑉𝑛) → 𝜇(𝐸). Similarly, 𝜈(𝑈𝑛 ∩ 𝑉𝑛) → 𝜈(𝐸). Now, we know that since
𝑈𝑛 ∩𝑉𝑛 is open it can be written as a disjoint union of dyadic intervals 𝒜𝑛. Thus, by assumption

𝜇(𝑈𝑛 ∩ 𝑉𝑛) = ∑
𝐼∈𝒜𝑛

𝜇(𝐼) = ∑
𝐼∈𝒜𝑛

𝜈(𝐼) = 𝜈(𝑈𝑛 ∩ 𝑉𝑛).

Therefore, 𝜇(𝐸) = 𝜈(𝐸).

4. /8Let 𝐸 ⊂ ℝ2 be Borel, let 𝑥 ∈ ℝ and denote 𝐸𝑥 = {𝑦 ∈ ℝ ∶ (𝑥, 𝑦) ∈ 𝐸} ⊂ ℝ. Show, that 𝐸𝑥 is Borel.
Hint: Show, that the collection of all sets 𝐸 ⊂ ℝ2 which have the desired property is a 𝜎-algebra which
contains all open sets.
Remark: The corresponding statement for Lebesgue measurable sets fails.

Solution: Let 𝑥 ∈ ℝ. Then for every open set 𝑈 the set 𝑈𝑥 is open, too. In particular, 𝑈𝑥 is
Borel. Let 𝐴1, 𝐴2, … ⊂ ℝ2 have the property that 𝐴𝑥

𝑛 is Borel. Then

( ⋃
𝑛∈ℕ

𝐴𝑛)
𝑥

= ⋃
𝑛∈ℕ

𝐴𝑥
𝑛,

which is a countable union of Borel sets and thus Borel itself. Moreover,

(ℝ2 ∖ 𝐴1)𝑥 = ℝ ∖ (𝐴𝑥
1),

which is the complement of a Borel set and hence Borel itself. We can conclude that the set of
all sets 𝐴 ⊂ ℝ2 such that 𝐴𝑥 is Borel is a 𝜎-algebra which contains all open sets. Since the Borel
𝜎-algebra is the smallest 𝜎-algebra which contains all Borel sets, it must belong to this 𝜎-algebra.
Hence, for every Borel set 𝐸 also 𝐸𝑥 is Borel.

5. /8For 𝑓, 𝑔 ∶ ℝ → [−∞, ∞] recall the definition of the convolution,

(𝑓 ∗ 𝑔)(𝑥) ≔ ∫ 𝑓(𝑥 − 𝑦) ⋅ 𝑔(𝑦) dℒ(𝑦).

Let 𝐸, 𝐹 ⊂ ℝ be Lebesgue measurable with ℒ(𝐸), ℒ(𝐹) < ∞. Show, that the convolution 1𝐸 ∗ 1𝐹 ∶
ℝ → ℝ is a continuous function.
Hint: First consider the case that 𝐸 is an interval. (However, there is also a way to solve this
question that doesn’t use this hint.)
Remark: In fact 𝑓 ∗ 𝑔 is continuous if 𝑓 ∈ 𝐿𝑝(ℝ𝑑) and 𝑔 ∈ 𝐿𝑝′(ℝ𝑑).



Solution: Fast solution: By Proposition 4.2.7 we have

|1𝐸 ∗ 1𝐹 (𝑥) − 1𝐸 ∗ 1𝐹 (𝑦)| = ∫(1𝐸(𝑥 − 𝑧) − 1𝐸(𝑦 − 𝑧))1𝐹 (𝑧) dℒ(𝑧)

≤ ‖1𝐸−𝑥 − 1𝐸−𝑦‖1 → 0

as 𝑦 → 𝑥. This convergence is actually uniform in |𝑥−𝑦| so this even proves uniform convergence.
(This proof combined with Hölder’s inequality also shows that 𝑓 ∗ 𝑔 is continuous if 𝑓 ∈ 𝐿𝑝 and
𝑔 ∈ 𝐿𝑝′ .)
Slow solution that uses hint: The plan is to do the same thing but prove it without referring to
Proposition 4.2.7. Let 𝑥 ∈ ℝ and let 𝜀 > 0. Since ℒ(𝐹) < ∞ we have 1𝐹 ∈ 𝐿1, and thus there
exists a step function with

‖1𝐹 −
𝑛

∑
𝑘=1

𝑎𝑘1𝐼𝑘
‖1 < 𝜀.

Thus,

‖1𝐸 ∗ 1𝐹 − (
𝑛

∑
𝑘=1

𝑎𝑘1𝐼𝑘
) ∗ 1𝐹 ‖∞ = ‖(1𝐸 −

𝑛
∑
𝑘=1

𝑎𝑘1𝐼𝑘
) ∗ 1𝐹 ‖∞

≤ ‖1𝐸 − (
𝑛

∑
𝑘=1

𝑎𝑘1𝐼𝑘
)‖1 < 𝜀.

Now, for any 𝑘 ≤ 𝑛 we have

|(1𝐸 ∗ 1𝐼𝑘
)(𝑥) − (1𝐸 ∗ 1𝐼𝑘

)(𝑦)| = | ∫ 1𝐸(𝑥 − 𝑧)(1𝐼𝑘
(𝑧) − 1𝐼𝑘

(𝑧 + 𝑦 − 𝑥)) dℒ(𝑧)

≤ ∫ |1𝐼𝑘
(𝑧) − 1𝐼𝑘

(𝑧 + 𝑦 − 𝑥)| dℒ(𝑧) = 2|𝑥 − 𝑦|.

Thus, for 𝛿 < 𝜀 ∑𝑛
𝑘=1 𝑎𝑘/2 and |𝑥 − 𝑦| < 𝛿 we obtain

∣1𝐸 ∗ (
𝑛

∑
𝑘=1

𝑎𝑘1𝐼𝑘
)(𝑥) − 1𝐸 ∗ (

𝑛
∑
𝑘=1

𝑎𝑘1𝐼𝑘
)(𝑧)∣ ≤

𝑛
∑
𝑘=1

𝑎𝑘|1𝐸 ∗ 1𝐼𝑘
∗ (𝑥) − 1𝐸 ∗ 1𝐼𝑘

∗ (𝑧)| ≤ 𝜀.

Combining the estimates we can conclude

|1𝐸 ∗ 1𝐹 (𝑥) − 1𝐸 ∗ 1𝐹 (𝑧)|

≤ ‖1𝐸 ∗ 1𝐹 − 1𝐸 ∗ (
𝑛

∑
𝑘=1

𝑎𝑘1𝐼𝑘
)‖∞ + |1𝐸 ∗ (

𝑛
∑
𝑘=1

𝑎𝑘1𝐼𝑘
)(𝑥) − 1𝐸 ∗ (

𝑛
∑
𝑘=1

𝑎𝑘1𝐼𝑘
)(𝑧)| ≤ 2𝜀.

This proves continuity, even uniform continuity.

6. Let 𝑓 ∈ 𝐿1(ℝ𝑑). For 𝑥 ∈ ℝ𝑑 and 𝑟 > 0 abbreviate

𝑓𝐵(𝑥,𝑟) ≔ 1
ℒ(𝐵(𝑥, 𝑟)) ∫

𝐵(𝑥,𝑟)
𝑓 dℒ.

(a) /4Show, that for any 𝑟 > 0 the map ℝ𝑑 ∋ 𝑥 ↦ 𝑓𝐵(𝑥,𝑟) is continuous, and that for any 𝑥 ∈ ℝ𝑑 the
map (0, ∞) ∋ 𝑟 ↦ 𝑓𝐵(𝑥,𝑟) is continuous.

(b) /4Conclude, that the Hardy-Littlewood maximal function 𝑀𝑓 ∶ ℝ𝑑 → (−∞, ∞] given by 𝑀𝑓(𝑥) =
sup𝑟>0 𝑓𝐵(𝑥,𝑟) is a Lebesgue measurable function.



Remark: We already used in the lecture that the Hardy-Littlewood maximal function is measurable.
I forgot to prove it there so we do it here instead. Also, the Hardy-Littlewood maximal function
is usually defined in terms of |𝑓|, but it makes not much difference.

Solution:

(i) Let 𝑟𝑛 → 𝑟 and consider 𝑔𝑛 = 𝑓1𝐵(𝑥,𝑟𝑛). Then 𝑔𝑛 ≤ |𝑓| and 𝑔𝑛(𝑥) → 𝑓1𝐵(𝑥,𝑟) for every
𝑥 ∈ ℝ𝑑 ∖ 𝜕𝐵(𝑥, 𝑟), so in particular for ℒ-almost every 𝑥. By dominated convergence we can
conclude

lim
𝑛→∞

∫
𝐵(𝑥,𝑟𝑛)

𝑓 dℒ = ∫
𝐵(𝑥,𝑟)

𝑓 dℒ.

Applying the same to 𝑓 = 1𝐵(𝑥,2𝑟) we can conclude ℒ(𝐵(𝑥, 𝑟𝑛)) → ℒ(𝐵(𝑥, 𝑟)). Thus,

lim
𝑛→∞

1
𝐵(𝑥, 𝑟𝑛) ∫

𝐵(𝑥,𝑟𝑛)
𝑓 dℒ = 1

𝐵(𝑥, 𝑟) ∫
𝐵(𝑥,𝑟)

𝑓 dℒ.

Similarly, let 𝑥𝑛 → 𝑥 and denote 𝑔𝑛(𝑥) = 𝑓𝐵(𝑥𝑛,𝑟). Then again 𝑔𝑛(𝑥) → 𝑓𝐵(𝑥,𝑟) for every
𝑥 ∈ ℝ𝑑 ∖ 𝜕𝐵(𝑥, 𝑟) and thus

lim
𝑛→∞

1
𝐵(𝑥𝑛, 𝑟) ∫

𝐵(𝑥𝑛,𝑟)
𝑓 dℒ = 1

𝐵(𝑥, 𝑟) ∫
𝐵(𝑥,𝑟)

𝑓 dℒ.

(ii) By the first continuity we have 𝑀𝑓(𝑥) = sup𝑟∈ℚ,𝑟>0 𝑓𝐵(𝑥,𝑟). This makes 𝑀𝑓 the supremum
of a countable set of functions which by the second continuity are continuous and thus
measurable. Hence also 𝑀𝑓 is measurable.


