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Introduction: Background

For f : Rn → R the centered Hardy-Littlewood maximal function is
defined by

Mcf (x) = sup
r>0

f B(x ,r) with f B(x ,r) =
1

L(B(x , r))

ˆ
B(x ,r)

|f |.

Theorem (Hardy-Littlewood maximal function theorem)

∥Mcf ∥Lp(Rn) ≲n,p ∥f ∥Lp(Rn)

if and only if p > 1.

∥Mcf ∥L1,∞(Rn) ≲n ∥f ∥L1(Rn)
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Introduction: Background

Proof: p = ∞: ✓.

p = 1:

Theorem (Vitali covering lemma)

Let B be a (bounded) set of balls. Then it has a subset S ⊂ B of
disjoint balls with ⋃

B ⊂
⋃
B∈S

5B.

For every λ > 0 need to estimate

L({x ∈ Rn : Mcf (x) > λ})

≤ L
(⋃

{B : f B > λ}
)

≤
∑
B∈S

5nL(B) ≤ 5n
∑
B∈S

1

λ

ˆ
B
|f |

≤ 5n
∥f ∥L1(Rn)

λ
✓

1 < p < ∞ by interpolation ✓.
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Introduction: Background

Theorem (Juha Kinnunen (1997))

For p > 1 we have

∥∇Mcf ∥Lp(Rn) ≲n,p ∥∇f ∥Lp(Rn)

Proof: For e ∈ Rn by the sublinearity of Mc

∂eM
cf (x) ∼ Mcf (x + he) −Mcf (x)

h

≤ Mc(f (· + he) − f )(x)

h

= Mc
( f (· + he) − f )

h

)
(x) ∼ Mc(∂e f )(x)

By the Hardy-Littlewood maximal function theorem for p > 1

∥∇Mcf ∥Lp(Rn) ≤ ∥Mc(|∇f |)∥Lp(Rn) ≲n,p ∥∇f ∥Lp(Rn)
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Is it true that

∥∇Mcf ∥L1(Rn) ≲n ∥∇f ∥L1(Rn)?

Uncentered Hardy-Littlewood maximal function

M̃f (x) = sup
B∋x

f B .

Endpoint question by Ha ljasz and Onninen is interesting for M̃ and
other maximal operators.
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Introduction: In one dimension

Theorem (Tanaka 2002, Aldaz and Pérez Lázaro 2007)

For f : R → R we have

∥∇M̃f ∥1 ≤ ∥∇f ∥1

1 For almost all x ∈ Rd : M̃f (x) ≥ f (x)

2 In one dimension

∥∇f ∥1 = sup
x1<x2<...

∑
i

|f (xi+1) − f (xi )| = var f .

3 and M̃f (x) = f (x) at a strict local maximum of Mf .
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Introduction: In one dimension

1 If f is continuous in x then

M̃f (x) ≥ lim
r→0

f B(x ,r) = f (x).

2 For any x1 < x2 < . . . we have∑
i

|f (xi+1) − f (xi )| =
∑
i

∣∣∣ˆ xi+1

xi

f ′
∣∣∣ ≤ ∑

i

ˆ xi+1

xi

|f ′| ≤ ∥f ′∥L1(R).

Conversely, assume there are . . . < x−1 < x0 < x1 < . . . such
that for xi ≤ x ≤ xi+1 we have (−1)i f ′(x) ≥ 0. Then

∥f ′∥L1(R) =
∑
i

ˆ xi+1

xi

|f ′| =
∑
i

(−1)i
ˆ xi+1

xi

f ′

=
∑
i

(−1)i
(
f (xi+1) − f (xi )

)
=

∑
i

|f (xi+1) − f (xi )|
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M̃f

var[x0,x2] M̃f = |M̃f (x1) − M̃f (x0)| + |M̃f (x2) − M̃f (x1)|
≤ |f (x1) − f (x0)| + |f (x2) − f (x1)|
≤ var[x0,x2] f
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n = 1 [Tanaka 2002, Aldaz +Pérez Lázaro 2007]
block decreasing f [Aldaz+Pérez Lázaro 2009]
centered Mc, n = 1 [Kurka 2015]
radial f [Luiro 2018]

more related bounds, bounds on other maximal operators, such as
fractional, local,. . . ,



Introduction: Past progress

n = 1 [Tanaka 2002, Aldaz +Pérez Lázaro 2007]
block decreasing f [Aldaz+Pérez Lázaro 2009]
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Introduction: Continuity

Operator continuity of M

f close to g ⇒ Mf close to Mg ?

By sublinearity M(f + g)(x) ≤ Mf (x) + Mg(x), for p > 1 we have

∥Mf −Mg∥Lp(Rn) ≤ ∥M(f − g)∥Lp(Rn) ≲n,p ∥f − g∥Lp(Rn).

However, |∇M(f + g)(x)| ̸≤ |∇Mf (x)| + |∇Mg(x)|. Nevertheless,
[Luiro, 2004] proved for p > 1 that

∥f n − f ∥W 1,p(Rn) → 0 =⇒ ∥∇Mf n −∇Mf ∥Lp(Rn) → 0.

For p = 1 continuity is known in the same cases as the gradient
bound.
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Introduction: New results

We prove the endpoint regularity bound for the maximal function
for

1 uncentered maximal function of characteristic f

2 dyadic maximal operator

3 fractional maximal operator (uncentered & centered +
continuity)

4 cube maximal operator



Introduction: Coarea formula

∥∇f ∥L1(R1) =
∑
i

|f (xi+1) − f (xi )|

=
∑
i

(−1)i (f (xi+1) − f (xi ))

=
∑
i

ˆ (−1)i f (xi+1)

(−1)i f (xi )
1dλ

=
∑
i

ˆ
R

1[(−1)i f (xi ),(−1)i f (xi+1)](λ)dλ

=
∑
i

ˆ
R

#[xi , xi+1] ∩ ∂{x ∈ Rn : f (x) > λ}dλ

=

ˆ
R

#∂{x ∈ R : f (x) > λ} dλ
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Introduction: Reformulation and decomposition

Coarea formula

∥∇f ∥L1(Rn) =

ˆ
R
Hn−1(∂{x ∈ Rn : f (x) > λ})dλ

Compare with layer cake formula/Cavalieri’s principle

∥f ∥L1(Rn) =

ˆ
R
L({x ∈ Rn : f (x) > λ})dλ

Superlevel sets

{Mf > λ} =

{x ∈ Rn : Mf (x) > λ} =
⋃

{B : f B > λ}

for uncentered maximal operators.
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Introduction: Tools

Decomposition of the boundary

Denote

B<
λ = {B : f B > λ, L(B ∩ {f > λ})< 2−n−1L(B)}

and B≥
λ accordingly.

1 relative isoperimetric inequality:

min
{
L(Q ∩ E ),L(Q \ E )

}n−1
≲n Hn−1(Q ∩ ∂E )n.

2 Vitali covering and similar: general balls → separated balls

3 Besicovitch covering for boundary

4 superlevelset estimate: f < 0 on most of B ⇒ most mass
of f lies far above f B
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Proof: Reformulation and decomposition

We have
{Mf > λ} =

⋃
B<
λ ∪

⋃
B≥
λ .

Since {f > λ} ⊂ {Mf > λ} we have

∂{Mf > λ} ⊂ (∂{Mf > λ} \ {f > λ}) ∪ ∂{f > λ}.

We conclude

Decomposition

ˆ
Rd

|∇Mf | ≤
ˆ ∞

0
Hn−1

(
∂
⋃

B≥
λ \ {f > λ}

)
dλ

+

ˆ ∞

0
Hn−1

(
∂
⋃

B<
λ

)
dλ

+

ˆ
Rd

|∇f |
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Proof: High density case B≥
λ

Proposition

For Q,E with L(Q ∩ E ) ≥ 2−n−1L(Q) we have

Hn−1(∂Q \ E ) ≲n Hn−1(Q ∩ ∂E )

E

Q



dyadic maximal operator

Mdf (x) = sup
dyadic Q, Q∋x

f Q .

Hn−1(∂
⋃

Q≥
λ \ {f > λ}) ≤

∑
Q∈Q≥

λ

Hn−1(∂Q \ {f > λ})

≲n

∑
Q∈Q≥

λ

Hn−1(Q ∩ ∂{f > λ})

≤ Hn−1(∂{f > λ})

Proposition

For a set B of balls B with L(B ∩ E ) ≥ 2−n−1L(B) we have

Hn−1
(
∂
⋃

B \ E
)
≲n Hn−1

(⋃
B ∩ ∂E

)
.



dyadic maximal operator

Mdf (x) = sup
dyadic Q, Q∋x

f Q .

Hn−1(∂
⋃

Q≥
λ \ {f > λ}) ≤

∑
Q∈Q≥

λ

Hn−1(∂Q \ {f > λ})

≲n

∑
Q∈Q≥

λ

Hn−1(Q ∩ ∂{f > λ})

≤ Hn−1(∂{f > λ})

Proposition

For a set B of balls B with L(B ∩ E ) ≥ 2−n−1L(B) we have

Hn−1
(
∂
⋃

B \ E
)
≲n Hn−1

(⋃
B ∩ ∂E

)
.



dyadic maximal operator

Mdf (x) = sup
dyadic Q, Q∋x

f Q .

Hn−1(∂
⋃

Q≥
λ \ {f > λ}) ≤

∑
Q∈Q≥

λ

Hn−1(∂Q \ {f > λ})

≲n

∑
Q∈Q≥

λ

Hn−1(Q ∩ ∂{f > λ})

≤ Hn−1(∂{f > λ})

Proposition

For a set B of balls B with L(B ∩ E ) ≥ 2−n−1L(B) we have

Hn−1
(
∂
⋃

B \ E
)
≲n Hn−1

(⋃
B ∩ ∂E

)
.



Q

fQ

λQ
f



Proof: Low density case B<
λ , dyadic

ˆ
R
Hn−1(∂

⋃
Q<

λ ) dλ ≤
∑

Q dyadic

(f Q − λQ)Hn−1(∂Q)

with
L(Q ∩ {f > λQ}) = 2−n−1L(Q)

Proposition

(f Q − λQ)L(Q) ≲n

ˆ ∞

f Q

L(Q ∩ {f > λ}) dλ

where P is maximal above λ̄P and

L(P ∩ {f > λ̄P}) = 2−1L(P)
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Proof: Low density case B<
λ , dyadic

Combining, we obtain

ˆ
R
Hn−1(∂

⋃
Q<

λ ) dλ

≲n

ˆ
R

∑
Q dyadic

∑
P⊊Q:λ̄P<λ<f P

L(P ∩ {f > λ})

l(Q)
dλ

1 change the order of summation

2 convergence of the geometric sum

3 apply the relative isoperimetric inequality to P.

4 coarea formula to recover ∥∇f ∥1
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Proof: Low density case B<
λ , general cubes

cube maximal function

Mf (x) = sup
cube Q, Q∋x

f Q .

We reduce to almost dyadic cubes, using

Proposition (Vitali/Besicovitch for perimeter)

For any (finite) set of cubes Q there is a subset S ⊂ Q of disjoint
cubes such that

Hn−1
(
∂
⋃

Q
)
≲n

∑
S∈S

Hn−1(∂S).
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All arguments work

except low density bound (f B − λB)L(B) ≲n?
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