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Theorem (Hardy-Littlewood maximal function theorem)
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By the Hardy-Littlewood maximal function theorem for p > 1
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Question (Hajtasz and Onninen 2004)
Is it true that

[VMEF || ygay Sn IVE [l 2@y ?
Uncentered Hardy-Littlewood maximal function

Mf(x) = sup fg.
B>x

Endpoint question by Hatjasz and Onninen is interesting for M and
other maximal operators.
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Theorem (Tanaka 2002, Aldaz and Pérez Lazaro 2007)
For f : R — R we have

IVMfly < V£l

@ For almost all x € R?: Mf(x) > f(x)

@ In one dimension

IVflli= sup ny xi11) — f(x;)| = var f.

x1<x2<..

@ and Mf(x) = f(x) at a strict local maximum of Mf.
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Conversely, assume there are ... < x_1 < xp < x1 < ... such
that for x; < x < xj;1 we have (—=1)'f’(x) > 0. Then
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Varp, ] Mf = [Mf(x1) — Mf(x0)| + [Mf (x2) — Mf(x1)|
< |f(xa) = F(x0)| + [f(x2) — f(x1)]
S var[XO,)Q] f
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Past progress

n=1 [Tanaka 2002, Aldaz +Pérez Lizaro 2007]
block decreasing f  [Aldaz+Pérez Lazaro 2009]

centered M€, n=1 [Kurka 2015]

radial f [Luiro 2018]

more related bounds, bounds on other maximal operators, such as
fractional, local,. . .,
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Continuity

Operator continuity of M
f close to g = Mf close to Mg 7

By sublinearity M(f + g)(x) < Mf(x) + Mg(x), for p > 1 we have
IMF = Mgl < M7 — )lligery Snp IF = ll sy

However, |[VM(f + g)(x)| £ |[VMf(x)| 4+ |VMg(x)|. Nevertheless,
[Luiro, 2004] proved for p > 1 that

For p = 1 continuity is known in the same cases as the gradient
bound.



New results

We prove the endpoint regularity bound for the maximal function
for
@ uncentered maximal function of characteristic f
@ dyadic maximal operator
@ fractional maximal operator (uncentered & centered +
continuity)

@ cube maximal operator
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Tools

Decomposition of the boundary

Denote
By ={B:fg >\ LBN{f>A})<27""1(B)}
and B; accordingly.
@ relative isoperimetric inequality:
min{£(QN E),£(Q\ E)}" ' <, H""1(Q N IE)".

@ Vitali covering and similar: general balls — separated balls
© Besicovitch covering for boundary

@ superlevelset estimate: f < 0 on most of B = most mass
of f lies far above fg
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Reformulation and decomposition

We have
{Mf >\ =By ul B
Since {f > A} C {Mf > A} we have

A{MF > A} C (B{MF > A} \ [ > A UA{f > Al

We conclude

Decomposition

VA < /OOO 'H"—l(aU B \M) A
+ /0 H (ol B5) ax

o [ o
Rd



High density case Bf

Propostion

For @, E with £L(Q N E) > 27""1£(Q) we have

H'HOQ\ E) < H™HQ N OE)

. ©

\
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dyadic maximal operator

M4f(x) = sup fo.
dyadic Q, @3x

HrEU e\ {F>A) < Y 1O\ {F > A}
Qeox
Se Y HTHQNO{F > A
QeQoy
<HHO{f > A)})

Proposition
For a set B of balls B with L(BN E) > 27""1£(B) we have

H (0 JB\E) o w7 (|JBNOE).
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Q dyadic
with
LQN{f>Xo})=2"""1L(Q)

Proposition

(fo — Ao)L Nn/ L(PA{F > A})dA
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where P is maximal above Ap and

L(PN{f>Xp})=271L(P)
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Low density case By, dyadic

Combining, we obtain

/RH"—I(aU 05)dx

L(PO{F>A})
/R o @

Q dyadic pCQ: >\P<>\<fp

change the order of summation
convergence of the geometric sum

apply the relative isoperimetric inequality to P.

©0 00

coarea formula to recover ||Vf||1
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Low density case By, general cubes

cube maximal function

Mf(x)= sup fp.
cube Q, @>x

We reduce to almost dyadic cubes, using

Proposition (Vitali/Besicovitch for perimeter)

For any (finite) set of cubes Q there is a subset S C Q of disjoint
cubes such that

1 (0l Q) sn Y- HTH09).

Ses
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@ All arguments work
@ except low density bound (fg — Ag)L(B) Sn?



Thank you



