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Background

For f : R” — R the centered Hardy-Littlewood maximal function is
defined by

1
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Theorem (Hardy-Littlewood maximal function theorem)
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if and only if p > 1.
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Background

Theorem (Juha Kinnunen (1997))
For p > 1 we have
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Proof: For e € R" by the sublinearity of M¢

MC¢f(x + he) — M¢f(x)
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= M (S ) (x) ~ MU ()
By the Hardy-Littlewood maximal function theorem for p > 1
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Background

Question (Hajtasz and Onninen 2004)
Is it true that

[VMEF || ygay Sn IVE [l 2@y ?
Uncentered Hardy-Littlewood maximal function

Mf(x) = sup fg.
B>x

Endpoint question by Hatjasz and Onninen is interesting for M and
other maximal operators.



In one dimension

Theorem (Tanaka 2002, Aldaz and Pérez Lazaro 2007)
For f : R — R we have

IVMFly < V£
Proof:

@ In one dimension

IVflli= sup nyx,H — f(x;)| = var .

x1<x2<..

o For almost all x € R?: Mf(x) > f(x)
e and Mf(x) = f(x) at a strict local maximum of Mf.
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Varp, ] Mf = [Mf(x1) — Mf(x0)| + [Mf (x2) — Mf(x1)|
< |f(xa) = F(x0)| + [f(x2) — f(x1)]
S var[XO,)Q] f



In one dimension: centered

Theorem (Kurka 2015)
For f : R — R we have

[IVMf|l1 < C[[VF]1.
C =17 Yes, for E C R and f = 1¢ (Bilz and W. 2022).



Higher dimensions

Theorem (Luiro 2018)

For f : R" — R radial we have
IVMf|y < C|[VF|1.

Theorem (Aldaz+Pérez Lazaro 2009)
For f : R" — R block-decreasing we have

IVMFl; < C||VF]s.



The fractional maximal function

For 0 < a < n the centered fractional Hardy-Littlewood maximal
function is

MG f(x) = sup r*fg(x, -
r>0

Corresponding Hardy-Littlewood theorem

”Maf”LPa(R") Sn,a,p ||f”LP(R")

pn
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with p, =
bound

> p if and only if p > 1. Corresponding regularity

[VMaf||tpa )y Sniap IVE o@n),

proven for p > 1.



The fractional maximal function

Theorem (Kinnunen and Saksman 2003)

Fora>1
VMG f(x)| Sn Mg_1f(x)]-

Corollary (Carneiro and Madrid 2016)

For a > 1 we have 1, = -2~ = (%), and -5 > 1 and
therefore
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Endpoint bound is known for all & > 0 for n =1, radial f, lacunary
and same for M€ due to [Beltran, Madrid, Luiro, Ramos, Saari
2016-2019].



Higher dimensions

Theorem (W. 2022)

For E C R" we have
IVM(1g)[l < C[[V1g]s.

Theorem (W. 2023)
For f : R” — R we have

IVMYf|ly < C[ Vs
for the dyadic maximal function

M4f(x) = sup fq.
dyadic cube Q, @>x



Higher dimensions

Theorem (W. 2024)

Combining tools from both leads to the same bound for cube
maximal operator given by

Mif(x)= sup fo.
cube Q, Q3x

Proof works for more general sets with a tiling property, but not for
balls and certainly not for centered M°.

Theorem (W. 2022)

The arguments for the dyadic maximal operator can be used also
for the fractional maximal operators M, M¢, for all o > 0.




Proof ingredients

Coarea formula

IV lagn = /R HL(D{x € R" : £(x) > A})dA

Superlevel sets

{x eR": Mf(x) > A} = J{B: f5z > A}

for uncentered maximal operators.

Relative isoperimetric inequality

min{£(QN E),£(Q\ E)}"! <, H™1(Q N IE)".



Example: dyadic, characteristic, low level

Consider f =1pand M =M% and let 0 < A <27 "L Let Q be a
maximal dyadic cube with fo > A. Then

LENQ)/L(Q)=Tfg e (N2"A] C (0,1/2],

n—1 —

HLOQ) ~ (L(EN Q)/N)T <A~ T HLH(QNIE),

HOLO{MIF > A}) = H”_1(8U{maximal Q:fo> A})
< > HTY0Q)
maximal Q:f o>\
< AT > HHQNOE)
maximal Q:fo>A
< ATEIHTYOE) = A7 var(f).



Proof ingredients

O relative isoperimetric inequality

@ Vitaly covering and similar: general balls — separated balls

© Vitaly covering for boundary

@ superlevelset estimate: f < 0 on most of B = most mass
of f lies far above fpg

. isoperimetric, boundar
used in proof Vitali Vitalyy superlevel
dyadic char. f. X
char. f. X X
dyadic X X
fractional X X
cube X X X




© Centered maximal operator M, that averages against a
smooth kernel ¢ satisfies

VM flly < [[VFIla

if ¢ : R — (0, 00) is associated to a PDE [Carneiro, Finder,
Sousa and Svaiter 2013,2018]

@ Discrete f : Z — R mostly mirrors continuous setting but not
entirely. Also f : G — R on a graph. [Bober, Carneiro,
Gonzalez-Riquelme, Hughes, Madrid, Pierce,. . .]

© on Hardy-Sobolev space [Pérez, Picon, Saari, Sousa 2018|



@ local maximal functions on domains Q C R” that average
only over balls B C Q: Many questions remain open for the
local fractional maximal function since it prefers to average
over large balls. [Heikkinen, Kinnunen, Korvenpaa, Lindqvist,
Raamos, Saari, Tuominen, W.,...]

@ fractional smoothing
|9 Mo, < ClIfl| 2.

known to hold or fail in some cases and open in others.

O local regularity: For f € BV(R") is VMf € L}Y(R") or only a
Radon measure? some cases known, some open
[Gonzalez-Riquelme 2022, Lahti 2021]



Continuity

Stronger property than boundedness:

Operator continuity of M
f close to g = Mf close to Mg 7

By sublinearity
Mf(x) — Mg(x) < M(f — g)(x) + Mg(x) — Mg(x)
and thus

IMF — Mgl ogany < IM(F = &)llioan) S IF — &llioan).



Continuity

However,
[VMFf(x) — VMg(x)| £ [VM(f — g)(x)|.
Nevertheless, [Luiro 2004] proved for p > 1 that
1fn = fllwrie@ny =0 = [[VMf, — VMF| 1p@n) — 0.

Operator continuity is known in many of the cases of boundedness
due to many results by [Beltran, Carneiro, Gonzilez-Riquelme,
Madrid, Pierce,... 2013—], but not all cases.



Higher derivatives

What about (Mf)”?

Typically, (Mf)” & LP(R), similarly to how |f|” & LP(R).

Nf —
me

X0 X1 Xo



And if we relax to var((Mf)')?
For f € C}(R) it is easy to see that var(|f]’) < 2var(f’).

Theorem (Temur 2022)
If f : Z — R is of the form f = 1g we have

IMF)" 12 < ClIF”)la.

Theorem (W. 2024)
If f : R — R is radially decreasing and symmetric then

var((Mf)') < Cvar(f').

Theorem (W. 2024)
There exist radially decreasing i : R — R is with

i var((Mf,)) _
k—oo  var(f})

MF€? Fractional derivatives? Best constants?



Thank you



