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Background

For f : Rn → R the centered Hardy-Littlewood maximal function is
defined by

Mcf (x) = sup
r>0

f B(x ,r) with f B(x ,r) =
1

L(B(x , r))

ˆ
B(x ,r)

|f |.

Theorem (Hardy-Littlewood maximal function theorem)

∥Mcf ∥Lp(Rn) ≲n,p ∥f ∥Lp(Rn)

if and only if p > 1.

∥Mcf ∥L1,∞(Rn) ≲n ∥f ∥L1(Rn)



Background

Theorem (Juha Kinnunen (1997))

For p > 1 we have

∥∇Mcf ∥Lp(Rn) ≲n,p ∥∇f ∥Lp(Rn)

Proof: For e ∈ Rn by the sublinearity of Mc

∂eM
cf (x) ∼ Mcf (x + he) −Mcf (x)

h

≤ Mc(f (· + he) − f )(x)

h

= Mc
( f (· + he) − f )

h

)
(x) ∼ Mc(∂e f )(x)

By the Hardy-Littlewood maximal function theorem for p > 1

∥∇Mcf ∥Lp(Rn) ≤ ∥Mc(|∇f |)∥Lp(Rn) ≲n,p ∥∇f ∥Lp(Rn)



Background

Question (Haj lasz and Onninen 2004)

Is it true that

∥∇Mcf ∥L1(Rn) ≲n ∥∇f ∥L1(Rn)?

Uncentered Hardy-Littlewood maximal function

M̃f (x) = sup
B∋x

f B .

Endpoint question by Ha ljasz and Onninen is interesting for M̃ and
other maximal operators.



In one dimension

Theorem (Tanaka 2002, Aldaz and Pérez Lázaro 2007)

For f : R → R we have

∥∇M̃f ∥1 ≤ ∥∇f ∥1

Proof:

In one dimension

∥∇f ∥1 = sup
x1<x2<...

∑
i

|f (xi+1) − f (xi )| = var f .

For almost all x ∈ Rd : M̃f (x) ≥ f (x)

and M̃f (x) = f (x) at a strict local maximum of Mf .



x0 x1 x2

f
M̃f

var[x0,x2] M̃f = |M̃f (x1) − M̃f (x0)| + |M̃f (x2) − M̃f (x1)|
≤ |f (x1) − f (x0)| + |f (x2) − f (x1)|
≤ var[x0,x2] f



In one dimension: centered

Theorem (Kurka 2015)

For f : R → R we have

∥∇Mcf ∥1 ≤ C∥∇f ∥1.

C = 1? Yes, for E ⊂ R and f = 1E (Bilz and W. 2022).



Higher dimensions

Theorem (Luiro 2018)

For f : Rn → R radial we have

∥∇M̃f ∥1 ≤ C∥∇f ∥1.

Theorem (Aldaz+Pérez Lázaro 2009)

For f : Rn → R block-decreasing we have

∥∇M̃f ∥1 ≤ C∥∇f ∥1.



The fractional maximal function

For 0 < α < n the centered fractional Hardy-Littlewood maximal
function is

Mc
αf (x) = sup

r>0
rαf B(x ,r).

Corresponding Hardy-Littlewood theorem

∥Mαf ∥Lpα (Rn) ≲n,α,p ∥f ∥Lp(Rn)

with pα = pn
n−αp > p if and only if p > 1. Corresponding regularity

bound
∥∇Mαf ∥Lpα (Rn) ≲n,α,p ∥∇f ∥Lp(Rn),

proven for p > 1.



The fractional maximal function

Theorem (Kinnunen and Saksman 2003)

For α ≥ 1
|∇Mc

αf (x)| ≲n |Mc
α−1f (x)|.

Corollary (Carneiro and Madrid 2016)

For α ≥ 1 we have 1α = n
n−α =

(
n

n−1

)
α−1

and n
n−1 > 1 and

therefore

∥∇Mc
αf ∥L1α (Rn) ≲n ∥Mc

α−1f ∥L1α (Rn) ≲n ∥f ∥
L

n
n−1 (Rn)

≲n ∥∇f ∥L1(Rn).

Endpoint bound is known for all α > 0 for n = 1, radial f , lacunary
and same for Mc due to [Beltran, Madrid, Luiro, Ramos, Saari
2016-2019].



Higher dimensions

Theorem (W. 2022)

For E ⊂ Rn we have

∥∇M̃(1E )∥1 ≤ C∥∇1E∥1.

Theorem (W. 2023)

For f : Rn → R we have

∥∇Mdf ∥1 ≤ C∥∇f ∥1

for the dyadic maximal function

Mdf (x) = sup
dyadic cube Q, Q∋x

f Q .



Higher dimensions

Theorem (W. 2024)

Combining tools from both leads to the same bound for cube
maximal operator given by

Mdf (x) = sup
cube Q, Q∋x

f Q .

Proof works for more general sets with a tiling property, but not for
balls and certainly not for centered Mc.

Theorem (W. 2022)

The arguments for the dyadic maximal operator can be used also
for the fractional maximal operators M̃α,M

c
α for all α > 0.



Proof ingredients

Coarea formula

∥∇f ∥L1(Rn) =

ˆ
R
Hn−1(∂{x ∈ Rn : f (x) > λ})dλ

Superlevel sets

{x ∈ Rn : Mf (x) > λ} =
⋃

{B : f B > λ}

for uncentered maximal operators.

Relative isoperimetric inequality

min
{
L(Q ∩ E ),L(Q \ E )

}n−1
≲n Hn−1(Q ∩ ∂E )n.



Example: dyadic, characteristic, low level

Consider f = 1E and M = Md and let 0 < λ < 2−n−1. Let Q be a
maximal dyadic cube with f Q > λ. Then

L(E ∩ Q)/L(Q) = f Q ∈ (λ, 2nλ] ⊂ (0, 1/2],

Hn−1(∂Q) ∼ (L(E ∩ Q)/λ)
n−1
n ≲ λ− n−1

n Hn−1(Q ∩ ∂E ),

Hn−1(∂{Mdf > λ}) = Hn−1
(
∂
⋃

{maximal Q : f Q > λ}
)

≤
∑

maximal Q:f Q>λ

Hn−1(∂Q)

≲ λ− n
n−1

∑
maximal Q:f Q>λ

Hn−1(Q ∩ ∂E )

≤ λ− n
n−1Hn−1(∂E ) = λ− n

n−1 var(f ).



Proof ingredients

1 relative isoperimetric inequality

2 Vitaly covering and similar: general balls → separated balls

3 Vitaly covering for boundary

4 superlevelset estimate: f < 0 on most of B ⇒ most mass
of f lies far above f B

used in proof
isoperimetric,

Vitali
boundary

Vitaly
superlevel

dyadic char. f. x
char. f. x x
dyadic x x
fractional x x
cube x x x



Variants

1 Centered maximal operator Mφ that averages against a
smooth kernel φ satisfies

∥∇Mφf ∥1 ≤ ∥∇f ∥1

if φ : R → (0,∞) is associated to a PDE [Carneiro, Finder,
Sousa and Svaiter 2013,2018]

2 Discrete f : Z → R mostly mirrors continuous setting but not
entirely. Also f : G → R on a graph. [Bober, Carneiro,
Gonzalez-Riquelme, Hughes, Madrid, Pierce,. . . ]

3 on Hardy-Sobolev space [Pérez, Picon, Saari, Sousa 2018]



Variants

4 local maximal functions on domains Ω ⊂ Rn that average
only over balls B ⊂ Ω: Many questions remain open for the
local fractional maximal function since it prefers to average
over large balls. [Heikkinen, Kinnunen, Korvenpää, Lindqvist,
Raamos, Saari, Tuominen, W.,. . . ]

5 fractional smoothing

∥∇Mαf ∥pα ≤ C∥f ∥ pn
n−p

,

known to hold or fail in some cases and open in others.

6 local regularity: For f ∈ BV(Rn) is ∇Mf ∈ L1(Rn) or only a
Radon measure? some cases known, some open
[Gonzalez-Riquelme 2022, Lahti 2021]



Continuity

Stronger property than boundedness:

Operator continuity of M

f close to g ⇒ Mf close to Mg ?

By sublinearity

Mf (x) −Mg(x) ≤ M(f − g)(x) + Mg(x) −Mg(x)

and thus

∥Mf −Mg∥Lp(Rn) ≤ ∥M(f − g)∥Lp(Rn) ≲n,p ∥f − g∥Lp(Rn).



Continuity

However,

|∇Mf (x) −∇Mg(x)| ̸≤ |∇M(f − g)(x)|.

Nevertheless, [Luiro 2004] proved for p > 1 that

∥f n − f ∥W 1,p(Rn) → 0 =⇒ ∥∇Mf n −∇Mf ∥Lp(Rn) → 0.

Operator continuity is known in many of the cases of boundedness
due to many results by [Beltran, Carneiro, González-Riquelme,
Madrid, Pierce,. . . 2013–], but not all cases.



Higher derivatives

What about (M̃f )′′?

Typically, (M̃f )′′ ̸∈ Lp(R), similarly to how |f |′′ ̸∈ Lp(R).

x0 x1 x2

f
M̃f



And if we relax to var((M̃f )′)?
For f ∈ C 1

0 (R) it is easy to see that var(|f |′) ≤ 2 var(f ′).

Theorem (Temur 2022)

If f : Z → R is of the form f = 1E we have

∥(M̃f )′′∥1 ≤ C∥f ′′∥1.

Theorem (W. 2024)

If f : R → R is radially decreasing and symmetric then

var((M̃f )′) ≤ C var(f ′).

Theorem (W. 2024)

There exist radially decreasing f k : R → R is with

lim
k→∞

var((M̃f k)′)

var(f ′k)
= ∞.

Mc? Fractional derivatives? Best constants?



Thank you


