Core Techniques

Covering Techniques

Summary 0000 References 0

Higher Dimensional Techniques for the Regularity of Maximal Functions

Julian Weigt

Aalto University

December 13 and 15, 2021

History

Core Techniques

Covering Techniques

Summary 0000 References 0

Outline

1 History

- Background
- Onedimensional case

2 Core Techniques

- Reduction and decomposition
- High density case
- Low density case

3 Covering Techniques

- Boundary of large balls
- High density, general version
- Dyadic cubes to general cubes

History	
00000	000000

Core Techniques

Covering Techniques

Summary 2000 References 0

History

1 History

- Background
- Onedimensional case

2 Core Techniques

- Reduction and decomposition
- High density case
- Low density case

3 Covering Techniques

- Boundary of large balls
- High density, general version
- Dyadic cubes to general cubes

Core Techniques

Covering Techniques

Summary

References 0

Background

1 History

- Background
- Onedimensional case

2 Core Techniques

- Reduction and decomposition
- High density case
- Low density case

3 Covering Techniques

- Boundary of large balls
- High density, general version
- Dyadic cubes to general cubes

History	Core Techniques	Covering Techniques	Summary	References
000000000				

For $f: \mathbb{R}^d \to \mathbb{R}$ the centered Hardy-Littlewood maximal function is defined by

$$\mathrm{M}^{\mathrm{c}}f(x) = \sup_{r>0} f_{B(x,r)} \quad \text{with} \qquad f_{B(x,r)} = \frac{1}{\mathcal{L}(B(x,r))} \int_{B(x,r)} |f|.$$

History	Core Techniques	Covering Techniques	Summary	References
000000000000000000000000000000000000000				

For $f: \mathbb{R}^d \to \mathbb{R}$ the centered Hardy-Littlewood maximal function is defined by

$$M^{c}f(x) = \sup_{r>0} f_{B(x,r)} \quad \text{with} \qquad f_{B(x,r)} = \frac{1}{\mathcal{L}(B(x,r))} \int_{B(x,r)} |f|.$$

The Hardy-Littlewood maximal function theorem:

$$\|\mathrm{M}^{\mathrm{c}} f\|_{L^p(\mathbb{R}^d)} \leq C_{d,p} \|f\|_{L^p(\mathbb{R}^d)} \qquad \text{ if and only if } p>1$$

History	Core Techniques	Covering Techniques	Summary	References
000000000000000000000000000000000000000				

For $f: \mathbb{R}^d \to \mathbb{R}$ the centered Hardy-Littlewood maximal function is defined by

$$M^{c}f(x) = \sup_{r>0} f_{B(x,r)} \quad \text{with} \qquad f_{B(x,r)} = \frac{1}{\mathcal{L}(B(x,r))} \int_{B(x,r)} |f|.$$

The Hardy-Littlewood maximal function theorem:

$$\|\mathrm{M}^{\mathrm{c}} f\|_{L^{p}(\mathbb{R}^{d})} \leq C_{d,p} \|f\|_{L^{p}(\mathbb{R}^{d})} \qquad \text{ if and only if } p > 1$$

Juha Kinnunen (1997):

$$\|
abla \mathrm{M}^{\mathrm{c}} f\|_{L^{p}(\mathbb{R}^{d})} \leq C_{d,p} \|
abla f\|_{L^{p}(\mathbb{R}^{d})}$$
 if $p > 1$

History	Core Techniques	Covering Techniques	Summary	References
000000000000000000000000000000000000000				

For $f : \mathbb{R}^d \to \mathbb{R}$ the centered Hardy-Littlewood maximal function is defined by

$$M^{c}f(x) = \sup_{r>0} f_{B(x,r)} \quad \text{with} \qquad f_{B(x,r)} = \frac{1}{\mathcal{L}(B(x,r))} \int_{B(x,r)} |f|.$$

The Hardy-Littlewood maximal function theorem:

$$\|\mathrm{M}^{\mathrm{c}} f\|_{L^{p}(\mathbb{R}^{d})} \leq C_{d,p} \|f\|_{L^{p}(\mathbb{R}^{d})}$$
 if and only if $p > 1$

Juha Kinnunen (1997):

$$\|
abla \mathrm{M}^{\mathrm{c}} f\|_{L^{p}(\mathbb{R}^{d})} \leq C_{d,p} \|
abla f\|_{L^{p}(\mathbb{R}^{d})}$$
 if $p > 1$

Question (Hajłasz and Onninen 2004)

Is it true that

 $\|\nabla \mathbf{M}^{\mathrm{c}} f\|_{L^{1}(\mathbb{R}^{d})} \leq C_{d} \|\nabla f\|_{L^{1}(\mathbb{R}^{d})}?$

History	Core Techniques	Covering Techniques	Summary	References
○OO●O○○○○○○	000000000000000000000000		0000	0
Proof				

$$\partial_{e} \mathrm{M}^{\mathrm{c}} f(x) \sim rac{\mathrm{M}^{\mathrm{c}} f(x+he) - \mathrm{M}^{\mathrm{c}} f(x)}{h}$$

History	Core Techniques	Covering Techniques	Summary	References
○OO●O○○○○○○	000000000000000000000000		0000	0
Proof				

$$\partial_e \mathrm{M}^{\mathrm{c}} f(x) \sim rac{\mathrm{M}^{\mathrm{c}} f(x+he) - \mathrm{M}^{\mathrm{c}} f(x)}{h} \\ \leq rac{\mathrm{M}^{\mathrm{c}} (f(\cdot+he) - f)(x)}{h}$$

History ○OO●O○○○○○	Core Techniques	Covering Techniques	Summary 0000	References 0
Proof				

$$egin{aligned} \partial_e \mathrm{M}^\mathrm{c} f(x) &\sim rac{\mathrm{M}^\mathrm{c} f(x+he) - \mathrm{M}^\mathrm{c} f(x)}{h} \ &\leq rac{\mathrm{M}^\mathrm{c} (f(\cdot+he) - f)(x)}{h} \ &= \mathrm{M}^\mathrm{c} \Big(rac{f(\cdot+he) - f)}{h} \Big)(x) \end{aligned}$$

History ○OO●O○○○○○	Core Techniques	Covering Techniques	Summary 0000	References 0
Proof				

$$egin{aligned} \partial_e \mathrm{M}^\mathrm{c} f(x) &\sim rac{\mathrm{M}^\mathrm{c} f(x+he) - \mathrm{M}^\mathrm{c} f(x)}{h} \ &\leq rac{\mathrm{M}^\mathrm{c} (f(\cdot+he)-f)(x)}{h} \ &= \mathrm{M}^\mathrm{c} \Big(rac{f(\cdot+he)-f)}{h} \Big)(x) \sim \mathrm{M}^\mathrm{c} (\partial_e f)(x) \end{aligned}$$

History	Core Techniques	Covering Techniques	Summary	References
○○○●○○○○○○○	000000000000000000000000		0000	0
Droof				

For $e \in \mathbb{R}^d$ by the sublinearity of M^c

$$egin{aligned} \partial_e \mathrm{M}^\mathrm{c} f(x) &\sim rac{\mathrm{M}^\mathrm{c} f(x+he) - \mathrm{M}^\mathrm{c} f(x)}{h} \ &\leq rac{\mathrm{M}^\mathrm{c} (f(\cdot+he)-f)(x)}{h} \ &= \mathrm{M}^\mathrm{c} \Big(rac{f(\cdot+he)-f)}{h} \Big)(x) \sim \mathrm{M}^\mathrm{c} (\partial_e f)(x) \end{aligned}$$

By the Hardy-Littlewood maximal function theorem for p > 1

 $\|\nabla \mathbf{M}^{\mathbf{c}} f\|_{L^{p}(\mathbb{R}^{d})} \lesssim \|\mathbf{M}^{\mathbf{c}}(|\nabla f|)\|_{L^{p}(\mathbb{R}^{d})} \lesssim \|\nabla f\|_{L^{p}(\mathbb{R}^{d})}$

Core Techniques

Covering Techniques

Summary 0000 References 0

Uncentered maximal operator

For $f : \mathbb{R}^d \to \mathbb{R}$ the uncentered Hardy-Littlewood maximal function is defined by

 $\widetilde{\mathrm{M}}f(x) = \sup_{B \ni x} f_B.$

Core Techniques

Covering Techniques

Summary 0000 References 0

Uncentered maximal operator

For $f : \mathbb{R}^d \to \mathbb{R}$ the uncentered Hardy-Littlewood maximal function is defined by

 $\widetilde{\mathrm{M}}f(x) = \sup_{B \ni x} f_B.$

The result by Kinnunen also holds for \widetilde{M} and various other maximal operators, and the question by Hałjasz and Onninen is being investigated.

Core Techniques

Covering Techniques

ummary

References 0

Onedimensional case

1 History

- Background
- Onedimensional case

2 Core Techniques

- Reduction and decomposition
- High density case
- Low density case

3 Covering Techniques

- Boundary of large balls
- High density, general version
- Dyadic cubes to general cubes

History	Core Techniques	Covering Techniques	Summary	References
000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000	
A 11	· · · · ·			

In 2002 Tanaka proved

 $\operatorname{var} \widetilde{\mathrm{M}} \boldsymbol{f} \leq \operatorname{var} \boldsymbol{f}$

for $f : \mathbb{R} \to \mathbb{R}$, but with a factor 2 on the right hand side. In 2007 Aldaz and Pérez Lázaro reduced that factor to the optimal value 1.

History ○○○○○○●○○○○	Core Techniques	Covering Techniques	Summary 0000	References 0

In 2002 Tanaka proved

 $\operatorname{var} \widetilde{\mathrm{M}} \mathbf{f} \leq \operatorname{var} \mathbf{f}$

for $f : \mathbb{R} \to \mathbb{R}$, but with a factor 2 on the right hand side. In 2007 Aldaz and Pérez Lázaro reduced that factor to the optimal value 1. They use that in one dimension we have

$$\operatorname{var} f = \sup_{n \in \mathbb{N}, \ x_1 < \ldots < x_n} \sum_{i=1}^{n-1} |f(x_{n+1}) - f(x_n)|.$$

History ○○○○○●○○○○	Core Techniques	Covering Techniques	Summary 0000	References 0

In 2002 Tanaka proved

 $\operatorname{var} \widetilde{\mathrm{M}} \boldsymbol{f} \leq \operatorname{var} \boldsymbol{f}$

for $f : \mathbb{R} \to \mathbb{R}$, but with a factor 2 on the right hand side. In 2007 Aldaz and Pérez Lázaro reduced that factor to the optimal value 1. They use that in one dimension we have

$$\operatorname{var} f = \sup_{n \in \mathbb{N}, \ x_1 < \ldots < x_n} \sum_{i=1}^{n-1} |f(x_{n+1}) - f(x_n)|.$$

Main ingredient: $\widetilde{M}f$ is convex on connected components of $\{x \in \mathbb{R} : \widetilde{M}f(x) > f(x)\}.$

Covering Techniques

Summary 0000 References 0

$$\begin{split} \operatorname{var} \widetilde{\operatorname{M}} f &= \operatorname{var}_{[0,x_0]} \widetilde{\operatorname{M}} f + \operatorname{var}_{[x_2,1]} \widetilde{\operatorname{M}} f \\ &+ |\widetilde{\operatorname{M}} f(x_0) - \widetilde{\operatorname{M}} f(x_1)| + |\widetilde{\operatorname{M}} f(x_2) - \widetilde{\operatorname{M}} f(x_1)| \end{split}$$

$$\begin{aligned} \operatorname{var} \widetilde{\mathrm{M}} f &= \operatorname{var}_{[0,x_0]} \widetilde{\mathrm{M}} f + \operatorname{var}_{[x_2,1]} \widetilde{\mathrm{M}} f \\ &+ |\widetilde{\mathrm{M}} f(x_0) - \widetilde{\mathrm{M}} f(x_1)| + |\widetilde{\mathrm{M}} f(x_2) - \widetilde{\mathrm{M}} f(x_1)| \\ &\leq \operatorname{var}_{[0,x_0]} f + \operatorname{var}_{[x_2,1]} f \\ &+ |f(x_0) - f(x_1)| + |f(x_2) - f(x_1)| \end{aligned}$$

$$\begin{aligned} \operatorname{var} \widetilde{\mathrm{M}} f &= \operatorname{var}_{[0,x_0]} \widetilde{\mathrm{M}} f + \operatorname{var}_{[x_2,1]} \widetilde{\mathrm{M}} f \\ &+ |\widetilde{\mathrm{M}} f(x_0) - \widetilde{\mathrm{M}} f(x_1)| + |\widetilde{\mathrm{M}} f(x_2) - \widetilde{\mathrm{M}} f(x_1)| \\ &\leq \operatorname{var}_{[0,x_0]} f + \operatorname{var}_{[x_2,1]} f \\ &+ |f(x_0) - f(x_1)| + |f(x_2) - f(x_1)| \\ &\leq \operatorname{var}_{[0,x_0]} f + \operatorname{var}_{[x_2,1]} f + \operatorname{var}_{[x_0,x_2]} f \end{aligned}$$

*x*₀ *x*₁ *x*₂

$$\begin{aligned} \operatorname{var} \widetilde{\mathrm{M}} f &= \operatorname{var}_{[0,x_0]} \widetilde{\mathrm{M}} f + \operatorname{var}_{[x_2,1]} \widetilde{\mathrm{M}} f \\ &+ |\widetilde{\mathrm{M}} f(x_0) - \widetilde{\mathrm{M}} f(x_1)| + |\widetilde{\mathrm{M}} f(x_2) - \widetilde{\mathrm{M}} f(x_1)| \\ &\leq \operatorname{var}_{[0,x_0]} f + \operatorname{var}_{[x_2,1]} f \\ &+ |f(x_0) - f(x_1)| + |f(x_2) - f(x_1)| \\ &\leq \operatorname{var}_{[0,x_0]} f + \operatorname{var}_{[x_2,1]} f + \operatorname{var}_{[x_0,x_2]} f = \operatorname{var} f \end{aligned}$$

Onedimensional case

For the centered maximal function ${\rm M^c}{\it f}$ the convexity property does not hold. Nevertheless,

centered

Kurka proved var $M^c f \leq C$ var f for $f : \mathbb{R} \to \mathbb{R}$ in a very involved paper in 2015.

History	Core Techniques	Covering Techniques	Summary	References
00000000000				

For the centered maximal function ${\rm M^c}{\it f}$ the convexity property does not hold. Nevertheless,

centered

Kurka proved var $M^c f \leq C$ var f for $f : \mathbb{R} \to \mathbb{R}$ in a very involved paper in 2015.

He did case distinctions with respect to the shape of triples $x_0 < x_1 < x_2$ with $M^c f(x_0) < M^c f(x_1) > M^c f(x_2)$ and a decomposition in scales.

History Core Techniques Covering Techniques Summary References

Onedimensional case

For radial functions $f : \mathbb{R}^d \to \mathbb{R}$ with f(x) = f(|x|) we have

$$\|\nabla f\|_{L^1(\mathbb{R}^d)} = \int_0^\infty |\nabla f(r)| r^{d-1} \,\mathrm{d}r$$

and also $\widetilde{\mathrm{M}}\mathbf{f}$ is radial.

History Core Techniques Covering Techniques Summary Reference

Onedimensional case

For radial functions $f : \mathbb{R}^d \to \mathbb{R}$ with f(x) = f(|x|) we have

$$\|\nabla f\|_{L^1(\mathbb{R}^d)} = \int_0^\infty |\nabla f(r)| r^{d-1} \,\mathrm{d}r$$

and also $\widetilde{\mathrm{M}}\mathbf{f}$ is radial.

radial

In 2018 Luiro used this one-dimensional representation to prove $\|\nabla \widetilde{\mathrm{M}} f\|_{L^1(\mathbb{R}^d)} \leq C_d \|\nabla f\|_{L^1(\mathbb{R}^d)}$ for radial functions $f: \mathbb{R}^d \to \mathbb{R}$. History Core Techniques Covering Techniques Summary References occosion control occosion co

Onedimensional case

For radial functions $f : \mathbb{R}^d \to \mathbb{R}$ with f(x) = f(|x|) we have

$$\|\nabla f\|_{L^1(\mathbb{R}^d)} = \int_0^\infty |\nabla f(r)| r^{d-1} \,\mathrm{d}r$$

and also $\widetilde{\mathrm{M}}\mathbf{f}$ is radial.

radial

In 2018 Luiro used this one-dimensional representation to prove $\|\nabla \widetilde{\mathrm{M}} f\|_{L^1(\mathbb{R}^d)} \leq C_d \|\nabla f\|_{L^1(\mathbb{R}^d)}$ for radial functions $f : \mathbb{R}^d \to \mathbb{R}$.

block-decreasing

In 2009 Aldaz and Pérez Lázaro proved $\|\nabla \widetilde{\mathrm{M}} f\|_{L^1(\mathbb{R}^d)} \leq C_d \|\nabla f\|_{L^1(\mathbb{R}^d)}$ for block-decreasing $f : \mathbb{R}^d \to \mathbb{R}$,

which are to some extent similar to radially decreasing functions.

Core Techniques

Covering Techniques

Summary

References 0

Other maximal operators and related questions

- fractional maximal operators
- convolution operators
- local maximal operators
- discrete maximal operators
- bilinear maximal operators

Core Techniques

Covering Techniques

Summary

References 0

Other maximal operators and related questions

- fractional maximal operators
- convolution operators
- local maximal operators
- discrete maximal operators
- bilinear maximal operators
- any combinations of the above

Core Techniques

Covering Techniques

Summary 0000 References 0

Other maximal operators and related questions

- fractional maximal operators
- convolution operators
- local maximal operators
- discrete maximal operators
- bilinear maximal operators
- any combinations of the above
- bounds on other spaces than Sobolev spaces

Core Techniques

Covering Techniques

Summary

References 0

Other maximal operators and related questions

- fractional maximal operators
- convolution operators
- local maximal operators
- discrete maximal operators
- bilinear maximal operators
- any combinations of the above
- bounds on other spaces than Sobolev spaces

related: Continuity of the operator given by $f \mapsto \nabla M f$ on $W^{1,1}(\mathbb{R}^d) \to L^1(\mathbb{R}^d)$. This is a stronger property than boundedness.

Core Techniques

Covering Techniques

Summary 2000 References 0

Core Techniques

History

- Background
- Onedimensional case

2 Core Techniques

- Reduction and decomposition
- High density case
- Low density case

3 Covering Techniques

- Boundary of large balls
- High density, general version
- Dyadic cubes to general cubes

Core Techniques

Covering Techniques

Summary 0000 References 0

Reduction and decomposition

History

- Background
- Onedimensional case

2 Core Techniques

• Reduction and decomposition

- High density case
- Low density case

3 Covering Techniques

- Boundary of large balls
- High density, general version
- Dyadic cubes to general cubes

Core Techniques

Covering Techniques

Summary 2000 References 0

reformulations

definition

$$\mathsf{var}\, f = \mathsf{sup}\Big\{\int f\,\mathsf{div}\, \varphi: \varphi\in \mathit{C}^1_\mathsf{c}(\mathbb{R}^d;\mathbb{R}^d), \,\, |\varphi|\leq 1\Big\}$$
Core Techniques

Covering Techniques

Summary 2000 References 0

reformulations

definition

$$egin{aligned} \mathsf{var}\, f = \supigg\{\int f\,\mathsf{div}\,arphi:arphi\in C^1_\mathsf{c}(\mathbb{R}^d;\mathbb{R}^d),\,\,|arphi|\leq 1igg\} \ &= \|
abla f\|_{L^1(\mathbb{R}^d)} & ext{if}\,\,f\in \mathcal{W}^{1,1}(\mathbb{R}^d). \end{aligned}$$

Core Techniques

Covering Techniques

Summary 2000 References 0

reformulations

definition

$$egin{aligned} & \mathsf{var}\, f = \mathsf{sup} \Big\{ \int f \, \mathsf{div}\, arphi : arphi \in \mathit{C}^1_\mathsf{c}(\mathbb{R}^d;\mathbb{R}^d), \ |arphi| \leq 1 \Big\} \ & = \|
abla f \|_{L^1(\mathbb{R}^d)} & ext{if}\,\, f \in \mathit{W}^{1,1}(\mathbb{R}^d). \end{aligned}$$

coarea formula

$$\operatorname{var} f = \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \{x \in \mathbb{R}^d : f(x) > \lambda\}) \, \mathrm{d}\lambda$$

Core Techniques

Covering Techniques

Summary 2000 References 0

reformulations

definition

$$egin{aligned} & \mathsf{var}\, f = \mathsf{sup} \Big\{ \int f\, \mathsf{div}\, arphi : arphi \in \mathit{C}^1_\mathsf{c}(\mathbb{R}^d;\mathbb{R}^d), \; |arphi| \leq 1 \Big\} \ & = \|
abla f \|_{L^1(\mathbb{R}^d)} & ext{if}\; f \in \mathit{W}^{1,1}(\mathbb{R}^d). \end{aligned}$$

coarea formula

$$\mathsf{var}\, f = \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \{x \in \mathbb{R}^d : f(x) > \lambda\}) \,\mathrm{d}\lambda$$

superlevel sets

$$\{x \in \mathbb{R}^d : \mathrm{M}f(x) > \lambda\} = \bigcup\{B : f_B > \lambda\}$$

for uncentered maximal operators.

Core Techniques

Covering Techniques

Summary 2000 References 0

reformulations

definition

$$egin{aligned} & \mathsf{var}\, f = \mathsf{sup} \Big\{ \int f\, \mathsf{div}\, arphi : arphi \in \mathit{C}^1_\mathsf{c}(\mathbb{R}^d;\mathbb{R}^d), \; |arphi| \leq 1 \Big\} \ & = \|
abla f \|_{L^1(\mathbb{R}^d)} & ext{if}\; f \in \mathit{W}^{1,1}(\mathbb{R}^d). \end{aligned}$$

coarea formula

$$\mathsf{var}\, f = \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \{x \in \mathbb{R}^d : f(x) > \lambda\}) \,\mathrm{d}\lambda$$

superlevel sets

$$\{\mathbf{M}\mathbf{f} > \lambda\} = \{\mathbf{x} \in \mathbb{R}^d : \mathbf{M}\mathbf{f}(\mathbf{x}) > \lambda\} = \bigcup\{\mathbf{B} : \mathbf{f}_{\mathbf{B}} > \lambda\}$$

for uncentered maximal operators.

listory	Co
	0

ore Techniques

Covering Techniques

Summary 0000 References 0

Denote

$$\mathcal{B}_{\lambda}^{<} = \{ \boldsymbol{B} : \boldsymbol{f}_{\boldsymbol{B}} > \lambda, \ \mathcal{L}(\boldsymbol{B} \cap \{\boldsymbol{f} > \lambda\}) < \mathcal{L}(\boldsymbol{B})/2 \}$$

and $\mathcal{B}^{\geq}_{\lambda}$ accordingly. We split the boundary

$$\partial \bigcup \{ \boldsymbol{B} : \boldsymbol{f}_{\boldsymbol{B}} > \lambda \} \subset \partial \bigcup \mathcal{B}_{\lambda}^{<} \cup \partial \bigcup \mathcal{B}_{\lambda}^{\geq}.$$
(1)

History	

Core Techniques

Covering Techniques

Summary 0000 References 0

Denote

 $\mathcal{B}_{\lambda}^{<} = \{ \boldsymbol{B} : \boldsymbol{f}_{\boldsymbol{B}} > \lambda, \ \mathcal{L}(\boldsymbol{B} \cap \{\boldsymbol{f} > \lambda\}) < \mathcal{L}(\boldsymbol{B})/2 \}$

and $\mathcal{B}^{\geq}_{\lambda}$ accordingly. We split the boundary

$$\partial \bigcup \{ \mathbf{B} : \mathbf{f}_{\mathbf{B}} > \lambda \} \subset \partial \bigcup \mathcal{B}_{\lambda}^{<} \cup \partial \bigcup \mathcal{B}_{\lambda}^{\geq}.$$
(1)

Since $Mf \ge f$ a.e. we have $\{f > \lambda\} \subset \{Mf > \lambda\}$ up to measure zero, and thus

$$\partial \bigcup \{ \boldsymbol{B} : \boldsymbol{f}_{\boldsymbol{B}} > \lambda \} \subset \left(\partial \bigcup \{ \boldsymbol{B} : \boldsymbol{f}_{\boldsymbol{B}} > \lambda \} \right) \setminus \overline{\{\boldsymbol{f} > \lambda\}} \cup \partial \{ \boldsymbol{f} > \lambda \}.$$
(2)

History	
	D

Core Techniques

Covering Techniques

Summary 0000 References 0

Denote

 $\mathcal{B}_{\lambda}^{<} = \{ \boldsymbol{B} : \boldsymbol{f}_{\boldsymbol{B}} > \lambda, \ \mathcal{L}(\boldsymbol{B} \cap \{\boldsymbol{f} > \lambda\}) < \mathcal{L}(\boldsymbol{B})/2 \}$

and $\mathcal{B}^{\geq}_{\lambda}$ accordingly. We split the boundary

$$\partial \bigcup \{ \boldsymbol{B} : \boldsymbol{f}_{\boldsymbol{B}} > \lambda \} \subset \partial \bigcup \mathcal{B}_{\lambda}^{<} \cup \partial \bigcup \mathcal{B}_{\lambda}^{\geq}.$$
(1)

Since ${\rm M}f\geq f$ a.e. we have $\{f>\lambda\}\subset \{{\rm M}f>\lambda\}$ up to measure zero, and thus

$$\partial \bigcup \{ \boldsymbol{B} : \boldsymbol{f}_{\boldsymbol{B}} > \lambda \} \subset \left(\partial \bigcup \{ \boldsymbol{B} : \boldsymbol{f}_{\boldsymbol{B}} > \lambda \} \right) \setminus \overline{\{\boldsymbol{f} > \lambda\}} \cup \partial \{ \boldsymbol{f} > \lambda \}.$$
(2)

Plug (1) into (2) and that into the coarea formula

$$\operatorname{var} \mathbf{M} f = \int_0^\infty \mathcal{H}^{d-1} \Big(\partial \bigcup \{ \boldsymbol{B} : f_{\boldsymbol{B}} > \lambda \} \Big) \, \mathrm{d} \lambda$$

Core Techniques

Covering Techniques

Summary

References 0

Decomposition of the boundary

decomposition

$$egin{aligned} &\operatorname{var} \mathrm{M} f \leq \int_{0}^{\infty} \mathcal{H}^{d-1} \Big(\partial igcup \mathcal{B}_{\lambda}^{<} \Big) \, \mathrm{d}\lambda \ &+ \int_{0}^{\infty} \mathcal{H}^{d-1} \Big(\Big(\partial igcup \mathcal{B}_{\lambda}^{\geq} \Big) \setminus \overline{\{f > \lambda\}} \Big) \, \mathrm{d}\lambda \ &+ \operatorname{var} f \end{aligned}$$

Core Techniques

Covering Techniques

Summary

References 0

Decomposition of the boundary

decomposition

$$\begin{split} \operatorname{var} \operatorname{M} & f \leq \int_{0}^{\infty} \mathcal{H}^{d-1} \Big(\partial \bigcup \mathcal{B}_{\lambda}^{<} \Big) \, \mathrm{d} \lambda \\ & + \int_{0}^{\infty} \mathcal{H}^{d-1} \Big(\Big(\partial \bigcup \mathcal{B}_{\overline{\lambda}}^{\geq} \Big) \setminus \overline{\{f > \lambda\}} \Big) \, \mathrm{d} \lambda \\ & + \operatorname{var} f \quad \checkmark \end{split}$$

Core Techniques

Covering Techniques

ummary

References 0

High density case

1 History

- Background
- Onedimensional case

2 Core Techniques

- Reduction and decomposition
- High density case
- Low density case

3 Covering Techniques

- Boundary of large balls
- High density, general version
- Dyadic cubes to general cubes

4 Summary

History 0000000000	Core Techniques	Covering Techniques	Summary 0000	References 0
Relative isc	operimetric inequ	ality		

A is a John domain if there is a K > 0 and point $x \in A$ such that for any $y \in A$ there is a path γ from x to y with

 $\operatorname{dist}(\gamma(t), A^\complement) \geq K^{-1} |\gamma(t) - y|.$

History 0000000000	Core Techniques	Covering Techniques	Summary 0000	References 0
Relative isc	operimetric inequ	ality		

A is a John domain if there is a K > 0 and point $x \in A$ such that for any $y \in A$ there is a path γ from x to y with

$$\operatorname{dist}(\gamma(t), A^{\complement}) \geq K^{-1}|\gamma(t) - y|.$$

Relative isoperimetric inequality

Let A be a John domain and $\mathcal{L}(A \cap E) \leq \mathcal{L}(A)/2$. Then

$$\mathcal{L}(A \cap E)^{\frac{d-1}{d}} \lesssim \mathcal{H}^{d-1}(A \cap \partial E)$$

History	Core Techniques	Covering Techniques	Summary	References
00000000000	○○○○○○●○○○○○○○○○○○		0000	O
High dens	sity case			

Corollary: For a ball or cube *B* with $\mathcal{L}(B)/4 \leq \mathcal{L}(B \cap E) \leq \mathcal{L}(B)/2$ we have

 $\mathcal{H}^{d-1}(\partial B) \lesssim \mathcal{L}(B)^{\frac{d-1}{d}} \lesssim \mathcal{L}(B \cap E)^{\frac{d-1}{d}} \lesssim \mathcal{H}^{d-1}(B \cap \partial E).$

00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000	O
High densit	zy case			

Corollary: For a ball or cube *B* with $\mathcal{L}(B)/4 \leq \mathcal{L}(B \cap E) \leq \mathcal{L}(B)/2$ we have

 $\mathcal{H}^{d-1}(\partial B) \lesssim \mathcal{L}(B)^{\frac{d-1}{d}} \lesssim \mathcal{L}(B \cap E)^{\frac{d-1}{d}} \lesssim \mathcal{H}^{d-1}(B \cap \partial E).$

Proposition (High density)

For $\mathcal{L}(B \cap E) \geq \mathcal{L}(B)/2$ we have

 $\mathcal{H}^{d-1}(\partial \mathbb{B} \setminus \overline{\mathbb{E}}) \lesssim \mathcal{H}^{d-1}(\mathbb{B} \cap \partial \mathbb{E}).$

Core Techniques

Covering Techniques

Summary 0000 References 0

Proof of high density proposition

Idea: Decompose $\partial B \setminus \overline{E}$ according to distance to significant part of *E*.

History Core Techniques Covering Techniques

Summary 0000 References 0

Proof of high density proposition

Idea: Decompose $\partial B \setminus \overline{E}$ according to distance to significant part of E.

For every $x \in \partial B \setminus \overline{E}$ there is an $\varepsilon > 0$ with

 $\mathcal{L}(B(x,\varepsilon) \cap E) = 0,$ $\mathcal{L}(B \cap B(x, \operatorname{diam}(B)) \cap E) \ge \mathcal{L}(B)/2 = 2^{-d-1}\mathcal{L}(B(x, \operatorname{diam}(B)))$ Covering Techniques

Summary 0000 References 0

Proof of high density proposition

Idea: Decompose $\partial B \setminus \overline{E}$ according to distance to significant part of E.

For every $x \in \partial B \setminus \overline{E}$ there is an $\varepsilon > 0$ with

 $\mathcal{L}(B(x,\varepsilon) \cap E) = 0,$ $\mathcal{L}(B \cap B(x, \operatorname{diam}(B)) \cap E) \ge \mathcal{L}(B)/2 = 2^{-d-1}\mathcal{L}(B(x, \operatorname{diam}(B)))$

Thus $\exists r \in [\varepsilon, \operatorname{diam}(B)]$

$$\mathcal{L}(B(x,r)\cap E)=2^{-d-1}\mathcal{L}(B(x,r))$$

Covering Techniques

References

Proof of high density proposition

Idea: Decompose $\partial B \setminus \overline{E}$ according to distance to significant part of E.

For every $x \in \partial B \setminus \overline{E}$ there is an $\varepsilon > 0$ with

 $\mathcal{L}(B(x,\varepsilon)\cap E)=0,$ $\mathcal{L}(B \cap B(x, \operatorname{diam}(B))) \cap E) \geq \mathcal{L}(B)/2 = 2^{-d-1}\mathcal{L}(B(x, \operatorname{diam}(B)))$

Thus $\exists r \in [\varepsilon, \operatorname{diam}(B)]$

$$\mathcal{L}(B(x,r) \cap E) = 2^{-d-1}\mathcal{L}(B(x,r))$$

Let \mathcal{B} be the collection of all such balls B(x, r) and apply the Vitali covering. Let \mathcal{S} be the resulting disjoint subset.

Relative isoperimetric inequality

For each $B(x, r) \in S$ the set $A = B \cap B(x, r)$ is a John domain and thus satisfies the

relative isoperimetric inequality

$$\min\{\mathcal{L}(A \cap E), \mathcal{L}(A \setminus E)\}^{\frac{d-1}{d}} \lesssim \mathcal{H}^{d-1}(\partial E \cap A)$$

listory	Core Techniques	Covering Techniques	Summary	Reference
0000000000	000000000000000000000000000000000000000			

Relative isoperimetric inequality

For each $B(x, r) \in S$ the set $A = B \cap B(x, r)$ is a John domain and thus satisfies the

relative isoperimetric inequality

$$\min\{\mathcal{L}(A \cap E), \mathcal{L}(A \setminus E)\}^{\frac{d-1}{d}} \lesssim \mathcal{H}^{d-1}(\partial E \cap A)$$

Thus by the choice of r

$$\mathcal{H}^{d-1}(\partial B(x,r))\lesssim \mathcal{L}(B\cap B(x,r))^{rac{d-1}{d}} \lesssim \mathcal{H}^{d-1}(\partial E\cap B\cap B(x,r)).$$

listory	Core Techniques	Covering Techniques	Summary	Reference
0000000000	000000000000000000000000000000000000000			

Relative isoperimetric inequality

For each $B(x, r) \in S$ the set $A = B \cap B(x, r)$ is a John domain and thus satisfies the

relative isoperimetric inequality

 $\min\{\mathcal{L}(A \cap E), \mathcal{L}(A \setminus E)\}^{\frac{d-1}{d}} \lesssim \mathcal{H}^{d-1}(\partial E \cap A)$

Thus by the choice of r

$$\mathcal{H}^{d-1}(\partial B(x,r)) \lesssim \mathcal{L}(\mathcal{B} \cap B(x,r))^{rac{d-1}{d}} \lesssim \mathcal{H}^{d-1}(\partial \mathcal{E} \cap \mathcal{B} \cap B(x,r)).$$

(Proof of first inequality can be made precise.)

History	Core Techniques	Covering Techniques	Summary	References
	000000000000000000000000000000000000000			

\mathcal{S} Vitali covering of $\partial \mathbf{B} \setminus \overline{\mathbf{E}}$. We can conclude

$$\begin{aligned} \mathcal{H}^{d-1}\Big(\partial B \setminus \overline{E}\Big) &= \mathcal{H}^{d-1}\Big(\bigcup \mathcal{B} \cap \partial B \setminus \overline{E}\Big) \leq \mathcal{H}^{d-1}\Big(\bigcup \mathcal{B} \cap \partial B\Big) \\ &= \mathcal{H}^{d-1}\Big(\bigcup 5S \cap \partial B\Big) \leq \sum_{S \in S} \mathcal{H}^{d-1}(5S \cap \partial B) \\ &\lesssim \sum_{S \in S} \mathcal{H}^{d-1}(\partial 5S) \lesssim \sum_{S \in S} \mathcal{H}^{d-1}(\partial S) \\ &\lesssim \sum_{S \in S} \mathcal{H}^{d-1}(\partial E \cap B \cap S) \leq \mathcal{H}^{d-1}(\partial E \cap B) \end{aligned}$$

Core	e rechniques	Covering Techniques	Summary	References
	000000000000000000000000000000000000000			

S Vitali covering of $\partial B \setminus \overline{E}$. We can conclude

$$\begin{aligned} \mathcal{H}^{d-1}\Big(\partial B \setminus \overline{E}\Big) &= \mathcal{H}^{d-1}\Big(\bigcup \mathcal{B} \cap \partial B \setminus \overline{E}\Big) \leq \mathcal{H}^{d-1}\Big(\bigcup \mathcal{B} \cap \partial B\Big) \\ &= \mathcal{H}^{d-1}\Big(\bigcup 5S \cap \partial B\Big) \leq \sum_{S \in S} \mathcal{H}^{d-1}(5S \cap \partial B) \\ &\lesssim \sum_{S \in S} \mathcal{H}^{d-1}(\partial 5S) \lesssim \sum_{S \in S} \mathcal{H}^{d-1}(\partial S) \\ &\lesssim \sum_{S \in S} \mathcal{H}^{d-1}(\partial E \cap B \cap S) \leq \mathcal{H}^{d-1}(\partial E \cap B) \end{aligned}$$

(Proof of fifth step can be made precise.)

Core Techniques

Covering Techniques

Summary 0000 References 0

High density case

Proposition (High density, general version)

Let \mathcal{B} be a set of balls \underline{B} with $\mathcal{L}(\underline{B} \cap \underline{E}) \geq \varepsilon \mathcal{L}(\underline{B})$. Then

$$\mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B} \setminus \overline{\mathcal{E}}\Big) \lesssim_{\varepsilon} \mathcal{H}^{d-1}\Big(\bigcup \mathcal{B} \cap \partial \mathcal{E}\Big).$$

Core Techniques

Covering Techniques

Summary 0000 References 0

High density case

Proposition (High density, general version)

Let \mathcal{B} be a set of balls \underline{B} with $\mathcal{L}(\underline{B} \cap \underline{E}) \geq \varepsilon \mathcal{L}(\underline{B})$. Then

$$\mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B} \setminus \overline{\mathcal{E}}\Big) \lesssim_{\varepsilon} \mathcal{H}^{d-1}\Big(\bigcup \mathcal{B} \cap \partial \mathcal{E}\Big).$$

$$\begin{split} &\int_{0}^{\infty} \mathcal{H}^{d-1}\Big(\Big(\partial \bigcup \mathcal{B}_{\lambda}^{\geq}\Big) \setminus \overline{\{f > \lambda\}}\Big) \,\mathrm{d}\lambda \\ &\lesssim \int_{0}^{\infty} \mathcal{H}^{d-1}\Big(\bigcup \mathcal{B}_{\lambda}^{\geq} \cap \partial \{f > \lambda\}\Big) \,\mathrm{d}\lambda \\ &\leq \mathsf{var}\, f. \end{split}$$

Core Techniques

Covering Techniques

Summary 0000 References 0

High density case

Proposition (High density, general version)

Let \mathcal{B} be a set of balls \mathcal{B} with $\mathcal{L}(\mathcal{B} \cap \mathcal{E}) \geq \varepsilon \mathcal{L}(\mathcal{B})$. Then

$$\mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B} \setminus \overline{\mathcal{E}}\Big) \lesssim_{\varepsilon} \mathcal{H}^{d-1}\Big(\bigcup \mathcal{B} \cap \partial \mathcal{E}\Big).$$

$$\begin{split} &\int_{0}^{\infty} \mathcal{H}^{d-1}\Big(\Big(\partial \bigcup \mathcal{B}_{\lambda}^{\geq}\Big) \setminus \overline{\{f > \lambda\}}\Big) \,\mathrm{d}\lambda \\ &\lesssim \int_{0}^{\infty} \mathcal{H}^{d-1}\Big(\bigcup \mathcal{B}_{\lambda}^{\geq} \cap \partial \{f > \lambda\}\Big) \,\mathrm{d}\lambda \\ &\leq \mathsf{var}\, f. \end{split}$$

Proof works almost the same as with $\mathcal{B} = \{B\}$ if all balls in \mathcal{B} have the same scale. But we need one extra covering tool from the next section.

Core Techniques

Covering Techniques

Summary 0000 References 0

High density case

Proposition (High density, general version)

Let \mathcal{B} be a set of balls \mathcal{B} with $\mathcal{L}(\mathcal{B} \cap \mathcal{E}) \geq \varepsilon \mathcal{L}(\mathcal{B})$. Then

$$\mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B} \setminus \overline{\mathcal{E}}\Big) \lesssim_{\varepsilon} \mathcal{H}^{d-1}\Big(\bigcup \mathcal{B} \cap \partial \mathcal{E}\Big).$$

$$\begin{split} \int_{0}^{\infty} \mathcal{H}^{d-1} \Big(\Big(\partial \bigcup \mathcal{B}_{\lambda}^{\geq} \Big) \setminus \overline{\{f > \lambda\}} \Big) \, \mathrm{d}\lambda \\ \lesssim \int_{0}^{\infty} \mathcal{H}^{d-1} \Big(\bigcup \mathcal{B}_{\lambda}^{\geq} \cap \partial \{f > \lambda\} \Big) \, \mathrm{d}\lambda \\ \leq \mathsf{var} \, f. \end{split}$$

Proof works almost the same as with $\mathcal{B} = \{B\}$ if all balls in \mathcal{B} have the same scale. But we need one extra covering tool from the next section. Then we prove a modified version for each scale separately and add up all scales.

Core Techniques

Covering Techniques

Summary 2000 References 0

Low density case

1 History

- Background
- Onedimensional case

2 Core Techniques

- Reduction and decomposition
- High density case
- Low density case

3 Covering Techniques

- Boundary of large balls
- High density, general version
- Dyadic cubes to general cubes

4 Summary

Core Techniques

Covering Techniques

Summary 2000 References 0

Low density case

Have to bound

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B}^<_\lambda\Big) \,\mathrm{d}\lambda \lesssim \mathsf{var}\, f,$$

where

$$\mathcal{B}_{\lambda}^{<} = \{ \boldsymbol{B} : \boldsymbol{f}_{\boldsymbol{B}} > \lambda, \ \mathcal{L}(\boldsymbol{B} \cap \{\boldsymbol{f} > \lambda\}) < \mathcal{L}(\boldsymbol{B})/2 \}.$$

History Core Techniques Covering Techniques Summary

Low density case

Have to bound

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial\bigcup \mathcal{B}^<_\lambda\Big)\,\mathrm{d}\lambda\lesssim \mathsf{var}\,\boldsymbol{f},$$

where

$$\mathcal{B}_{\lambda}^{<} = \{ \boldsymbol{B} : \boldsymbol{f}_{\boldsymbol{B}} > \lambda, \ \mathcal{L}(\boldsymbol{B} \cap \{\boldsymbol{f} > \lambda\}) < \mathcal{L}(\boldsymbol{B})/2 \}.$$

I can't :(

Core Techniques

Covering Techniques

Summary

References 0

Low density case

Have to bound

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B}^<_\lambda\Big)\,\mathrm{d}\lambda \lesssim \mathsf{var}\,\boldsymbol{f},$$

where

$$\mathcal{B}_{\lambda}^{<} = \{ \boldsymbol{B} : \boldsymbol{f}_{\boldsymbol{B}} > \lambda, \ \mathcal{L}(\boldsymbol{B} \cap \{\boldsymbol{f} > \lambda\}) < \mathcal{L}(\boldsymbol{B})/2 \}.$$

I can't :(

dyadic maximal operator

$$\mathrm{M}^{\mathrm{d}}f(x) = \sup_{\substack{Q \ni x, \ Q \text{ dyadic}}} f_Q.$$

History Core Techi 0000000000 0000000

Core Techniques

Covering Techniques

Summary 2000 References 0

Low density case

Have to bound

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B}^<_\lambda\Big)\,\mathrm{d}\lambda \lesssim \mathsf{var}\,\boldsymbol{f},$$

where

$$\mathcal{B}_{\lambda}^{<} = \{ \boldsymbol{B} : \boldsymbol{f}_{\boldsymbol{B}} > \lambda, \ \mathcal{L}(\boldsymbol{B} \cap \{\boldsymbol{f} > \lambda\}) < \mathcal{L}(\boldsymbol{B})/2 \}.$$

I can't :(

dyadic maximal operator

$$\mathrm{M}^{\mathrm{d}}f(x) = \sup_{\boldsymbol{Q} \ni x, \ \boldsymbol{Q} \ \mathrm{dyadic}} f_{\boldsymbol{Q}}.$$

 $\{x : M^{d}f(x) > \lambda\} = \bigcup\{\text{maximal dyadic } Q : f_{Q} > \lambda\}$

History Core To

Core Techniques

Covering Techniques

Summary 2000 References 0

Low density case

Have to bound

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B}^<_\lambda\Big)\,\mathrm{d}\lambda \lesssim \mathsf{var}\,\boldsymbol{f},$$

where

$$\mathcal{B}_{\lambda}^{<} = \{ \boldsymbol{B} : \boldsymbol{f}_{\boldsymbol{B}} > \lambda, \ \mathcal{L}(\boldsymbol{B} \cap \{\boldsymbol{f} > \lambda\}) < \mathcal{L}(\boldsymbol{B})/2 \}.$$

I can't :(

dyadic maximal operator

$$\mathrm{M}^{\mathrm{d}}f(x) = \sup_{Q \ni x, Q \text{ dyadic}} f_Q.$$

 $\{x: \mathrm{M}^{\mathrm{d}} f(x) > \lambda\} = \bigcup \{ \text{maximal dyadic } \mathcal{Q} : f_{\mathcal{Q}} > \lambda \} = \bigcup \mathcal{Q}_{\lambda}^{<} \cup \mathcal{Q}_{\lambda}^{<}$

Core Techniques

Covering Techniques

Summary 0000 References 0

Definition

Q is maximal for $\lambda < f_Q$ if for all $P \supseteq Q$ we have $f_P \leq \lambda$.

Core Techniques

Covering Techniques

Summary 0000 References 0

Definition

Q is maximal for $\lambda < f_Q$ if for all $P \supseteq Q$ we have $f_P \leq \lambda$.

$$\int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{<}) \, \mathrm{d}\lambda$$
Covering Techniques

Summary

References 0

Definition

Q is maximal for $\lambda < f_Q$ if for all $P \supseteq Q$ we have $f_P \leq \lambda$.

$$\int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{<}) \, \mathrm{d}\lambda \leq \int_{\mathbb{R}} \sum_{\mathbf{Q} \in \mathcal{Q}_{\lambda}^{<}} \mathcal{H}^{d-1}(\partial \mathbf{Q}) \, \mathrm{d}\lambda$$

Covering Techniques

Summary

References 0

Definition

Q is maximal for $\lambda < f_Q$ if for all $P \supseteq Q$ we have $f_P \leq \lambda$.

$$\int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{<}) \, \mathrm{d}\lambda \leq \int_{\mathbb{R}} \sum_{\boldsymbol{Q} \in \mathcal{Q}_{\lambda}^{<}} \mathcal{H}^{d-1}(\partial \boldsymbol{Q}) \, \mathrm{d}\lambda$$
$$= \int_{\mathbb{R}} \sum_{\boldsymbol{Q} : \tilde{\lambda}_{\boldsymbol{Q}} < \lambda < f_{\boldsymbol{Q}}} \mathcal{H}^{d-1}(\partial \boldsymbol{Q}) \, \mathrm{d}\lambda$$

Core Techniques

Covering Techniques

Summary

References 0

Definition

Q is maximal for $\lambda < f_Q$ if for all $P \supseteq Q$ we have $f_P \leq \lambda$. Given Q, let λ_Q be the smallest such λ .

$$\int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{<}) \, \mathrm{d}\lambda \leq \int_{\mathbb{R}} \sum_{\boldsymbol{Q} \in \mathcal{Q}_{\lambda}^{<}} \mathcal{H}^{d-1}(\partial \boldsymbol{Q}) \, \mathrm{d}\lambda$$
$$= \int_{\mathbb{R}} \sum_{\boldsymbol{Q} : \tilde{\lambda}_{\boldsymbol{Q}} < \lambda < \boldsymbol{f}_{\boldsymbol{Q}}} \mathcal{H}^{d-1}(\partial \boldsymbol{Q}) \, \mathrm{d}\lambda$$

Core Techniques

Covering Techniques

Summary

References 0

Definition

Q is maximal for $\lambda < f_Q$ if for all $P \supseteq Q$ we have $f_P \leq \lambda$. Given Q, let λ_Q be the smallest such λ .

$$\int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{<}) \, \mathrm{d}\lambda \leq \int_{\mathbb{R}} \sum_{\boldsymbol{Q} \in \mathcal{Q}_{\lambda}^{<}} \mathcal{H}^{d-1}(\partial \boldsymbol{Q}) \, \mathrm{d}\lambda$$
$$= \int_{\mathbb{R}} \sum_{\boldsymbol{Q} : \tilde{\lambda}_{\boldsymbol{Q}} < \lambda < f_{\boldsymbol{Q}}} \mathcal{H}^{d-1}(\partial \boldsymbol{Q}) \, \mathrm{d}\lambda$$

where

$$ilde{\lambda}_{oldsymbol{Q}} = \sup\{\lambda: \mathcal{L}(oldsymbol{Q} \cap \{f > ilde{\lambda}_{oldsymbol{Q}}\}) \geq 2^{-1} \cdot \mathcal{L}(oldsymbol{Q}) \quad \}$$

Covering Techniques

Summary

References 0

Definition

Q is maximal for $\lambda < f_Q$ if for all $P \supseteq Q$ we have $f_P \leq \lambda$. Given Q, let λ_Q be the smallest such λ .

$$\int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{<}) \, \mathrm{d}\lambda \leq \int_{\mathbb{R}} \sum_{\boldsymbol{Q} \in \mathcal{Q}_{\lambda}^{<}} \mathcal{H}^{d-1}(\partial \boldsymbol{Q}) \, \mathrm{d}\lambda$$
$$= \int_{\mathbb{R}} \sum_{\boldsymbol{Q} : \tilde{\lambda}_{\boldsymbol{Q}} < \lambda < f_{\boldsymbol{Q}}} \mathcal{H}^{d-1}(\partial \boldsymbol{Q}) \, \mathrm{d}\lambda$$

where

Covering Techniques

Summary

References 0

Definition

Q is maximal for $\lambda < f_Q$ if for all $P \supseteq Q$ we have $f_P \leq \lambda$. Given Q, let λ_Q be the smallest such λ .

$$\begin{split} \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{<}) \, \mathrm{d}\lambda &\leq \int_{\mathbb{R}} \sum_{Q \in \mathcal{Q}_{\lambda}^{<}} \mathcal{H}^{d-1}(\partial Q) \, \mathrm{d}\lambda \\ &= \int_{\mathbb{R}} \sum_{Q: \tilde{\lambda}_{Q} < \lambda < f_{Q}} \mathcal{H}^{d-1}(\partial Q) \, \mathrm{d}\lambda \\ &= \sum_{Q} (f_{Q} - \tilde{\lambda}_{Q}) \mathcal{H}^{d-1}(\partial Q) \end{split}$$

where

$$\tilde{\lambda}_{\boldsymbol{Q}} = \sup \Big\{ \lambda_{\boldsymbol{Q}}, \sup \{ \lambda : \mathcal{L}(\boldsymbol{Q} \cap \{\boldsymbol{f} > \tilde{\lambda}_{\boldsymbol{Q}}\}) \geq 2^{-d-2} \cdot \mathcal{L}(\boldsymbol{Q}) \} \Big\}$$

History

Covering Techniques

ummary

References 0

Proposition

$$(f_{Q} - \tilde{\lambda}_{Q})\mathcal{L}(Q) \lesssim \int_{\mathbb{R}} \sum_{P \subsetneq Q: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda$$

where P is maximal above $\bar{\lambda}_P$ and

$$\mathcal{L}(P \cap \{f > \overline{\lambda}_{P}\}) = 2^{-1}\mathcal{L}(P)^{"}$$
$$\mathcal{L}(Q \cap \{f > \widetilde{\lambda}_{Q}\}) = 2^{-d-2}\mathcal{L}(Q)^{"}$$

Covering Techniques

Summary

References 0

Proposition

$$(f_Q - \tilde{\lambda}_Q)\mathcal{L}(Q) \lesssim \int_{\mathbb{R}} \sum_{P \subsetneq Q: \bar{\lambda}_P < \lambda < f_P} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda$$

where P is maximal above $\bar{\lambda}_P$ and

$$\mathcal{L}(P \cap \{f > \bar{\lambda}_P\}) = 2^{-1}\mathcal{L}(P)''$$
$$\mathcal{L}(Q \cap \{f > \tilde{\lambda}_Q\}) = 2^{-d-2}\mathcal{L}(Q)''$$

The proof uses a stopping time argument: Start with Q and then iteratively descend into all children P. Stop if $f_P < f_{prt(P)}$ or $f_P > \tilde{\lambda}_P$. All cubes which don't have a stopping cube as an ancestor will contribute on the right hand side above.

Core Techniques

Covering Techniques

Summary 0000

 $\sum_{\boldsymbol{Q}} (\boldsymbol{f}_{\boldsymbol{Q}} - \tilde{\lambda}_{\boldsymbol{Q}}) \mathcal{H}^{d-1}(\partial \boldsymbol{Q}) \lesssim \int_{\mathbb{R}} \sum_{\boldsymbol{Q}} \mathsf{I}(\boldsymbol{Q})^{-1} \sum_{P \subsetneq \boldsymbol{Q}: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{\boldsymbol{f} > \lambda\}) \, \mathrm{d}\lambda$

Core Techniques

Covering Techniques

Summary 0000

$$\begin{split} \sum_{Q} (f_{Q} - \tilde{\lambda}_{Q}) \mathcal{H}^{d-1}(\partial Q) &\lesssim \int_{\mathbb{R}} \sum_{Q} \mathsf{I}(Q)^{-1} \sum_{P \subsetneq Q: \tilde{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathrm{d}\lambda \\ &= \int_{\mathbb{R}} \sum_{P: \tilde{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \sum_{Q \supsetneq P} \mathsf{I}(Q)^{-1} \, \mathrm{d}\lambda \end{split}$$

Core Techniques

Covering Techniques

Summary 0000

$$\begin{split} \sum_{Q} (f_{Q} - \tilde{\lambda}_{Q}) \mathcal{H}^{d-1}(\partial Q) &\lesssim \int_{\mathbb{R}} \sum_{Q} \mathsf{I}(Q)^{-1} \sum_{P \subsetneq Q: \tilde{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathrm{d}\lambda \\ &= \int_{\mathbb{R}} \sum_{P: \tilde{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \sum_{Q \supsetneq P} \mathsf{I}(Q)^{-1} \, \mathrm{d}\lambda \\ &= \int_{\mathbb{R}} \sum_{P: \tilde{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \mathsf{I}(P)^{-1} \, \mathrm{d}\lambda \end{split}$$

Core Techniques

Covering Techniques

Summary 0000

$$\begin{split} \sum_{Q} (f_{Q} - \tilde{\lambda}_{Q}) \mathcal{H}^{d-1}(\partial Q) &\lesssim \int_{\mathbb{R}} \sum_{Q} \mathsf{I}(Q)^{-1} \sum_{P \subsetneq Q: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathrm{d}\lambda \\ &= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \sum_{Q \supsetneq P} \mathsf{I}(Q)^{-1} \, \mathrm{d}\lambda \\ &= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathsf{I}(P)^{-1} \, \mathrm{d}\lambda \\ &\leq \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \frac{d-1}{d} \, \mathrm{d}\lambda \end{split}$$

Core Techniques

Covering Techniques

Summary 0000

$$\begin{split} \sum_{Q} (f_{Q} - \tilde{\lambda}_{Q}) \mathcal{H}^{d-1}(\partial Q) &\lesssim \int_{\mathbb{R}} \sum_{Q} \mathsf{I}(Q)^{-1} \sum_{P \subsetneq Q: \tilde{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathrm{d}\lambda \\ &= \int_{\mathbb{R}} \sum_{P: \tilde{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \sum_{Q \supsetneq P} \mathsf{I}(Q)^{-1} \, \mathrm{d}\lambda \\ &= \int_{\mathbb{R}} \sum_{P: \tilde{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathsf{I}(P)^{-1} \, \mathrm{d}\lambda \\ &\leq \int_{\mathbb{R}} \sum_{P: \tilde{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \frac{d-1}{d} \, \mathrm{d}\lambda \\ &\lesssim \int_{\mathbb{R}} \sum_{P: \tilde{\lambda}_{P} < \lambda < f_{P}} \mathcal{H}^{d-1}(P \cap \partial \{f > \lambda\}) \, \mathrm{d}\lambda \end{split}$$

Core Techniques

Covering Techniques

Summary 0000

$$\begin{split} \sum_{Q} (f_{Q} - \tilde{\lambda}_{Q}) \mathcal{H}^{d-1}(\partial Q) &\lesssim \int_{\mathbb{R}} \sum_{Q} \mathsf{l}(Q)^{-1} \sum_{P \subsetneq Q: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathrm{d}\lambda \\ &= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \sum_{Q \supsetneq P} \mathsf{l}(Q)^{-1} \, \mathrm{d}\lambda \\ &= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathsf{l}(P)^{-1} \, \mathrm{d}\lambda \\ &\leq \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \frac{d-1}{d} \, \mathrm{d}\lambda \\ &\lesssim \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{H}^{d-1}(P \cap \partial \{f > \lambda\}) \, \mathrm{d}\lambda \\ &\leq \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \{f > \lambda\}) \, \mathrm{d}\lambda = \mathsf{var} \, f \end{split}$$

Core Techniques

Covering Techniques

Summary 0000

$$\begin{split} \sum_{Q} (f_{Q} - \tilde{\lambda}_{Q}) \mathcal{H}^{d-1}(\partial Q) &\lesssim \int_{\mathbb{R}} \sum_{Q} \mathsf{I}(Q)^{-1} \sum_{P \subsetneq Q: \tilde{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathrm{d}\lambda \\ &= \int_{\mathbb{R}} \sum_{P: \tilde{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \sum_{Q \supsetneq P} \mathsf{I}(Q)^{-1} \, \mathrm{d}\lambda \\ &= \int_{\mathbb{R}} \sum_{P: \tilde{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathsf{I}(P)^{-1} \, \mathrm{d}\lambda \\ &\leq \int_{\mathbb{R}} \sum_{P: \tilde{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathrm{d}\lambda \\ &\lesssim \int_{\mathbb{R}} \sum_{P: \tilde{\lambda}_{P} < \lambda < f_{P}} \mathcal{H}^{d-1}(P \cap \partial \{f > \lambda\}) \, \mathrm{d}\lambda \\ &\leq \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \{f > \lambda\}) \, \mathrm{d}\lambda = \operatorname{var} f \quad \Box \end{split}$$

Core Techniques

Covering Techniques

Summary

References 0

Covering Techniques

1 History

- Background
- Onedimensional case

2 Core Techniques

- Reduction and decomposition
- High density case
- Low density case

3 Covering Techniques

- Boundary of large balls
- High density, general version
- Dyadic cubes to general cubes

Summary

Core Techniques

Covering Techniques

Summary 0000 References 0

Boundary of large balls

1 History

- Background
- Onedimensional case

2 Core Techniques

- Reduction and decomposition
- High density case
- Low density case

3 Covering Techniques

- Boundary of large balls
- High density, general version
- Dyadic cubes to general cubes

4 Summary

Core Techniques

Covering Techniques

Summary

References

Proposition

Let *B* be a ball and \mathcal{B} be a set of balls *C* with diam(*C*) $\geq K$ diam(*B*). Then

$$\mathcal{H}^{d-1}\Big(\partialigcup \mathcal{B}\cap {oldsymbol B}\Big)\lesssim (1+\mathcal{K}^{-d})\mathcal{H}^{d-1}(\partial {oldsymbol B}).$$

History	

Covering Techniques

Summary 0000 References 0

Proof

Center **B** in the origin and let $e \in \partial B(0,1)$ be a direction.

History	Core Techniques	Covering Techniques	Summary	References
0000000000		○OO●○○○○○○○○○○○○○○○	0000	0
Proof				

 $\partial \{ C(x,r) \in \mathcal{B} : \sphericalangle(x,e) \leq \varepsilon \} \cap B$

is a Lipschitz graph with constant 1

History 0000000000	Core Techniques	Covering Techniques	Summary 0000	References 0
Proof				

 $\partial \{ C(x,r) \in \mathcal{B} : \sphericalangle(x,e) \leq \varepsilon \} \cap B$

is a Lipschitz graph with constant 1 which thus has perimeter $\lesssim \operatorname{diam}(B)^{d-1} \sim \mathcal{H}^{d-1}(\partial B)$.

History	Core Techniques	Covering Techniques	Summary	References
00000000000		○00●○○○○○○○○○○○○○○○○	0000	0
Proof				

 $\partial \{ C(x,r) \in \mathcal{B} : \sphericalangle(x,e) \leq \varepsilon \} \cap B$

is a Lipschitz graph with constant 1 which thus has perimeter $\lesssim \operatorname{diam}(B)^{d-1} \sim \mathcal{H}^{d-1}(\partial B)$. Take a maximal set of ε -separated directions and the result follows.

History	Core Techniques	Covering Techniques	Summary	References
0000000000	000000000000000000000000		0000	0
Proof				

 $\partial \{ C(x,r) \in \mathcal{B} : \sphericalangle(x,e) \leq \varepsilon \} \cap B$

is a Lipschitz graph with constant 1 which thus has perimeter $\lesssim \operatorname{diam}(B)^{d-1} \sim \mathcal{H}^{d-1}(\partial B)$. Take a maximal set of ε -separated directions and the result follows.

Actually this only works if diam $(C) \ge 2 \operatorname{diam}(B)$. For diam $(C) \ge K \operatorname{diam}(B)$ we cover B by $\sim K^d$ many balls B with diam $(B) = \operatorname{diam}(B)/2K$, for which we have diam $(C) \ge 2 \operatorname{diam}(B)$ for each $C \in B$. Then do the argument in each B.

Core Techniques

Covering Techniques

Summary 0000 References 0

High density, general version

1 History

- Background
- Onedimensional case

2 Core Techniques

- Reduction and decomposition
- High density case
- Low density case

3 Covering Techniques

- Boundary of large balls
- High density, general version
- Dyadic cubes to general cubes

Core Techniques

Covering Techniques

Summary 0000 References 0

Proposition (High density, general version)

Let \mathcal{B} be a set of balls \mathcal{B} with $\mathcal{L}(\mathcal{B} \cap \mathcal{E}) \geq \varepsilon \mathcal{L}(\mathcal{B})$. Then

$$\mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B} \setminus \overline{\mathcal{E}}\Big) \lesssim_{\varepsilon} \mathcal{H}^{d-1}\Big(\bigcup \mathcal{B} \cap \partial \mathcal{E}\Big).$$

Covering Techniques

Summary 0000 References 0

Proposition (High density, general version)

Let \mathcal{B} be a set of balls \underline{B} with $\mathcal{L}(\underline{B} \cap \underline{E}) \geq \varepsilon \mathcal{L}(\underline{B})$. Then

$$\mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B} \setminus \overline{\mathcal{E}}\Big) \lesssim_{\varepsilon} \mathcal{H}^{d-1}\Big(\bigcup \mathcal{B} \cap \partial \mathcal{E}\Big).$$

Proposition (High density, single scale version)

Let \mathcal{B} be a set of balls \mathcal{B} with diam $(\mathcal{B}) \ge 1$ and $\mathcal{L}(\mathcal{B} \cap \mathcal{E}) \ge \varepsilon \mathcal{L}(\mathcal{B})$ and let \mathcal{S} be a set of disjoint balls S centered on $\partial \bigcup \mathcal{B} \setminus \overline{\mathcal{E}}$ with diam $(S) \le 1$ and $\varepsilon \mathcal{L}(S) \le \mathcal{L}(S \cap \bigcup \mathcal{B} \cap \mathcal{E}) \le (1 - \varepsilon)\mathcal{L}(S)$. Then

$$\mathcal{H}^{d-1}\Big(\partial\bigcup \mathcal{B}\cap\bigcup 5\mathcal{S}\setminus\overline{\mathcal{E}}\Big)\lesssim_{\varepsilon}\mathcal{H}^{d-1}\Big(\bigcup_{S\in\mathcal{S}}\{x\in S: \mathsf{dist}(x,\bigcup \mathcal{B}^{\complement})>\varepsilon\,\mathsf{diam}(S)\}\cap\partial\overline{\mathcal{E}}\Big).$$

History Core Techniques Covering Techniques Summary Refe

Proof of high density, single scale version

S Vitali covering of $\partial B \setminus \overline{E}$. We can conclude

$$\begin{split} \mathcal{H}^{d-1}\Big(\partial B \setminus \overline{E}\Big) &= \mathcal{H}^{d-1}\Big(\bigcup \mathcal{B} \cap \partial B \setminus \overline{E}\Big) \leq \mathcal{H}^{d-1}\Big(\bigcup \mathcal{B} \cap \partial B\Big) \\ &= \mathcal{H}^{d-1}\Big(\bigcup 5S \cap \partial B\Big) \leq \sum_{S \in \mathcal{S}} \mathcal{H}^{d-1}(5S \cap \partial B) \\ &\lesssim \sum_{S \in \mathcal{S}} \mathcal{H}^{d-1}(\partial 5S) \lesssim \sum_{S \in \mathcal{S}} \mathcal{H}^{d-1}(\partial S) \\ &\lesssim \sum_{S \in \mathcal{S}} \mathcal{H}^{d-1}(\partial E \cap B \cap S) \leq \mathcal{H}^{d-1}(\partial E \cap B) \end{split}$$

History Core Techniques Covering Techniques Summary References

Proof of high density, single scale version

S Vitali covering of $\partial B \setminus \overline{E}$. We can conclude

$$\begin{split} \mathcal{H}^{d-1}\Big(\partial B \setminus \overline{E}\Big) &= \mathcal{H}^{d-1}\Big(\bigcup \mathcal{B} \cap \partial B \setminus \overline{E}\Big) \leq \mathcal{H}^{d-1}\Big(\bigcup \mathcal{B} \cap \partial B\Big) \\ &= \mathcal{H}^{d-1}\Big(\bigcup 5S \cap \partial B\Big) \leq \sum_{S \in \mathcal{S}} \mathcal{H}^{d-1}(5S \cap \partial B) \\ &\lesssim \sum_{S \in \mathcal{S}} \mathcal{H}^{d-1}(\partial 5S) \lesssim \sum_{S \in \mathcal{S}} \mathcal{H}^{d-1}(\partial S) \\ &\lesssim \sum_{S \in \mathcal{S}} \mathcal{H}^{d-1}(\partial E \cap B \cap S) \leq \mathcal{H}^{d-1}(\partial E \cap B) \end{split}$$

(Proof of fifth step can be made precise.)

Core Techniques

Covering Techniques

Summary 0000 References 0

Proof of high density, general version

Do Vitali covering S of $\partial \bigcup B \setminus \overline{E}$ but only make the balls in $S_n = \{S \in S : 2^n \le \text{diam}(S) < 2^{n+1}\}$ disjoint.

History Core Techniques Covering Techniques Summary References

Proof of high density, general version

Do Vitali covering S of $\partial \bigcup B \setminus \overline{E}$ but only make the balls in $S_n = \{S \in S : 2^n \le \text{diam}(S) < 2^{n+1}\}$ disjoint. Then

$$\begin{split} &\mathcal{H}^{d-1}\Big(\partial\bigcup\mathcal{B}\setminus\overline{\mathcal{E}}\Big)\\ &\leq \sum_{n\in\mathbb{Z}}\mathcal{H}^{d-1}\Big(\partial\bigcup\mathcal{B}\cap\bigcup 5\mathcal{S}_n\setminus\overline{\mathcal{E}}\Big)\\ &\lesssim \sum_{n\in\mathbb{Z}}\mathcal{H}^{d-1}\Big(\bigcup_{S\in\mathcal{S}_n}\{x\in S:\varepsilon 2^n<\operatorname{dist}(x,\bigcup\mathcal{B}^\complement)<2^n\}\cap\partial\mathcal{E}\Big)\\ &\lesssim |1-\log\varepsilon|\mathcal{H}^{d-1}\Big(\bigcup\mathcal{B}\cap\partial\mathcal{E}\Big). \end{split}$$

Core Techniques

Covering Techniques

Summary 0000 References 0

Dyadic cubes to general cubes

1 History

- Background
- Onedimensional case

2 Core Techniques

- Reduction and decomposition
- High density case
- Low density case

3 Covering Techniques

- Boundary of large balls
- High density, general version
- Dyadic cubes to general cubes

4 Summary

Want to show var $Mf \leq \operatorname{var} f$ for $Mf(x) = \sup_{Q \ni x} f_Q$, where the supremum is taken over all cubes.

Want to show var $Mf \leq \text{var } f$ for $Mf(x) = \sup_{Q \ni x} f_Q$, where the supremum is taken over all cubes. Proof idea: Do Vitali covering for the boundary to reduce to dyadic cubes.

supremum is taken over all cubes. Proof idea: Do Vitali covering for the boundary to reduce to dyadic cubes. When statements are true for balls and cubes we write them down only for balls.

Want to show var $Mf \leq \text{var } f$ for $Mf(x) = \sup_{Q \ni x} f_Q$, where the supremum is taken over all cubes. Proof idea: Do *Vitali covering* for the boundary to reduce to dyadic cubes. When statements are true for balls and cubes we write them down only for balls.

Vitali covering

For any (finite) set of balls \mathcal{B} For any (finite) set of balls \mathcal{B} , there is a subset $\mathcal{S} \subset \mathcal{B}$ of disjoint balls with

$$\mathcal{L}\left(\bigcup \mathcal{B}\right) \lesssim \sum_{S \in \mathcal{S}} \mathcal{L}(S).$$
Want to show var $Mf \lesssim var f$ for $Mf(x) = \sup_{Q \ni x} f_Q$, where the supremum is taken over all cubes. Proof idea: Do *Vitali covering* for the boundary to reduce to dyadic cubes. When statements are true for balls and cubes we write them down only for balls.

Vitali covering

For any (finite) set of balls \mathcal{B} For any (finite) set of balls \mathcal{B} , there is a subset $\mathcal{S} \subset \mathcal{B}$ of disjoint balls with

$$\mathcal{L}\Big(\bigcup \mathcal{B}\Big)\lesssim \sum_{S\in \mathcal{S}}\mathcal{L}(S).$$

Question

For any (finite) set of balls \mathcal{B} , is there a subset $\mathcal{S} \subset \mathcal{B}$ of disjoint balls with

$$\mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B}\Big) \lesssim \sum_{S \in \mathcal{S}} \mathcal{H}^{d-1}(\partial S)?$$

I think not.

Core Techniques

Covering Techniques

Summary 0000 References 0

Problem with the Vitali covering-proof:

$$\bigcup \mathcal{B} \subset 5\mathbf{B} \quad \Rightarrow \quad \mathcal{L}\left(\bigcup \mathcal{B}\right) \leq 5^{d}\mathcal{L}(\mathbf{B}),$$

Core Techniques

Covering Techniques

Summary 0000 References 0

Problem with the Vitali covering-proof:

$$igcup_{\mathcal{B}} \subset 5B \quad \Rightarrow \quad \mathcal{L}\left(igcup_{\mathcal{B}}\right) \leq 5^{d}\mathcal{L}(B),$$

 $igcup_{\mathcal{B}} \subset 5B \quad
eq \quad \mathcal{H}^{d-1}\left(\partialigcup_{\mathcal{B}}\right) \lesssim \mathcal{H}^{d-1}(\partial B).$

Core Techniques

Covering Techniques

Summary 0000 References 0

Problem with the Vitali covering-proof:

$$\bigcup \mathcal{B} \subset 5\mathbf{B} \quad \Rightarrow \quad \mathcal{L}\left(\bigcup \mathcal{B}\right) \leq 5^{d}\mathcal{L}(\mathbf{B}), \\ \bigcup \mathcal{B} \subset 5\mathbf{B} \quad \neq \quad \mathcal{H}^{d-1}\left(\partial \bigcup \mathcal{B}\right) \lesssim \mathcal{H}^{d-1}(\partial \mathbf{B}).$$

Proposition (Vitali (replacement) for perimeter)

For any (finite) set of balls \mathcal{B} there is a subset $\mathcal{S} \subset \mathcal{B}$ of balls such that for any $S_1, S_2 \in \mathcal{S}$ with $S_1 \neq S_2$ we have

$$\mathcal{L}(S_1 \cap S_2) \leq rac{\min\{\mathcal{L}(S_1), \mathcal{L}(S_2)\}}{2}$$

and

$$\mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B}\Big)\lesssim \sum_{S\in \mathcal{S}}\mathcal{H}^{d-1}(\partial S).$$

(The factor 1/2 can be made arbitrarily small.)

History	

Core Techniques

Covering Techniques

Summary 0000 References 0

Proof of Vitali for perimeter

Assume all balls in $\ensuremath{\mathcal{B}}$ have diameter at most 1. Inductively proceed as follows.

History 00000000000	Core Techniques	Covering Techniques	Summary 0000	References 0
	(),)) ()			

Proof of Vitali for perimeter

Assume all balls in \mathcal{B} have diameter at most 1. Inductively proceed as follows. For each $n \in \mathbb{N}$ let

$$C_n = \{B \in B : \exists S \in S_1 \cup \ldots \cup S_{n-1}, \ \mathcal{L}(B \cap S) \ge \mathcal{L}(B)/2\}$$

be the set of balls already covered in earlier steps. Set

$$\mathcal{B}_n = \{ \mathbf{B} \in \mathcal{B} \setminus \mathcal{C}_n : 2^{-n-1} < \operatorname{diam}(\mathbf{B}) \le 2^{-n} \}.$$

Let S_n be a maximal disjoint subset of \mathcal{B}_n such that for all $S, T \in S_n$ we have $\mathcal{L}(S \cap T) \leq \min{\{\mathcal{L}(S), \mathcal{L}(T)\}/2}$.

History 0000000000	Core Techniques	Covering Techniques	Summary 0000	References O
	0. 1. C			

Proof of Vitali for perimeter

Assume all balls in \mathcal{B} have diameter at most 1. Inductively proceed as follows. For each $n \in \mathbb{N}$ let

$$C_n = \{B \in B : \exists S \in S_1 \cup \ldots \cup S_{n-1}, \ \mathcal{L}(B \cap S) \ge \mathcal{L}(B)/2\}$$

be the set of balls already covered in earlier steps. Set

$$\mathcal{B}_n = \{ \mathbf{B} \in \mathcal{B} \setminus \mathcal{C}_n : 2^{-n-1} < \operatorname{diam}(\mathbf{B}) \le 2^{-n} \}.$$

Let S_n be a maximal disjoint subset of \mathcal{B}_n such that for all $S, T \in S_n$ we have $\mathcal{L}(S \cap T) \leq \min{\{\mathcal{L}(S), \mathcal{L}(T)\}/2}$. Finally define $S = S_1 \cup S_2 \cup \ldots$

History 00000000000	Core Techniques	Covering Techniques	Summary 0000	References O
	0. 1. C			

Proof of Vitali for perimeter

Assume all balls in \mathcal{B} have diameter at most 1. Inductively proceed as follows. For each $n \in \mathbb{N}$ let

$$C_n = \{B \in B : \exists S \in S_1 \cup \ldots \cup S_{n-1}, \ \mathcal{L}(B \cap S) \ge \mathcal{L}(B)/2\}$$

be the set of balls already covered in earlier steps. Set

$$\mathcal{B}_n = \{ \mathbf{B} \in \mathcal{B} \setminus \mathcal{C}_n : 2^{-n-1} < \operatorname{diam}(\mathbf{B}) \le 2^{-n} \}.$$

Let S_n be a maximal disjoint subset of \mathcal{B}_n such that for all $S, T \in S_n$ we have $\mathcal{L}(S \cap T) \leq \min{\{\mathcal{L}(S), \mathcal{L}(T)\}/2}$. Finally define $S = S_1 \cup S_2 \cup \ldots$ For similar reasons as for the Vitali covering argument, we have for all $S, T \in S$ that

$$\mathcal{L}(S \cap T) \leq \min{\{\mathcal{L}(S), \mathcal{L}(T)\}/2}.$$

Let $B \in \mathcal{B}$ and take *n* such that $2^{-n-1} < \text{diam}(B) \le 2^{-n}$. If $B \in \mathcal{S}$ then there is nothing to show.

Let $B \in \mathcal{B}$ and take *n* such that $2^{-n-1} < \text{diam}(B) \le 2^{-n}$. If $B \in S$ then there is nothing to show. If $B \in C_n$ then there is an $S \in S$ with $\mathcal{L}(B \cap S) \ge \mathcal{L}(B)/2$. If $B \notin C_n$ then by maximality of \mathcal{B}_n there is an $S \in \mathcal{B}_n \cap S$ with

$$\mathcal{L}(\boldsymbol{B}\cap S) \geq \frac{\min\{\mathcal{L}(\boldsymbol{B}), \mathcal{L}(S)\}}{2} \geq \frac{\mathcal{L}(B(0, 2^{-n-2}))}{2} \geq 2^{-n-1}\mathcal{L}(\boldsymbol{B}).$$

Let $B \in \mathcal{B}$ and take *n* such that $2^{-n-1} < \text{diam}(B) \le 2^{-n}$. If $B \in \mathcal{S}$ then there is nothing to show. If $B \in \mathcal{C}_n$ then there is an $S \in \mathcal{S}$ with $\mathcal{L}(B \cap S) \ge \mathcal{L}(B)/2$. If $B \notin \mathcal{C}_n$ then by maximality of \mathcal{B}_n there is an $S \in \mathcal{B}_n \cap \mathcal{S}$ with

$$\mathcal{L}(B \cap S) \geq \frac{\min\{\mathcal{L}(B), \mathcal{L}(S)\}}{2} \geq \frac{\mathcal{L}(B(0, 2^{-n-2}))}{2} \geq 2^{-n-1}\mathcal{L}(B).$$

Proposition (High density)

Let \mathcal{B} be a set of balls \mathcal{B} with $\mathcal{L}(\mathcal{B} \cap \mathcal{E}) \geq \varepsilon \mathcal{L}(\mathcal{B})$. Then

$$\mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B} \setminus \overline{\mathcal{E}}\Big) \lesssim_{\varepsilon} \mathcal{H}^{d-1}\Big(\bigcup \mathcal{B} \cap \partial \mathcal{E}\Big).$$

Covering Techniques

Summary 2000 References 0

$$\mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B}\Big) \leq \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B} \setminus \bigcup \{\overline{S} : S \in \mathcal{S}\}\Big) + \sum_{S \in \mathcal{S}} \mathcal{H}^{d-1}(\partial S)$$

Core Techniques 000000000000000000000 Covering Techniques

Summary 2000 References 0

$$\mathcal{H}^{d-1}\Big(\partial\bigcup\mathcal{B}\Big)\leq\mathcal{H}^{d-1}\Big(\partial\bigcup\mathcal{B}\setminus\bigcup\{\overline{S}:S\in\mathcal{S}\}\Big)+\sum_{S\in\mathcal{S}}\mathcal{H}^{d-1}(\partial S)$$

$$\begin{split} &\mathcal{H}^{d-1}\Big(\partial\bigcup\mathcal{B}\setminus\bigcup\{\overline{S}:S\in\mathcal{S}\}\Big)\\ &\leq \sum_{S\in\mathcal{S}}\mathcal{H}^{d-1}\Big(\partial\bigcup\{\mathcal{B}\in\mathcal{B}:\mathcal{L}(\mathcal{B}\cap S)\geq 2^{-n-1}\mathcal{L}(\mathcal{B})\}\setminus\overline{S}\Big)\\ &\lesssim \sum_{S\in\mathcal{S}}\mathcal{H}^{d-1}\Big(\bigcup\{\mathcal{B}\in\mathcal{B}:\mathcal{L}(\mathcal{B}\cap S)\geq 2^{-n-1}\mathcal{L}(\mathcal{B})\}\cap\partial S\Big)\\ &\leq \sum_{S\in\mathcal{S}}\mathcal{H}^{d-1}(\partial S). \end{split}$$

Core Techniques

Covering Techniques

Summary 0000 References 0

Recall the strategy for dyadic

Want to estimate

 $\sum (f_{\boldsymbol{Q}} - \tilde{\lambda}_{\boldsymbol{Q}}) \mathcal{H}^{d-1}(\partial \boldsymbol{Q}) \lesssim \operatorname{var} f.$

Q dyadic

Recall the strategy for dyadic

Want to estimate

$$\sum_{oldsymbol{Q} \, ext{dyadic}} (f_{oldsymbol{Q}} - ilde{\lambda}_{oldsymbol{Q}}) \mathcal{H}^{d-1}(\partial oldsymbol{Q}) \lesssim ext{var}\, f.$$

For each (dyadic) cube we have

$$(f_{Q} - \tilde{\lambda}_{Q})\mathcal{H}^{d-1}(\partial Q) \cdot I(Q) \lesssim \int_{\mathbb{R}} \sum_{P \in \mathcal{D}^{\lambda}(Q)} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda,$$

where $\mathcal{D}^{\lambda}(Q)$ is the set of dyadic cubes P with base cube Q such that $\bar{\lambda}_P < \lambda < f_P$.

Recall the strategy for dyadic

Want to estimate

$$\sum_{oldsymbol{Q} \, ext{dyadic}} (f_{oldsymbol{Q}} - ilde{\lambda}_{oldsymbol{Q}}) \mathcal{H}^{d-1}(\partial oldsymbol{Q}) \lesssim ext{var}\, f.$$

For each (dyadic) cube we have

$$(f_{Q} - \tilde{\lambda}_{Q})\mathcal{H}^{d-1}(\partial Q) \cdot I(Q) \lesssim \int_{\mathbb{R}} \sum_{P \in \mathcal{D}^{\lambda}(Q)} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda,$$

where $\mathcal{D}^{\lambda}(Q)$ is the set of dyadic cubes P with base cube Q such that $\bar{\lambda}_P < \lambda < f_P$.

Do Fubini. Each dyadic cube P on the RHS will appear with a factor $I(Q)^{-1}$ for each dyadic parent of P.

Recall the strategy for dyadic

Want to estimate

$$\sum_{oldsymbol{Q} \, ext{dyadic}} (f_{oldsymbol{Q}} - ilde{\lambda}_{oldsymbol{Q}}) \mathcal{H}^{d-1}(\partial oldsymbol{Q}) \lesssim ext{var} \, f.$$

For each (dyadic) cube we have

$$(f_{Q} - \tilde{\lambda}_{Q})\mathcal{H}^{d-1}(\partial Q) \cdot I(Q) \lesssim \int_{\mathbb{R}} \sum_{P \in \mathcal{D}^{\lambda}(Q)} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda,$$

where $\mathcal{D}^{\lambda}(Q)$ is the set of dyadic cubes P with base cube Q such that $\overline{\lambda}_P < \lambda < f_P$.

Do Fubini. Each dyadic cube P on the RHS will appear with a factor $I(Q)^{-1}$ for each dyadic parent of P. Geometric sum will coverge and yield $\mathcal{H}^{d-1}(\partial P)$

Recall the strategy for dyadic

Want to estimate

$$\sum_{oldsymbol{Q} \, ext{dyadic}} (f_{oldsymbol{Q}} - ilde{\lambda}_{oldsymbol{Q}}) \mathcal{H}^{d-1}(\partial oldsymbol{Q}) \lesssim ext{var} \, f.$$

For each (dyadic) cube we have

$$(f_{Q} - \tilde{\lambda}_{Q})\mathcal{H}^{d-1}(\partial Q) \cdot I(Q) \lesssim \int_{\mathbb{R}} \sum_{P \in \mathcal{D}^{\lambda}(Q)} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda,$$

where $\mathcal{D}^{\lambda}(Q)$ is the set of dyadic cubes P with base cube Q such that $\overline{\lambda}_P < \lambda < f_P$.

Do Fubini. Each dyadic cube P on the RHS will appear with a factor $I(Q)^{-1}$ for each dyadic parent of P. Geometric sum will coverge and yield $\mathcal{H}^{d-1}(\partial P)$ and relative isoperimetric inequality will turn it into into $\mathcal{H}^{d-1}(\partial \{f > \lambda\} \cap P)$.

Recall the strategy for dyadic

Want to estimate

$$\sum_{\substack{\boldsymbol{Q} \text{ dyadic}}} (\boldsymbol{f}_{\boldsymbol{Q}} - \tilde{\lambda}_{\boldsymbol{Q}}) \mathcal{H}^{d-1}(\partial \boldsymbol{Q}) \lesssim \operatorname{var} \boldsymbol{f}.$$

For each (dyadic) cube we have

$$(f_{Q} - \tilde{\lambda}_{Q})\mathcal{H}^{d-1}(\partial Q) \cdot I(Q) \lesssim \int_{\mathbb{R}} \sum_{P \in \mathcal{D}^{\lambda}(Q)} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda,$$

where $\mathcal{D}^{\lambda}(Q)$ is the set of dyadic cubes P with base cube Q such that $\bar{\lambda}_P < \lambda < f_P$.

Do Fubini. Each dyadic cube P on the RHS will appear with a factor $I(Q)^{-1}$ for each dyadic parent of P. Geometric sum will coverge and yield $\mathcal{H}^{d-1}(\partial P)$ and relative isoperimetric inequality will turn it into into $\mathcal{H}^{d-1}(\partial \{f > \lambda\} \cap P)$. By disjonintness the right hand side then is var f.

History	Core Techniques	Covering Techniques	Summary	References
0000000000	000000000000000000000000000000000000		0000	0

Denote
$$\mathcal{D}^{\lambda} = \bigcup_{\boldsymbol{Q} \text{ dyadic}} \mathcal{D}^{\lambda}(\boldsymbol{Q})$$
. We use:

④ For each $\lambda \in \mathbb{R}$ the cubes in \mathcal{D}^{λ} are disjoint.

History 0000000000	Core Techniques	Covering Techniques	Summary 0000	References 0

Denote
$$\mathcal{D}^{\lambda} = \bigcup_{\boldsymbol{Q} \text{ dyadic}} \mathcal{D}^{\lambda}(\boldsymbol{Q})$$
. We use:

- **9** For each $\lambda \in \mathbb{R}$ the cubes in \mathcal{D}^{λ} are disjoint.
- So For each $P \in D^{\lambda}$ there is only one Q per scale with $P \in D^{\lambda}(Q)$.

History	Core Techniques	Covering Techniques	Summary	References
0000000000	000000000000000000000000000000000000		0000	0

Denote
$$\mathcal{D}^{\lambda} = \bigcup_{\boldsymbol{Q} \text{ dyadic}} \mathcal{D}^{\lambda}(\boldsymbol{Q})$$
. We use:

- For each $\lambda \in \mathbb{R}$ the cubes in \mathcal{D}^{λ} are disjoint.
- For each P ∈ D^λ there is only one Q per scale with P ∈ D^λ(Q).

The following weaker assumptions are actually enough.

• There is a small $\varepsilon > 0$ such that for each $\lambda \in \mathbb{R}$ the cubes in $\{(1 - \varepsilon)P : P \in D^{\lambda}\}$ have bounded overlap.

History	Core Techniques	Covering Techniques	Summary 0000	References 0

Denote
$$\mathcal{D}^{\lambda} = \bigcup_{Q \text{ dyadic}} \mathcal{D}^{\lambda}(Q)$$
. We use:

- For each $\lambda \in \mathbb{R}$ the cubes in \mathcal{D}^{λ} are disjoint.
- Por each P ∈ D^λ there is only one Q per scale with P ∈ D^λ(Q).

The following weaker assumptions are actually enough.

- There is a small $\varepsilon > 0$ such that for each $\lambda \in \mathbb{R}$ the cubes in $\{(1 \varepsilon)P : P \in D^{\lambda}\}$ have bounded overlap.
- Solution is a set of the same scale.
 Solution is a set of the same scale.

Core Techniques

Covering Techniques

Summary 0000 References 0

Strategy for general cubes

Split the cubes $Q_{\lambda} = \{ Q : f_Q > \lambda \}$ into $Q_{\lambda}^{>} \cup Q_{\lambda}^{>,2} \cup Q_{\lambda}^{\leq}$, where

$$egin{aligned} \mathcal{Q}^{>}_{\lambda} &= \{ oldsymbol{Q} \in \mathcal{Q}_{\lambda} : \mathcal{L}(\{f > \lambda\} \cap oldsymbol{Q}) > 2^{-1}\mathcal{L}(oldsymbol{Q}) \} \ \mathcal{Q}^{>,2}_{\lambda} &= \{ oldsymbol{Q} \in \mathcal{Q}_{\lambda} : \mathcal{L}\left(igcup \mathcal{Q}^{>}_{\lambda} \cap oldsymbol{Q}\right) > 2^{-1}\mathcal{L}(oldsymbol{Q}) \} \ \mathcal{Q}^{\leq}_{\lambda} &= \mathcal{Q}_{\lambda} \setminus \mathcal{Q}^{>}_{\lambda} \setminus \mathcal{Q}^{>,2}_{\lambda}. \end{aligned}$$

istory Cor 000000000 000

Core Techniques

Covering Techniques

Summary 0000 References 0

Strategy for general cubes

Split the cubes $Q_{\lambda} = \{ Q : f_Q > \lambda \}$ into $Q_{\lambda}^{>} \cup Q_{\lambda}^{>,2} \cup Q_{\lambda}^{\leq}$, where

$$egin{aligned} \mathcal{Q}^{>}_{\lambda} &= \{oldsymbol{Q} \in \mathcal{Q}_{\lambda} : \mathcal{L}(\{f > \lambda\} \cap oldsymbol{Q}) > 2^{-1}\mathcal{L}(oldsymbol{Q})\} \ \mathcal{Q}^{>,2}_{\lambda} &= \{oldsymbol{Q} \in \mathcal{Q}_{\lambda} : \mathcal{L}\Big(igcup \mathcal{Q}^{>}_{\lambda} \cap oldsymbol{Q}\Big) > 2^{-1}\mathcal{L}(oldsymbol{Q})\} \ \mathcal{Q}^{\leq}_{\lambda} &= \mathcal{Q}_{\lambda} \setminus \mathcal{Q}^{>}_{\lambda} \setminus \mathcal{Q}^{>,2}_{\lambda}. \end{aligned}$$

Then by the *high density* argument $\mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{>,2}) \lesssim \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{>}) \lesssim \mathcal{H}^{d-1}(\partial \{f > \lambda\}).$ To $\mathcal{Q}_{\lambda}^{\leq}$ apply the Vitali covering argument for the boundary. story Core Tec 0000000000 000000

Core Techniques

Covering Techniques

Summary 0000 References 0

Strategy for general cubes

Split the cubes $Q_{\lambda} = \{ Q : f_Q > \lambda \}$ into $Q_{\lambda}^{>} \cup Q_{\lambda}^{>,2} \cup Q_{\lambda}^{\leq}$, where

$$egin{aligned} \mathcal{Q}^{>}_{\lambda} &= \{ oldsymbol{Q} \in \mathcal{Q}_{\lambda} : \mathcal{L}(\{ f > \lambda \} \cap oldsymbol{Q}) > 2^{-1}\mathcal{L}(oldsymbol{Q}) \} \ \mathcal{Q}^{>,2}_{\lambda} &= \{ oldsymbol{Q} \in \mathcal{Q}_{\lambda} : \mathcal{L}\left(igcup \mathcal{Q}^{>}_{\lambda} \cap oldsymbol{Q}\right) > 2^{-1}\mathcal{L}(oldsymbol{Q}) \} \ \mathcal{Q}^{\leq}_{\lambda} &= \mathcal{Q}_{\lambda} \setminus \mathcal{Q}^{>}_{\lambda} \setminus \mathcal{Q}^{>,2}_{\lambda}. \end{aligned}$$

Then by the *high density* argument $\mathcal{H}^{d-1}(\partial \bigcup Q_{\lambda}^{>,2}) \lesssim \mathcal{H}^{d-1}(\partial \bigcup Q_{\lambda}^{>}) \lesssim \mathcal{H}^{d-1}(\partial \{f > \lambda\}).$ To $\mathcal{Q}_{\lambda}^{\leq}$ apply the Vitali covering argument for the boundary. This can actually be done in a consistent way through all $\lambda \in \mathbb{R}$, so that we obtain a set *S* such that

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{Q}_\lambda^{\leq}\Big) \,\mathrm{d}\lambda \lesssim \sum_{\boldsymbol{Q} \in \mathcal{S}} (\boldsymbol{f}_{\boldsymbol{Q}} - \tilde{\lambda}_{\boldsymbol{Q}}) \mathcal{H}^{d-1}(\partial \boldsymbol{Q}).$$

History	Core Techniques	Covering Techniques	Summary	References
		000000000000000000000000000000000000000		

For any $Q_1, Q_2 \in S$ with diam $(Q_1) \leq \text{diam}(Q_2)$ we have $\mathcal{L}(Q_1 \cap Q_2) \leq 2^{-1} \mathcal{L}(Q)_1$ or

History	Core Techniques	Covering Techniques	Summary	References
		000000000000000000000000000000000000000		

For any $Q_1, Q_2 \in S$ with diam $(Q_1) \leq \text{diam}(Q_2)$ we have $\mathcal{L}(Q_1 \cap Q_2) \leq 2^{-1}\mathcal{L}(Q_1)$ or

2 Q_1 has strictly smaller scale than Q_2 and $f_{Q1} > f_{Q2}$.

History	Core Techniques	Covering Techniques	Summary	References
		000000000000000000000000000000000000000		

For any $Q_1, Q_2 \in S$ with diam $(Q_1) \leq \text{diam}(Q_2)$ we have • $\mathcal{L}(Q_1 \cap Q_2) \leq 2^{-1}\mathcal{L}(Q)_1$ or • Q_1 has strictly smaller scale than Q_2 and $f_{Q_1} > f_{Q_2}$.

Denote $\mathcal{D}^{\lambda} = \bigcup_{Q \in S} \mathcal{D}^{\lambda}(Q)$. For cubes $Q_1, Q_2 \in S$ the cubes in $\mathcal{D}^{\lambda}(Q_1), \mathcal{D}^{\lambda}(Q_2)$ can have bad overlap.

History	Core Techniques	Covering Techniques	Summary	References
		000000000000000000000000000000000000000		

For any ${\it Q}_1, {\it Q}_2 \in {\cal S}$ with diam $({\it Q}_1) \leq$ diam $({\it Q}_2)$ we have

•
$$\mathcal{L}(oldsymbol{Q}_1\capoldsymbol{Q}_2)\leq 2^{-1}\mathcal{L}(oldsymbol{Q})_1$$
 or

Q₁ has strictly smaller scale than Q_2 and $f_{Q_1} > f_{Q_2}$.

Denote $\mathcal{D}^{\lambda} = \bigcup_{\boldsymbol{Q} \in \mathcal{S}} \mathcal{D}^{\lambda}(\boldsymbol{Q}).$

For cubes $Q_1, Q_2 \in S$ the cubes in $\mathcal{D}^{\lambda}(Q_1), \mathcal{D}^{\lambda}(Q_2)$ can have bad overlap. So we run again a Vitali-type argument on \mathcal{D}^{λ} to select a set of almost disjoint representatives \mathcal{F}^{λ} .

Core Techniques

Covering Techniques

 \mathcal{F}^{λ} :

• There is a small $\varepsilon > 0$ such that for each $\lambda \in \mathbb{R}$ the cubes in $\{(1 - \varepsilon)P : P \in \mathcal{F}^{\lambda}\}$ have bounded overlap.

History	Core Techniques	Covering Techniques	Summary	References
		000000000000000000000000000000000000000		

\mathcal{F}^{λ} :

- There is a small $\varepsilon > 0$ such that for each $\lambda \in \mathbb{R}$ the cubes in $\{(1 \varepsilon)P : P \in \mathcal{F}^{\lambda}\}$ have bounded overlap.
- Solution For each $Q \in S$ and $P \in D^{\lambda}(Q)$ there is a $R \in \mathcal{F}^{\lambda}$ such that $P \leq R \leq Q$.

History	Core Techniques	Covering Techniques	Summary	References
		000000000000000000000000000000000000000		

\mathcal{F}^{λ} :

- There is a small $\varepsilon > 0$ such that for each $\lambda \in \mathbb{R}$ the cubes in $\{(1 \varepsilon)P : P \in \mathcal{F}^{\lambda}\}$ have bounded overlap.
- So For each Q ∈ S and P ∈ D^λ(Q) there is a R ∈ F^λ such that P ≤ R ≤ Q.

Attempt 1: Just apply Vitali covering to $\mathcal{D}^{\lambda} = \bigcup_{Q \in S} \mathcal{D}^{\lambda}(S)$ and let \mathcal{F}^{λ} be the resulting set.

Core Techniques

\mathcal{F}^{λ} :

- There is a small $\varepsilon > 0$ such that for each $\lambda \in \mathbb{R}$ the cubes in $\{(1 \varepsilon)P : P \in \mathcal{F}^{\lambda}\}$ have bounded overlap.
- Solution For each $Q \in S$ and $P \in D^{\lambda}(Q)$ there is a $R \in \mathcal{F}^{\lambda}$ such that $P \leq R \leq Q$.

Attempt 1: Just apply Vitali covering to $\mathcal{D}^{\lambda} = \bigcup_{Q \in S} \mathcal{D}^{\lambda}(S)$ and let \mathcal{F}^{λ} be the resulting set.

What goes wrong: Let $Q_1, Q_2 \in S$ be intersecting and with diam $(Q_1) \ll \text{diam}(Q_2)$. Then there might be a $P \in \mathcal{D}^{\lambda}(Q_2)$ with diam $(Q_1) \ll \text{diam}(P)$ which covers all cubes in $\mathcal{D}^{\lambda}(Q_2)$.

Core Techniques

\mathcal{F}^{λ} :

- There is a small $\varepsilon > 0$ such that for each $\lambda \in \mathbb{R}$ the cubes in $\{(1 \varepsilon)P : P \in \mathcal{F}^{\lambda}\}$ have bounded overlap.
- For each $Q \in S$ and $P \in D^{\lambda}(Q)$ there is a $R \in \mathcal{F}^{\lambda}$ such that $P \leq R \leq Q$.

Attempt 1: Just apply Vitali covering to $\mathcal{D}^{\lambda} = \bigcup_{Q \in S} \mathcal{D}^{\lambda}(S)$ and let \mathcal{F}^{λ} be the resulting set.

What goes wrong: Let $Q_1, Q_2 \in S$ be intersecting and with diam $(Q_1) \ll \text{diam}(Q_2)$. Then there might be a $P \in D^{\lambda}(Q_2)$ with diam $(Q_1) \ll \text{diam}(P)$ which covers all cubes in $D^{\lambda}(Q_2)$. That means $D^{\lambda}(Q_2)$ gets deleted and there is no way to get a bound like

$$(f_{Q_2} - \tilde{\lambda}_{Q_2})\mathcal{H}^{d-1}(\partial Q_2) \cdot \mathsf{I}(Q_2) \lesssim \int_{\mathbb{R}} \sum_{P \in \mathcal{F}^{\lambda}(Q)} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathrm{d}\lambda,$$

because we must have diam(P) \lesssim diam(Q_2) for all $P \in \mathcal{F}^{\lambda}(Q_2)$ for the geometric sum to converge.

History	Core Techniques	Covering Techniques	Summary	References
		000000000000000000000000000000000000000		

Vitali covering creates an actual disjoint cover, but we only need

• There is a small $\varepsilon > 0$ such that for each $\lambda \in \mathbb{R}$ the cubes in $\{(1 - \varepsilon)P : P \in \mathcal{F}^{\lambda}\}$ have bounded overlap.
History	Core Techniques	Covering Techniques	Summary	References
		000000000000000000000000000000000000000		

Vitali covering creates an actual disjoint cover, but we only need

• There is a small $\varepsilon > 0$ such that for each $\lambda \in \mathbb{R}$ the cubes in $\{(1 - \varepsilon)P : P \in \mathcal{F}^{\lambda}\}$ have bounded overlap.

Fix: Take $(1 - \varepsilon)P$ instead. Then in the above situation $(1 - \varepsilon)P$ is disjoint from any cube in $\mathcal{D}^{\lambda}(Q_2)$ and we can still use them.

History	Core Techniques	Covering Techniques	Summary	References
		0000000000000000000000		

Vitali covering creates an actual disjoint cover, but we only need

• There is a small $\varepsilon > 0$ such that for each $\lambda \in \mathbb{R}$ the cubes in $\{(1 - \varepsilon)P : P \in \mathcal{F}^{\lambda}\}$ have bounded overlap.

Fix: Take $(1 - \varepsilon)P$ instead. Then in the above situation $(1 - \varepsilon)P$ is disjoint from any cube in $\mathcal{D}^{\lambda}(Q_2)$ and we can still use them. If we are not in the situation diam $(Q_1) \ll \text{diam}(Q_2)$ then all cubes have a similar scale and we are safe to do Vitali covering and we just lose some constants.

History

Core Techniques

Covering Techniques

Summary •000 References 0

Summary

History

- Background
- Onedimensional case

2 Core Techniques

- Reduction and decomposition
- High density case
- Low density case

3 Covering Techniques

- Boundary of large balls
- High density, general version
- Dyadic cubes to general cubes

4 Summary

History 0000000000	Core Techniques	Covering Techniques	Summary 0●00	References 0
Summary				

$$\operatorname{var} \operatorname{M} f = \int_0^\infty \mathcal{H}^{d-1} \Big(\partial \bigcup \mathcal{Q}_\lambda \Big) \, \mathrm{d}\lambda,$$

where $Q_{\lambda} = \{ \mathbf{Q} : \mathbf{f}_{\mathbf{Q}} > \lambda \}.$

History 0000000000	Core Techniques	Covering Techniques	Summary 0●00	References 0
Summary				

$$\operatorname{var} \mathbf{M} \boldsymbol{f} = \int_0^\infty \mathcal{H}^{d-1} \Big(\partial \bigcup \mathcal{Q}_\lambda \Big) \, \mathrm{d}\lambda,$$

where $Q_{\lambda} = \{ \mathbf{Q} : f_{\mathbf{Q}} > \lambda \}$. Split the cubes $Q_{\lambda} = \{ \mathbf{Q} : f_{\mathbf{Q}} > \lambda \}$ into $Q_{\lambda}^{\geq} \cup Q_{\lambda}^{\leq}$, where

$$egin{aligned} \mathcal{Q}^{>}_{\lambda} &= \{ oldsymbol{Q} \in \mathcal{Q}_{\lambda} : \mathcal{L}(\{ oldsymbol{f} > \lambda\} \cap oldsymbol{Q}) > 2^{-1}\mathcal{L}(oldsymbol{Q}) \} \ \mathcal{Q}^{\leq}_{\lambda} &= \{ oldsymbol{Q} \in \mathcal{Q}_{\lambda} : \mathcal{L}(\{ oldsymbol{f} > \lambda\} \cap oldsymbol{Q}) \leq 2^{-1}\mathcal{L}(oldsymbol{Q}) \}. \end{aligned}$$

History 0000000000	Core Techniques	Covering Techniques	Summary 0●00	References 0
Summary				

$$\operatorname{var} \mathbf{M} \boldsymbol{f} = \int_0^\infty \mathcal{H}^{d-1} \Big(\partial \bigcup \mathcal{Q}_\lambda \Big) \, \mathrm{d}\lambda,$$

where $Q_{\lambda} = \{ \mathbf{Q} : f_{\mathbf{Q}} > \lambda \}$. Split the cubes $Q_{\lambda} = \{ \mathbf{Q} : f_{\mathbf{Q}} > \lambda \}$ into $Q_{\lambda}^{\geq} \cup Q_{\lambda}^{\leq}$, where

$$egin{aligned} \mathcal{Q}^{>}_{\lambda} &= \{ oldsymbol{Q} \in \mathcal{Q}_{\lambda} : \mathcal{L}(\{ oldsymbol{f} > \lambda\} \cap oldsymbol{Q}) > 2^{-1}\mathcal{L}(oldsymbol{Q}) \} \ \mathcal{Q}^{\leq}_{\lambda} &= \{ oldsymbol{Q} \in \mathcal{Q}_{\lambda} : \mathcal{L}(\{ oldsymbol{f} > \lambda\} \cap oldsymbol{Q}) \leq 2^{-1}\mathcal{L}(oldsymbol{Q}) \}. \end{aligned}$$

Then by the high density argument

$$\mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{Q}^{>}_{\lambda}\Big) \lesssim \mathcal{H}^{d-1}(\partial \{f > \lambda\})$$

History 0000000000	Core Techniques	Covering Techniques	Summary 0●00	References 0
Summary				

$$\operatorname{var} \mathbf{M} \boldsymbol{f} = \int_0^\infty \mathcal{H}^{d-1} \Big(\partial \bigcup \mathcal{Q}_\lambda \Big) \, \mathrm{d}\lambda,$$

where $Q_{\lambda} = \{ \mathbf{Q} : f_{\mathbf{Q}} > \lambda \}$. Split the cubes $Q_{\lambda} = \{ \mathbf{Q} : f_{\mathbf{Q}} > \lambda \}$ into $Q_{\lambda}^{>} \cup Q_{\lambda}^{\leq}$, where

$$egin{aligned} \mathcal{Q}^{>}_{\lambda} &= \{ oldsymbol{Q} \in \mathcal{Q}_{\lambda} : \mathcal{L}(\{ oldsymbol{f} > \lambda\} \cap oldsymbol{Q}) > 2^{-1}\mathcal{L}(oldsymbol{Q}) \} \ \mathcal{Q}^{\leq}_{\lambda} &= \{ oldsymbol{Q} \in \mathcal{Q}_{\lambda} : \mathcal{L}(\{ oldsymbol{f} > \lambda\} \cap oldsymbol{Q}) \leq 2^{-1}\mathcal{L}(oldsymbol{Q}) \}. \end{aligned}$$

Then by the high density argument

$$\mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{Q}^{>}_{\lambda}\Big) \lesssim \mathcal{H}^{d-1}(\partial \{f > \lambda\})$$

from which the coarea formula yields var f.

History	Core Techniques	Covering Techniques	Summary
			0000

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{Q}_\lambda^{\leq}\Big) \,\mathrm{d}\lambda \lesssim \sum_{\boldsymbol{Q} \in \mathcal{S}} (\boldsymbol{f}_{\boldsymbol{Q}} - \tilde{\lambda}_{\boldsymbol{Q}}) \mathcal{H}^{d-1}(\partial \boldsymbol{Q}).$$

History	Core Techniques	Covering Techniques	Summary	Refer
			0000	

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{Q}_\lambda^{\leq}\Big) \,\mathrm{d}\lambda \lesssim \sum_{\boldsymbol{Q} \in \mathcal{S}} (\boldsymbol{f}_{\boldsymbol{Q}} - \tilde{\lambda}_{\boldsymbol{Q}}) \mathcal{H}^{d-1}(\partial \boldsymbol{Q}).$$

Prove a bound

$$(f_{Q} - \tilde{\lambda}_{Q})\mathcal{H}^{d-1}(\partial Q) \cdot \mathsf{I}(Q) \lesssim \int_{\mathbb{R}} \sum_{P \in \mathcal{D}^{\lambda}(Q)} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda.$$

History	Core Techniques	Covering Techniques	Summary	References
			0000	

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{Q}_\lambda^{\leq}\Big) \,\mathrm{d}\lambda \lesssim \sum_{\boldsymbol{Q} \in \mathcal{S}} (\boldsymbol{f}_{\boldsymbol{Q}} - \tilde{\lambda}_{\boldsymbol{Q}}) \mathcal{H}^{d-1}(\partial \boldsymbol{Q}).$$

Prove a bound

$$(f_Q - \tilde{\lambda}_Q)\mathcal{H}^{d-1}(\partial Q) \cdot \mathsf{I}(Q) \lesssim \int_{\mathbb{R}} \sum_{P \in \mathcal{D}^{\lambda}(Q)} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda.$$

For each $\lambda \in \mathbb{R}$ do a Vitali type covering to extract almost disjoint cubes \mathcal{F}^{λ} from $\bigcup_{Q \in S} \mathcal{D}^{\lambda}(Q)$.

History	Core Techniques	Covering Techniques	Summary	References
			0000	

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{Q}_\lambda^{\leq}\Big) \,\mathrm{d}\lambda \lesssim \sum_{\boldsymbol{Q} \in \mathcal{S}} (\boldsymbol{f}_{\boldsymbol{Q}} - \tilde{\lambda}_{\boldsymbol{Q}}) \mathcal{H}^{d-1}(\partial \boldsymbol{Q}).$$

Prove a bound

$$(f_{Q} - \tilde{\lambda}_{Q})\mathcal{H}^{d-1}(\partial Q) \cdot \mathsf{I}(Q) \lesssim \int_{\mathbb{R}} \sum_{P \in \mathcal{D}^{\lambda}(Q)} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda.$$

For each $\lambda \in \mathbb{R}$ do a Vitali type covering to extract almost disjoint cubes \mathcal{F}^{λ} from $\bigcup_{Q \in S} \mathcal{D}^{\lambda}(Q)$. Change the order of summation,

History	Core Techniques	Covering Techniques	Summary	References
			0000	

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{Q}_\lambda^{\leq}\Big) \,\mathrm{d}\lambda \lesssim \sum_{\boldsymbol{Q} \in \mathcal{S}} (\boldsymbol{f}_{\boldsymbol{Q}} - \tilde{\lambda}_{\boldsymbol{Q}}) \mathcal{H}^{d-1}(\partial \boldsymbol{Q}).$$

Prove a bound

$$(f_{Q} - \tilde{\lambda}_{Q})\mathcal{H}^{d-1}(\partial Q) \cdot \mathsf{I}(Q) \lesssim \int_{\mathbb{R}} \sum_{P \in \mathcal{D}^{\lambda}(Q)} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda.$$

For each $\lambda \in \mathbb{R}$ do a Vitali type covering to extract almost disjoint cubes \mathcal{F}^{λ} from $\bigcup_{Q \in S} \mathcal{D}^{\lambda}(Q)$. Change the order of summation, have a geometric sum converge,

History	Core Techniques	Covering Techniques	Summary	References
			0000	

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{Q}_\lambda^{\leq}\Big) \,\mathrm{d}\lambda \lesssim \sum_{\boldsymbol{Q} \in \mathcal{S}} (\boldsymbol{f}_{\boldsymbol{Q}} - \tilde{\lambda}_{\boldsymbol{Q}}) \mathcal{H}^{d-1}(\partial \boldsymbol{Q}).$$

Prove a bound

$$(f_{Q} - \tilde{\lambda}_{Q})\mathcal{H}^{d-1}(\partial Q) \cdot \mathsf{I}(Q) \lesssim \int_{\mathbb{R}} \sum_{P \in \mathcal{D}^{\lambda}(Q)} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda.$$

For each $\lambda \in \mathbb{R}$ do a Vitali type covering to extract almost disjoint cubes \mathcal{F}^{λ} from $\bigcup_{Q \in S} \mathcal{D}^{\lambda}(Q)$. Change the order of summation, have a geometric sum converge, apply the relative isoperimetric inequality

History	Core Techniques	Covering Techniques	Summary	References
			0000	

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{Q}_\lambda^{\leq}\Big) \,\mathrm{d}\lambda \lesssim \sum_{\boldsymbol{Q} \in \mathcal{S}} (\boldsymbol{f}_{\boldsymbol{Q}} - \tilde{\lambda}_{\boldsymbol{Q}}) \mathcal{H}^{d-1}(\partial \boldsymbol{Q}).$$

Prove a bound

$$(f_{Q} - \tilde{\lambda}_{Q})\mathcal{H}^{d-1}(\partial Q) \cdot \mathsf{I}(Q) \lesssim \int_{\mathbb{R}} \sum_{P \in \mathcal{D}^{\lambda}(Q)} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda.$$

For each $\lambda \in \mathbb{R}$ do a Vitali type covering to extract almost disjoint cubes \mathcal{F}^{λ} from $\bigcup_{Q \in \mathcal{S}} \mathcal{D}^{\lambda}(Q)$. Change the order of summation, have a geometric sum converge, apply the relative isoperimetric inequality and use almost disjointness

History	Core Techniques	Covering Techniques	Summary	Reference
			0000	

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{Q}_\lambda^{\leq}\Big) \,\mathrm{d}\lambda \lesssim \sum_{\boldsymbol{Q} \in \mathcal{S}} (\boldsymbol{f}_{\boldsymbol{Q}} - \tilde{\lambda}_{\boldsymbol{Q}}) \mathcal{H}^{d-1}(\partial \boldsymbol{Q}).$$

Prove a bound

$$(f_{Q} - \tilde{\lambda}_{Q})\mathcal{H}^{d-1}(\partial Q) \cdot \mathsf{I}(Q) \lesssim \int_{\mathbb{R}} \sum_{P \in \mathcal{D}^{\lambda}(Q)} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda.$$

For each $\lambda \in \mathbb{R}$ do a Vitali type covering to extract almost disjoint cubes \mathcal{F}^{λ} from $\bigcup_{Q \in S} \mathcal{D}^{\lambda}(Q)$. Change the order of summation, have a geometric sum converge, apply the relative isoperimetric inequality and use almost disjointness and the coarea formula to recover var f.

History	Core Techniques	Covering Techniques	Summary	References
			0000	

• dyadic maximal function [2]

History	Core Techniques	Covering Techniques	Summary	References
			0000	

- dyadic maximal function [2]
- cube maximal function [4]

History	Core Techniques	Covering Techniques	Summary	References
			0000	

- dyadic maximal function [2]
- cube maximal function [4]
- uncentered Hardy-Littlewood maximal function if *f* is characteristic function [1]

History	Core Techniques	Covering Techniques	Summary	References
			0000	

- dyadic maximal function [2]
- cube maximal function [4]
- uncentered Hardy-Littlewood maximal function if *f* is characteristic function [1]
- Hardy-Littlewood fractional maximal function, both uncentered and centered [3]

History	Core Techniques	Covering Techniques	Summary	References
DOOOOOOOOOO	00000000000000000000000		0000	0

- Julian Weigt. "Variation of the uncentered maximal characteristic Function". In: arXiv e-prints (Apr. 2020). to appear in: Rev. Mat. Iber., arXiv:2004.10485. arXiv: 2004.10485 [math.CA].
- [2] Julian Weigt. "Variation of the dyadic maximal function". In: arXiv e-prints (2020). to appear in: Int. Math. Res. Not. arXiv: 2006.01853 [math.CA].
- Julian Weigt. "Endpoint Sobolev Bounds for the Uncentered Fractional Maximal Function". In: arXiv e-prints (2020). submitted. arXiv: 2010.05561.
- Julian Weigt. "The Variation of the Uncentered Maximal Operator with respect to Cubes". In: arXiv e-prints (2021). submitted. arXiv: 2109.10747.

History	Core Techniques	Covering Techniques	Summary	References
				•

Thank you