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Background

For f : Rd → R the centered Hardy-Littlewood maximal function is
defined by

Mcf (x) = sup
r>0

f B(x ,r) with f B(x ,r) =
1

L(B(x , r))

ˆ
B(x ,r)

|f |.

The Hardy-Littlewood maximal function theorem:

‖Mcf ‖Lp(Rd ) ≤ Cd ,p‖f ‖Lp(Rd ) if and only if p > 1

Juha Kinnunen (1997):

‖∇Mcf ‖Lp(Rd ) ≤ Cd ,p‖∇f ‖Lp(Rd ) if p > 1

Question (Haj lasz and Onninen 2004)

Is it true that

‖∇Mcf ‖L1(Rd ) ≤ Cd‖∇f ‖L1(Rd )?
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Proof

For e ∈ Rd by the sublinearity of Mc

∂eM
cf (x) ∼ Mcf (x + he)−Mcf (x)

h

≤ Mc(f (·+ he)− f )(x)

h

= Mc
( f (·+ he)− f )

h

)
(x) ∼ Mc(∂e f )(x)

By the Hardy-Littlewood maximal function theorem for p > 1

‖∇Mcf ‖Lp(Rd ) . ‖Mc(|∇f |)‖Lp(Rd ) . ‖∇f ‖Lp(Rd )
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Uncentered maximal operator

For f : Rd → R the uncentered Hardy-Littlewood maximal
function is defined by

M̃f (x) = sup
B3x

f B .

The result by Kinnunen also holds for M̃ and various other
maximal operators, and the question by Ha ljasz and Onninen is
being investigated.
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Onedimensional case

1 History
Background
Onedimensional case

2 Core Techniques
Reduction and decomposition
High density case
Low density case

3 Covering Techniques
Boundary of large balls
High density, general version
Dyadic cubes to general cubes
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Onedimensional case

In 2002 Tanaka proved

var M̃f ≤ var f

for f : R→ R, but with a factor 2 on the right hand side. In 2007
Aldaz and Pérez Lázaro reduced that factor to the optimal value 1.

They use that in one dimension we have

var f = sup
n∈N, x1<...<xn

n−1∑

i=1

|f (xn+1)− f (xn)|.

Main ingredient: M̃f is convex on connected components of
{x ∈ R : M̃f (x) > f (x)}.
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x0 x1 x2

f
M̃f

var M̃f = var[0,x0] M̃f + var[x2,1] M̃f

+ |M̃f (x0)− M̃f (x1)|+ |M̃f (x2)− M̃f (x1)|

≤ var[0,x0] f + var[x2,1] f

+ |f (x0)− f (x1)|+ |f (x2)− f (x1)|
≤ var[0,x0] f + var[x2,1] f + var[x0,x2] f = var f
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Onedimensional case

For the centered maximal function Mcf the convexity property
does not hold. Nevertheless,

centered

Kurka proved varMcf ≤ C var f for f : R→ R in a very involved
paper in 2015.

He did case distinctions with respect to the shape of triples
x0 < x1 < x2 with Mcf (x0) < Mcf (x1) > Mcf (x2) and a
decomposition in scales.
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Onedimensional case

For radial functions f : Rd → R with f (x) = f (|x |) we have

‖∇f ‖L1(Rd ) =

ˆ ∞
0
|∇f (r)|rd−1 dr

and also M̃f is radial.

radial

In 2018 Luiro used this one-dimensional representation to prove
‖∇M̃f ‖L1(Rd ) ≤ Cd‖∇f ‖L1(Rd ) for radial functions f : Rd → R.

block-decreasing

In 2009 Aldaz and Pérez Lázaro proved
‖∇M̃f ‖L1(Rd ) ≤ Cd‖∇f ‖L1(Rd ) for block-decreasing f : Rd → R,

which are to some extent similar to radially decreasing functions.
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Other maximal operators and related questions

fractional maximal operators

convolution operators

local maximal operators

discrete maximal operators

bilinear maximal operators

any combinations of the above

bounds on other spaces than Sobolev spaces

related: Continuity of the operator given by f 7→ ∇Mf on
W 1,1(Rd)→ L1(Rd). This is a stronger property than
boundedness.
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reformulations

definition

var f = sup
{ˆ

f divϕ : ϕ ∈ C 1
c (Rd ;Rd), |ϕ| ≤ 1

}

= ‖∇f ‖L1(Rd ) if f ∈W 1,1(Rd).

coarea formula

var f =

ˆ
R
Hd−1(∂{x ∈ Rd : f (x) > λ})dλ

superlevel sets

{Mf > λ} =

{x ∈ Rd : Mf (x) > λ} =
⋃
{B : f B > λ}

for uncentered maximal operators.
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Denote

B<λ = {B : f B > λ, L(B ∩ {f > λ})<L(B)/2}

and B≥λ accordingly. We split the boundary

∂
⋃
{B : f B > λ} ⊂ ∂

⋃
B<λ ∪ ∂

⋃
B≥λ . (1)

Since Mf ≥ f a.e. we have {f > λ} ⊂ {Mf > λ} up to measure
zero, and thus

∂
⋃
{B : f B > λ} ⊂

(
∂
⋃
{B : f B > λ}

)
\ {f > λ} ∪ ∂{f > λ}.

(2)
Plug (1) into (2) and that into the coarea formula

varMf =

ˆ ∞
0
Hd−1

(
∂
⋃
{B : f B > λ}

)
dλ.



History Core Techniques Covering Techniques Summary References

Denote

B<λ = {B : f B > λ, L(B ∩ {f > λ})<L(B)/2}

and B≥λ accordingly. We split the boundary

∂
⋃
{B : f B > λ} ⊂ ∂

⋃
B<λ ∪ ∂

⋃
B≥λ . (1)

Since Mf ≥ f a.e. we have {f > λ} ⊂ {Mf > λ} up to measure
zero, and thus

∂
⋃
{B : f B > λ} ⊂

(
∂
⋃
{B : f B > λ}

)
\ {f > λ} ∪ ∂{f > λ}.

(2)

Plug (1) into (2) and that into the coarea formula

varMf =

ˆ ∞
0
Hd−1

(
∂
⋃
{B : f B > λ}

)
dλ.



History Core Techniques Covering Techniques Summary References

Denote

B<λ = {B : f B > λ, L(B ∩ {f > λ})<L(B)/2}

and B≥λ accordingly. We split the boundary

∂
⋃
{B : f B > λ} ⊂ ∂

⋃
B<λ ∪ ∂

⋃
B≥λ . (1)

Since Mf ≥ f a.e. we have {f > λ} ⊂ {Mf > λ} up to measure
zero, and thus

∂
⋃
{B : f B > λ} ⊂

(
∂
⋃
{B : f B > λ}

)
\ {f > λ} ∪ ∂{f > λ}.

(2)
Plug (1) into (2) and that into the coarea formula

varMf =

ˆ ∞
0
Hd−1

(
∂
⋃
{B : f B > λ}

)
dλ.



History Core Techniques Covering Techniques Summary References

Decomposition of the boundary

decomposition

varMf ≤
ˆ ∞

0
Hd−1

(
∂
⋃
B<λ
)
dλ

+

ˆ ∞
0
Hd−1

((
∂
⋃
B≥λ
)
\ {f > λ}

)
dλ

+ var f

X
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High density case

1 History
Background
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4 Summary
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Relative isoperimetric inequality

A is a John domain if there is a K > 0 and point x ∈ A such that
for any y ∈ A there is a path γ from x to y with

dist(γ(t),A{) ≥ K−1|γ(t)− y |.

Relative isoperimetric inequality

Let A be a John domain and L(A ∩ E ) ≤ L(A)/2. Then

L(A ∩ E )
d−1
d . Hd−1(A ∩ ∂E )
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High density case

Corollary: For a ball or cube B with
L(B)/4 ≤ L(B ∩ E ) ≤ L(B)/2 we have

Hd−1(∂B) . L(B)
d−1
d . L(B ∩ E )

d−1
d . Hd−1(B ∩ ∂E ).

Proposition (High density)

For L(B ∩ E ) ≥ L(B)/2 we have

Hd−1(∂B \ E ) . Hd−1(B ∩ ∂E ).
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E

Q

L(Q ∩ E ) ≥ εL(Q)

=⇒ Hd−1(∂Q \ E ) .ε Hd−1(Q ∩ ∂E )
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Proof of high density proposition

Idea: Decompose ∂B \ E according to distance to significant part
of E .

For every x ∈ ∂B \ E there is an ε > 0 with

L(B(x , ε) ∩ E ) = 0,

L(B ∩ B(x , diam(B)) ∩ E ) ≥ L(B)/2 = 2−d−1L(B(x , diam(B)))

Thus ∃r ∈ [ε, diam(B)]

L(B(x , r) ∩ E ) = 2−d−1L(B(x , r))

Let B be the collection of all such balls B(x , r) and apply the
Vitali covering. Let S be the resulting disjoint subset.
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Relative isoperimetric inequality

For each B(x , r) ∈ S the set A = B ∩ B(x , r) is a John domain
and thus satisfies the

relative isoperimetric inequality

min{L(A ∩ E ),L(A \ E )} d−1
d . Hd−1(∂E ∩ A)

Thus by the choice of r

Hd−1(∂B(x , r)) . L(B ∩ B(x , r))
d−1
d

. Hd−1(∂E ∩ B ∩ B(x , r)).

(Proof of first inequality can be made precise.)
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S Vitali covering of ∂B \ E . We can conclude

Hd−1
(
∂B \ E

)
= Hd−1

(⋃
B ∩ ∂B \ E

)
≤ Hd−1

(⋃
B ∩ ∂B

)

= Hd−1
(⋃

5S ∩ ∂B
)
≤
∑

S∈S
Hd−1(5S ∩ ∂B)

.
∑

S∈S
Hd−1(∂5S) .

∑

S∈S
Hd−1(∂S)

.
∑

S∈S
Hd−1(∂E ∩ B ∩ S) ≤ Hd−1(∂E ∩ B)

(Proof of fifth step can be made precise.)
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High density case

Proposition (High density, general version)

Let B be a set of balls B with L(B ∩ E ) ≥ εL(B). Then

Hd−1
(
∂
⋃
B \ E

)
.ε Hd−1

(⋃
B ∩ ∂E

)
.

ˆ ∞
0
Hd−1

((
∂
⋃
B≥λ
)
\ {f > λ}

)
dλ

.
ˆ ∞

0
Hd−1

(⋃
B≥λ ∩ ∂{f > λ}

)
dλ

≤ var f .

Proof works almost the same as with B = {B} if all balls in B
have the same scale. But we need one extra covering tool from the
next section. Then we prove a modified version for each scale
separately and add up all scales.
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Low density case

1 History
Background
Onedimensional case

2 Core Techniques
Reduction and decomposition
High density case
Low density case

3 Covering Techniques
Boundary of large balls
High density, general version
Dyadic cubes to general cubes

4 Summary
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Low density case

Have to bound ˆ ∞
0
Hd−1

(
∂
⋃
B<λ
)
dλ . var f ,

where

B<λ = {B : f B > λ, L(B ∩ {f > λ}) < L(B)/2}.

I can’t :(

dyadic maximal operator

Mdf (x) = sup
Q3x , Q dyadic

f Q .

{x : Mdf (x) > λ} =
⋃
{maximal dyadic Q : f Q > λ}

=
⋃
Q<λ∪Q<λ
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Definition

Q is maximal for λ < f Q if for all P ) Q we have f P ≤ λ.

Given
Q, let λQ be the smallest such λ.

ˆ
R
Hd−1(∂

⋃
Q<λ )dλ

≤
ˆ
R

∑

Q∈Q<λ

Hd−1(∂Q)dλ

=

ˆ
R

∑

Q:λ̃Q<λ<f Q

Hd−1(∂Q)dλ

=
∑

Q

(f Q − λ̃Q)Hd−1(∂Q)

where

λ̃Q =

sup
{
λQ ,

sup{λ : L(Q ∩ {f > λ̃Q}) ≥ 2−1 · L(Q) }

}
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Proposition

(f Q − λ̃Q)L(Q) .
ˆ
R

∑

P(Q:λ̄P<λ<f P

L(P ∩ {f > λ}) dλ

where P is maximal above λ̄P and

”L(P ∩ {f > λ̄P}) = 2−1L(P)”

”L(Q ∩ {f > λ̃Q}) = 2−d−2L(Q)”

The proof uses a stopping time argument: Start with Q and then
iteratively descend into all children P. Stop if f P < f prt(P) or

f P > λ̃P . All cubes which don’t have a stopping cube as an
ancestor will contribute on the right hand side above.
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∑

Q

(f Q − λ̃Q)Hd−1(∂Q) .
ˆ
R

∑

Q

l(Q)−1
∑

P(Q:λ̄P<λ<f P

L(P ∩ {f > λ}) dλ

=

ˆ
R

∑

P:λ̄P<λ<f P

L(P ∩ {f > λ})
∑

Q)P

l(Q)−1 dλ

=

ˆ
R

∑

P:λ̄P<λ<f P

L(P ∩ {f > λ}) l(P)−1 dλ

≤
ˆ
R

∑

P:λ̄P<λ<f P

L(P ∩ {f > λ}) d−1
d dλ

.
ˆ
R

∑

P:λ̄P<λ<f P

Hd−1(P ∩ ∂{f > λ})dλ

≤
ˆ
R
Hd−1(∂{f > λ})dλ = var f
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Covering Techniques

1 History
Background
Onedimensional case

2 Core Techniques
Reduction and decomposition
High density case
Low density case

3 Covering Techniques
Boundary of large balls
High density, general version
Dyadic cubes to general cubes

4 Summary
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Boundary of large balls

1 History
Background
Onedimensional case

2 Core Techniques
Reduction and decomposition
High density case
Low density case

3 Covering Techniques
Boundary of large balls
High density, general version
Dyadic cubes to general cubes

4 Summary
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Proposition

Let B be a ball and B be a set of balls C with
diam(C ) ≥ K diam(B). Then

Hd−1
(
∂
⋃
B ∩ B

)
. (1 + K−d)Hd−1(∂B).

B

⋃
B
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Proof

Center B in the origin and let e ∈ ∂B(0, 1) be a direction.

Then

∂{C (x , r) ∈ B : ^(x , e) ≤ ε} ∩ B

is a Lipschitz graph with constant 1 which thus has perimeter
. diam(B)d−1 ∼ Hd−1(∂B). Take a maximal set of ε-separated
directions and the result follows.
Actually this only works if diam(C ) ≥ 2 diam(B). For
diam(C ) ≥ K diam(B) we cover B by ∼ Kd many balls B with
diam(B) = diam(B)/2K , for which we have diam(C ) ≥ 2 diam(B)
for each C ∈ B. Then do the argument in each B.
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High density, general version

1 History
Background
Onedimensional case

2 Core Techniques
Reduction and decomposition
High density case
Low density case

3 Covering Techniques
Boundary of large balls
High density, general version
Dyadic cubes to general cubes

4 Summary
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Proposition (High density, general version)

Let B be a set of balls B with L(B ∩ E ) ≥ εL(B). Then

Hd−1
(
∂
⋃
B \ E

)
.ε Hd−1

(⋃
B ∩ ∂E

)
.

Proposition (High density, single scale version)

Let B be a set of balls B with diam(B) ≥ 1 and L(B ∩E ) ≥ εL(B)
and let S be a set of disjoint balls S centered on ∂

⋃B \ E with
diam(S) ≤ 1 and εL(S) ≤ L(S ∩⋃B ∩ E ) ≤ (1− ε)L(S). Then

Hd−1
(
∂
⋃
B ∩

⋃
5S \ E

)
.ε

Hd−1
(⋃

S∈S
{x ∈ S : dist(x ,

⋃
B{) > ε diam(S)} ∩ ∂E

)
.
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Proposition (High density, general version)

Let B be a set of balls B with L(B ∩ E ) ≥ εL(B). Then

Hd−1
(
∂
⋃
B \ E

)
.ε Hd−1

(⋃
B ∩ ∂E

)
.

Proposition (High density, single scale version)

Let B be a set of balls B with diam(B) ≥ 1 and L(B ∩E ) ≥ εL(B)
and let S be a set of disjoint balls S centered on ∂

⋃B \ E with
diam(S) ≤ 1 and εL(S) ≤ L(S ∩⋃B ∩ E ) ≤ (1− ε)L(S). Then

Hd−1
(
∂
⋃
B ∩

⋃
5S \ E

)
.ε

Hd−1
(⋃

S∈S
{x ∈ S : dist(x ,

⋃
B{) > ε diam(S)} ∩ ∂E

)
.
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Proof of high density, single scale version

S Vitali covering of ∂B \ E . We can conclude

Hd−1
(
∂B \ E

)
= Hd−1

(⋃
B ∩ ∂B \ E

)
≤ Hd−1

(⋃
B ∩ ∂B

)

= Hd−1
(⋃

5S ∩ ∂B
)
≤
∑

S∈S
Hd−1(5S ∩ ∂B)

.
∑

S∈S
Hd−1(∂5S) .

∑

S∈S
Hd−1(∂S)

.
∑

S∈S
Hd−1(∂E ∩ B ∩ S) ≤ Hd−1(∂E ∩ B)

(Proof of fifth step can be made precise.)
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Proof of high density, general version

Do Vitali covering S of ∂
⋃B \ E but only make the balls in

Sn = {S ∈ S : 2n ≤ diam(S) < 2n+1} disjoint.

Then

Hd−1
(
∂
⋃
B \ E

)

≤
∑

n∈Z
Hd−1

(
∂
⋃
B ∩

⋃
5Sn \ E

)

.
∑

n∈Z
Hd−1

( ⋃

S∈Sn

{x ∈ S : ε2n < dist(x ,
⋃
B{) < 2n} ∩ ∂E

)

. |1− log ε|Hd−1
(⋃
B ∩ ∂E

)
.
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Proof of high density, general version

Do Vitali covering S of ∂
⋃B \ E but only make the balls in

Sn = {S ∈ S : 2n ≤ diam(S) < 2n+1} disjoint. Then

Hd−1
(
∂
⋃
B \ E

)

≤
∑

n∈Z
Hd−1

(
∂
⋃
B ∩

⋃
5Sn \ E

)

.
∑

n∈Z
Hd−1

( ⋃

S∈Sn

{x ∈ S : ε2n < dist(x ,
⋃
B{) < 2n} ∩ ∂E

)

. |1− log ε|Hd−1
(⋃
B ∩ ∂E

)
.
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Dyadic cubes to general cubes

1 History
Background
Onedimensional case

2 Core Techniques
Reduction and decomposition
High density case
Low density case

3 Covering Techniques
Boundary of large balls
High density, general version
Dyadic cubes to general cubes

4 Summary
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Want to show varMf . var f for Mf (x) = supQ3x f Q , where the
supremum is taken over all cubes.

Proof idea: Do Vitali covering
for the boundary to reduce to dyadic cubes. When statements are
true for balls and cubes we write them down only for balls.

Vitali covering

For any (finite) set of balls B For any (finite) set of balls B, there
is a subset S ⊂ B of disjoint balls with

L
(⋃
B
)
.
∑

S∈S
L(S).

Question

For any (finite) set of balls B, is there a subset S ⊂ B of disjoint
balls with

Hd−1
(
∂
⋃
B
)
.
∑

S∈S
Hd−1(∂S)?

I think not.
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Problem with the Vitali covering-proof:

⋃
B ⊂ 5B ⇒ L

(⋃
B
)
≤ 5dL(B),

⋃
B ⊂ 5B 6⇒ Hd−1

(
∂
⋃
B
)
. Hd−1(∂B).

Proposition (Vitali (replacement) for perimeter)

For any (finite) set of balls B there is a subset S ⊂ B of balls such
that for any S1,S2 ∈ S with S1 6= S2 we have

L(S1 ∩ S2) ≤ min{L(S1),L(S2)}
2

and
Hd−1

(
∂
⋃
B
)
.
∑

S∈S
Hd−1(∂S).

(The factor 1/2 can be made arbitrarily small.)
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Proof of Vitali for perimeter

Assume all balls in B have diameter at most 1. Inductively proceed
as follows.

For each n ∈ N let

Cn = {B ∈ B : ∃S ∈ S1 ∪ . . . ∪ Sn−1, L(B ∩ S) ≥ L(B)/2}

be the set of balls already covered in earlier steps. Set

Bn = {B ∈ B \ Cn : 2−n−1 < diam(B) ≤ 2−n}.

Let Sn be a maximal disjoint subset of Bn such that for all
S ,T ∈ Sn we have L(S ∩T ) ≤ min{L(S),L(T )}/2. Finally define
S = S1 ∪ S2 ∪ . . .. For similar reasons as for the Vitali covering
argument, we have for all S ,T ∈ S that

L(S ∩ T ) ≤ min{L(S),L(T )}/2.
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Let B ∈ B and take n such that 2−n−1 < diam(B) ≤ 2−n. If
B ∈ S then there is nothing to show.

If B ∈ Cn then there is an
S ∈ S with L(B ∩ S) ≥ L(B)/2. If B 6∈ Cn then by maximality of
Bn there is an S ∈ Bn ∩ S with

L(B ∩ S) ≥ min{L(B),L(S)}
2

≥ L(B(0, 2−n−2)

2
≥ 2−n−1L(B).

Proposition (High density)

Let B be a set of balls B with L(B ∩ E ) ≥ εL(B). Then

Hd−1
(
∂
⋃
B \ E

)
.ε Hd−1

(⋃
B ∩ ∂E

)
.
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Hd−1
(
∂
⋃
B
)
≤ Hd−1

(
∂
⋃
B \

⋃
{S : S ∈ S}

)
+
∑

S∈S
Hd−1(∂S)

Hd−1
(
∂
⋃
B \

⋃
{S : S ∈ S}

)

≤
∑

S∈S
Hd−1

(
∂
⋃
{B ∈ B : L(B ∩ S) ≥ 2−n−1L(B)} \ S

)

.
∑

S∈S
Hd−1

(⋃
{B ∈ B : L(B ∩ S) ≥ 2−n−1L(B)} ∩ ∂S

)

≤
∑

S∈S
Hd−1(∂S).
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Hd−1
(
∂
⋃
B
)
≤ Hd−1

(
∂
⋃
B \

⋃
{S : S ∈ S}

)
+
∑

S∈S
Hd−1(∂S)

Hd−1
(
∂
⋃
B \

⋃
{S : S ∈ S}

)

≤
∑

S∈S
Hd−1

(
∂
⋃
{B ∈ B : L(B ∩ S) ≥ 2−n−1L(B)} \ S

)

.
∑

S∈S
Hd−1

(⋃
{B ∈ B : L(B ∩ S) ≥ 2−n−1L(B)} ∩ ∂S

)

≤
∑

S∈S
Hd−1(∂S).
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Recall the strategy for dyadic

Want to estimate

∑

Q dyadic

(f Q − λ̃Q)Hd−1(∂Q) . var f .

For each (dyadic) cube we have

(f Q − λ̃Q)Hd−1(∂Q) · l(Q) .
ˆ
R

∑

P∈Dλ(Q)

L(P ∩ {f > λ})dλ,

where Dλ(Q) is the set of dyadic cubes P with base cube Q such
that λ̄P < λ < f P .
Do Fubini. Each dyadic cube P on the RHS will appear with a
factor l(Q)−1 for each dyadic parent of P. Geometric sum will
coverge and yield Hd−1(∂P) and relative isoperimetric inequality
will turn it into into Hd−1(∂{f > λ} ∩ P). By disjonintness the
right hand side then is var f .
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right hand side then is var f .
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Denote Dλ =
⋃

Q dyadicDλ(Q). We use:

1 For each λ ∈ R the cubes in Dλ are disjoint.

2 For each P ∈ Dλ there is only one Q per scale with
P ∈ Dλ(Q).

The following weaker assumptions are actually enough.

1 There is a small ε > 0 such that for each λ ∈ R the cubes in
{(1− ε)P : P ∈ Dλ} have bounded overlap.

2 For each P ∈ Dλ we only get a contribution from a bounded
number of cubes Q with the same scale.
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Strategy for general cubes

Split the cubes Qλ = {Q : f Q > λ} into Q>λ ∪Q
>,2
λ ∪Q≤λ , where

Q>λ = {Q ∈ Qλ : L({f > λ} ∩ Q) > 2−1L(Q)}
Q>,2λ = {Q ∈ Qλ : L

(⋃
Q>λ ∩ Q

)
> 2−1L(Q)}

Q≤λ = Qλ \ Q>λ \ Q
>,2
λ .

Then by the high density argument
Hd−1(∂

⋃Q>,2λ ) . Hd−1(∂
⋃Q>λ ) . Hd−1(∂{f > λ}).

To Q≤λ apply the Vitali covering argument for the boundary. This
can actually be done in a consistent way through all λ ∈ R, so that
we obtain a set S such that

ˆ ∞
0
Hd−1

(
∂
⋃
Q≤λ
)
dλ .

∑

Q∈S
(f Q − λ̃Q)Hd−1(∂Q).
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For any Q1,Q2 ∈ S with diam(Q1) ≤ diam(Q2) we have

1 L(Q1 ∩ Q2) ≤ 2−1L(Q)1 or

2 Q1 has strictly smaller scale than Q2 and fQ1 > fQ2.

Denote Dλ =
⋃

Q∈S Dλ(Q).

For cubes Q1,Q2 ∈ S the cubes in Dλ(Q1),Dλ(Q2) can have bad
overlap. So we run again a Vitali-type argument on Dλ to select a
set of almost disjoint representatives Fλ.
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Fλ:

1 There is a small ε > 0 such that for each λ ∈ R the cubes in
{(1− ε)P : P ∈ Fλ} have bounded overlap.

2 For each Q ∈ S and P ∈ Dλ(Q) there is a R ∈ Fλ such that
P . R . Q.

Attempt 1: Just apply Vitali covering to Dλ =
⋃

Q∈S Dλ(S) and

let Fλ be the resulting set.
What goes wrong: Let Q1,Q2 ∈ S be intersecting and with
diam(Q1)� diam(Q2). Then there might be a P ∈ Dλ(Q2) with
diam(Q1)� diam(P) which covers all cubes in Dλ(Q2). That
means Dλ(Q2) gets deleted and there is no way to get a bound like

(f Q2 − λ̃Q2)Hd−1(∂Q2) · l(Q2) .
ˆ
R

∑

P∈Fλ(Q)

L(P ∩ {f > λ})dλ,

because we must have diam(P) . diam(Q2) for all P ∈ Fλ(Q2)
for the geometric sum to converge.
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Vitali covering creates an actual disjoint cover, but we only need

1 There is a small ε > 0 such that for each λ ∈ R the cubes in
{(1− ε)P : P ∈ Fλ} have bounded overlap.

Fix: Take (1− ε)P instead. Then in the above situation (1− ε)P
is disjoint from any cube in Dλ(Q2) and we can still use them. If
we are not in the situation diam(Q1)� diam(Q2) then all cubes
have a similar scale and we are safe to do Vitali covering and we
just lose some constants.
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Summary

1 History
Background
Onedimensional case

2 Core Techniques
Reduction and decomposition
High density case
Low density case

3 Covering Techniques
Boundary of large balls
High density, general version
Dyadic cubes to general cubes

4 Summary
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Summary

Invoke the coarea formula

varMf =

ˆ ∞
0
Hd−1

(
∂
⋃
Qλ
)
dλ,

where Qλ = {Q : f Q > λ}.

Split the cubes Qλ = {Q : f Q > λ}
into Q>λ ∪Q

≤
λ , where

Q>λ = {Q ∈ Qλ : L({f > λ} ∩ Q) > 2−1L(Q)}
Q≤λ = {Q ∈ Qλ : L({f > λ} ∩ Q) ≤ 2−1L(Q)}.

Then by the high density argument

Hd−1
(
∂
⋃
Q>λ
)
. Hd−1(∂{f > λ})

from which the coarea formula yields var f .
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Do a Vitali type covering to find a set S of dyadic like cubes with

ˆ ∞
0
Hd−1

(
∂
⋃
Q≤λ
)
dλ .

∑

Q∈S
(f Q − λ̃Q)Hd−1(∂Q).

Prove a bound

(f Q − λ̃Q)Hd−1(∂Q) · l(Q) .
ˆ
R

∑

P∈Dλ(Q)

L(P ∩ {f > λ})dλ.

For each λ ∈ R do a Vitali type covering to extract almost disjoint
cubes Fλ from

⋃
Q∈S Dλ(Q). Change the order of summation,

have a geometric sum converge, apply the relative isoperimetric
inequality and use almost disjointness and the coarea formula to
recover var f .
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This proof works for

dyadic maximal function [2]

cube maximal function [4]

uncentered Hardy-Littlewood maximal function if f is
characteristic function [1]

Hardy-Littlewood fractional maximal function, both
uncentered and centered [3]
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uncentered and centered [3]
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