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Alberti representations

Definition (Alberti representation)
An Alberti representation of a finite measure 𝜇 on ℝ𝑑 is a finite
measure 𝜂 on the space of all Lipschitz curves Γ(ℝ𝑑) on ℝ𝑑 such
that

𝜇 ≪ ∫
Γ(ℝ𝑛)

ℋ1↾𝛾 d𝜂(𝛾) = 𝐴 ↦ ∫
Γ(ℝ𝑛)

ℋ1(𝐴 ∩ 𝛾) d𝜂(𝛾).

Alberti representations 𝜂1, …, 𝜂𝑛 are in-
dependent if for (𝜂1, …, 𝜂𝑛)-almost any
tuple of curves (𝛾1, …, 𝛾𝑛) ∈ Γ(ℝ𝑑)𝑛,
the 𝛾𝑖 travel within linearly independent
cones.

(everything modulo countable decompositions)
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Euclidean case

Example
1 ℝ𝑛 (ℋ𝑛↾ℝ𝑛×{0}𝑑−𝑛) has 𝑛 independent Alberti representations.

2 For 𝑓 ∶ ℝ𝑛 → ℝ𝑑 with near constant gradient of full rank,
𝑓(ℝ𝑛) is 𝑛-rectifiable.

3 By Rademacher’s theorem a Lipschitz image of ℝ𝑛 has 𝑛
independent Alberti representations.

4 An 𝑛-rectifiable set (a countable union of Lipschitz images of
ℝ𝑛) has 𝑛 independent Alberti representations.

Converse:
Theorem
A set with 𝑛 independent Alberti representations is 𝑛-rectifiable.
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Euclidean case

Theorem (DePhilippis-Rindler, Ann. of Math. (2016), divergence
case)
Let T be an ℝ𝑛×𝑛-valued finite measure on ℝ𝑛 such that div T is
a finite measure. Then the restriction of T to those points, where
its polar T/|T| is an invertible matrix, is absolutely continuous
with respect to Lebesgue measure.

This applies for example to a tuple of 𝑛 independent Alberti
representations since

div(∫ ̇𝛾ℋ1↾𝛾 d𝜂(𝛾)) = ∫ div( ̇𝛾ℋ1↾𝛾) d𝜂(𝛾) = 0.
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Euclidean space

Theorem (Besicovitch projection theorem)
A set 𝐸 ⊂ ℝ𝑑 is purely 𝑛-unrectifiable if and only if ℋ𝑑−𝑛-almost
every projection of 𝐸 to an 𝑛-plane has ℋ𝑛-measure 0.

The Besicovitch projection theorem together with
DePhilippis-Rindler can be used to prove that every 𝐸 ⊂ ℝ𝑑 with 𝑛
Alberti representations is 𝑛-rectifiable.

What about metric space where we do not have such projection
theorem?
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Metric space

Theorem (Bate-Li, 2014)
A set with 𝑛 independent Alberti representations which has
positive lower density almost everywhere is 𝑛-rectifiable.

Theorem (Bate-W., 2025)
A set with 𝑛 independent Alberti representations has positive lower
density almost everywhere.

⟹

Theorem (Bate-W., 2025)
A set with 𝑛 independent Alberti representations is 𝑛-rectifiable.
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Tool: quantitative regularity

Theorem (Bate-W., 2025, extracted from DePhilippis-Rindler, with
significant contributions from Tuomas Orponen)
Let T be an ℝ𝑛×𝑛-valued and 𝜈 be a nonnegative finite measure
on 𝐵(0, 1) ⊂ ℝ𝑛. Then for any 1 ≤ 𝑝 < 𝑛

𝑛−1 we can decompose
𝜈 = 𝑔 + 𝑏 with

‖𝑔‖𝑝 ≲𝑝 ‖𝜈‖1 + ‖ div T‖1,

‖𝑏‖1 ≲𝑝 (‖𝜈‖1 + ‖ div T‖1)
1
𝑝 ‖Id𝜈 − T‖

1
𝑝′

1 .

Corollary
Under the above assumptions, if ‖ div T‖1 ≲ ‖𝜈‖1 and
‖Id𝜈 − T‖1 ≪ ‖𝜈‖1 then 𝜈 satisfies a reverse Hölder inequality up
to a small 𝐿1-error. In particular, supp(𝜈) ≳ 1.
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Proof sketch of lower density in metric space

1 Take a point 𝑥 ∈ 𝐸 ⊂ 𝑋.
2 Zoom in and filter so that ℋ𝑛↾𝐸∩𝐵(𝑥,𝑟) becomes 𝐿1-close to

its 𝑛 Alberti representations.

3 Apply quantitative regularity result with
𝜈 = 𝜑#(ℋ𝑛↾𝐸∩𝐵(𝑥,𝑟)) and T being the 𝜑#-pushforward of
the Alberti representations. This yields lower density on ℝ𝑛

and thus on 𝑋.

In fact, 2 is not really possible like that because we do not have
the Lebesgue density theorem on a metric space. What we do
actually to achieve this is an induction on scales argument that
uses lower density from the previous lower scale.
Also how to filter exactly requires some care, for example the
curves in the metric space are not full curves, and thus do not have
finite divergence.
And in order to control the divergence after cutting off we actually
need to do a smooth cutoff instead of just by 𝐵(𝑥, 𝑟).
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Multilinear Kakeya

Theorem (Guth, 2010, Acta Mathematica)

For 𝑖 = 1, …, 𝑛 and 𝑗 let 𝑇 𝑗
𝑖 be a straight tube in ℝ𝑛 that

approximately points in direction 𝑒𝑖 and denote by 𝑟𝑗
𝑖 its radius.

Then

∥(
𝑛

∏
𝑖=1

∑
𝑗

𝑎𝑗
𝑖1𝑇 𝑗

𝑖
)

1
𝑛 ∥

𝑛
𝑛−1

≲ (
𝑛

∏
𝑖=1

∑
𝑗

𝑎𝑗
𝑖(𝑟

𝑗
𝑖 )𝑛−1)

1
𝑛 .

The previous inequality is scaling invariant and thus equivalent to

∥(
𝑛

∏
𝑖=1

∑
𝑗

𝑎𝑗
𝑖1𝑇 𝑗

𝑖
)

1
𝑛 ∥

𝐿
𝑛

𝑛−1 (𝐵(0,1))
≲ (

𝑛
∏
𝑖=1

∥∑
𝑗

𝑎𝑗
𝑖1𝑇 𝑗

𝑖
∥
𝐿1(𝐵(0,1))

)
1
𝑛

with 𝜂𝑖 supported on straight tubes that approximately point in
direction 𝑒𝑖 after rescaling.
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Strange multilinear Kakeya

Corollary
Under the above assumptions, if ‖ div T‖1 ≲ ‖T‖1 and
‖Id|T| − T‖1 ≪ ‖T‖1 then |T| satisfies a reverse Hölder inequality
up to a small 𝐿1-error.

The constraint
‖Id|T| − T‖1 ≪ ‖T‖1 (1)

implies that in most points 𝑥 ∈ 𝐵(0, 1) the columns T𝑖 of T have
similar absolute value |T1(𝑥)| ∼ … ∼ |T𝑛(𝑥)|, in particular their
arithmetic mean is comparable to their geometric mean. That
means our PDE result can be seen as a perturbed version of the
multilinear Kakeya inequality under the constraint (1).
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Lipschitz multilinear Kakeya

Our regularity result is true not only for straight lines but also
for Lipschitz curves.
Our regularity result is only known for 1 ≤ 𝑝 < 𝑛

𝑛−1 , while
multilinear Kakeya is true also for 𝑝 = 𝑛

𝑛−1 .
Lipschitz multilinear Kakeya on the other hand is announced
by Csörnyej and Jones to fail in a small interval around 𝑛

𝑛−1 ,
and to hold between 𝑝 = 1 and some value near 𝑛

𝑛−1 .
The exception is 𝑛 = 2 (and 𝑛 = 1) where LMK is
straightforward to prove at 𝑝 = 𝑛

𝑛−1 .
A version of LMK with a lower bound on the diameter of the
tubes however holds for all 1 ≤ 𝑝 ≤ 𝑛

𝑛−1 due to Guth 2014.
There are certain versions of LMK for 𝐶1 and 𝐶2 curves,
some at and some above the endpoint 𝑝 = 𝑛

𝑛−1 , see
Carbery-Hänninen-Valdimarsson 2018 and Tao 2020.

Does our regularity result hold also in 𝑝 = 𝑛
𝑛−1?
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Thank you.


