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@ smoothness of a function, how nice does a function look

@ regularity of solutions to partial differential equations
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var Mf = /00 HI7L(O{x : MF(x) > A})dA
0

[x: Mf(x) > \} = U{baus B ﬁ(lB)/Bf(x) dx > A}.

@ the starting point in all of the articles
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@ first ideas developed in
first publication

@ similar result proved in
last publication
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way to decompose a function into parts with respect to the
local scale of its variation

key development in second publication

main ingredient in third publication

fourth publication combines result from third publication with
results from co-authors

fifth publication combines geometric estimates and dyadic
decomposition






