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The variation of a function f : R → R is

var f = |f (x1)− f (x2)|+ |f (x2)− f (x3)|+ . . .+ |f (xN−1)− f (xN)|

if x1 < x2 < . . . < xN are the local minima and maxima of f .
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Regularity

The variation is one measure of regularity.

smoothness of a function, how nice does a function look

regularity of solutions to partial differential equations
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