Endpoint regularity bounds of maximal functions in any dimensions

Julian Weigt

Aalto University

17.06.2022

Outline

- Introduction
 - Background
 - Onedimensional case
 - The fractional maximal function
 - New results
- Proof strategy
 - Reduction and decomposition
 - High density case
 - Low density case

Introduction

- Introduction
 - Background
 - Onedimensional case
 - The fractional maximal function
 - New results
- 2 Proof strategy
 - Reduction and decomposition
 - High density case
 - Low density case

Background

- Introduction
 - Background
 - Onedimensional case
 - The fractional maximal function
 - New results
- 2 Proof strategy
 - Reduction and decomposition
 - High density case
 - Low density case

Background

For $f:\mathbb{R}^d \to \mathbb{R}$ the centered Hardy-Littlewood maximal function is defined by

$$M^{c}f(x) = \sup_{r>0} f_{B(x,r)} \quad \text{with} \qquad f_{B(x,r)} = \frac{1}{\mathcal{L}(B(x,r))} \int_{B(x,r)} |f|.$$

Background

For $f:\mathbb{R}^d \to \mathbb{R}$ the centered Hardy-Littlewood maximal function is defined by

$$M^{c}f(x) = \sup_{r>0} f_{B(x,r)} \quad \text{with} \qquad f_{B(x,r)} = \frac{1}{\mathcal{L}(B(x,r))} \int_{B(x,r)} |f|.$$

Theorem (Hardy-Littlewood maximal function theorem)

$$\|\mathbf{M}^{\mathrm{c}}f\|_{L^{p}(\mathbb{R}^{d})} \leq C_{d,p}\|f\|_{L^{p}(\mathbb{R}^{d})}$$

if and only if p > 1.

$$\{\mathrm{M}^{\mathrm{c}}f > \lambda\} = \{x \in \mathbb{R}^d : \mathrm{M}^{\mathrm{c}}f(x) > \lambda\} \subset \bigcup \{B : f_B > \lambda\}.$$

$$\{M^{c}f > \lambda\} = \{x \in \mathbb{R}^{d} : M^{c}f(x) > \lambda\} \subset \bigcup \{B : f_{B} > \lambda\}.$$

By the Vitali covering theorem there is a disjoint set \mathcal{B} of balls \mathcal{B} with $f_{\mathcal{B}} > \lambda$ and

$$\mathcal{L}\left(\bigcup\{B: f_B > \lambda\}\right) \le \mathcal{L}\left(\bigcup\{5B: B \in \mathcal{B}\}\right)$$

$$\le 5^d \sum_{B \in \mathcal{B}} \mathcal{L}(B) \le 5^d \sum_{B \in \mathcal{B}} \frac{1}{\lambda} \int_{B} |f|$$

$$\le \frac{5^d}{\lambda} \int_{\mathbb{R}^d} |f|$$

$$\{\mathrm{M}^{\mathrm{c}}f > \lambda\} = \{x \in \mathbb{R}^d : \mathrm{M}^{\mathrm{c}}f(x) > \lambda\} \subset \bigcup \{B : f_B > \lambda\}.$$

By the Vitali covering theorem there is a disjoint set $\mathcal B$ of balls $\mathcal B$ with $f_{\mathcal B}>\lambda$ and

$$\mathcal{L}\left(\bigcup\{B: f_B > \lambda\}\right) \le \mathcal{L}\left(\bigcup\{5B: B \in \mathcal{B}\}\right)$$

$$\le 5^d \sum_{B \in \mathcal{B}} \mathcal{L}(B) \le 5^d \sum_{B \in \mathcal{B}} \frac{1}{\lambda} \int_B |f|$$

$$\le \frac{5^d}{\lambda} \int_{\mathbb{R}^d} |f|$$

$$\mathrm{M}^{\mathrm{c}}f(x) \leq \|f\|_{\infty} \checkmark$$
.

If p>1 then

$$\|\nabla \mathbf{M}^{\mathrm{c}} f\|_{L^{p}(\mathbb{R}^{d})} \leq C_{d,p} \|\nabla f\|_{L^{p}(\mathbb{R}^{d})}$$

If p > 1 then

$$\|\nabla \mathbf{M}^{\mathrm{c}} f\|_{L^{p}(\mathbb{R}^{d})} \leq C_{d,p} \|\nabla f\|_{L^{p}(\mathbb{R}^{d})}$$

Proof: For $e \in \mathbb{R}^d$ by the sublinearity of M^c

$$\partial_{e} \mathrm{M}^{\mathrm{c}} f(x) \sim rac{\mathrm{M}^{\mathrm{c}} f(x+he) - \mathrm{M}^{\mathrm{c}} f(x)}{h} \\ \leq rac{\mathrm{M}^{\mathrm{c}} (f(\cdot+he) - f)(x)}{h}$$

If p > 1 then

$$\|\nabla \mathbf{M}^{\mathrm{c}} f\|_{L^{p}(\mathbb{R}^{d})} \leq C_{d,p} \|\nabla f\|_{L^{p}(\mathbb{R}^{d})}$$

Proof: For $e \in \mathbb{R}^d$ by the sublinearity of M^c

$$\partial_{e} \mathrm{M}^{\mathrm{c}} f(x) \sim rac{\mathrm{M}^{\mathrm{c}} f(x+he) - \mathrm{M}^{\mathrm{c}} f(x)}{h}$$

$$\leq rac{\mathrm{M}^{\mathrm{c}} (f(\cdot + he) - f)(x)}{h}$$

$$= \mathrm{M}^{\mathrm{c}} \Big(rac{f(\cdot + he) - f}{h} \Big)(x)$$

If p > 1 then

$$\|\nabla \mathbf{M}^{\mathrm{c}} f\|_{L^{p}(\mathbb{R}^{d})} \leq C_{d,p} \|\nabla f\|_{L^{p}(\mathbb{R}^{d})}$$

Proof: For $e \in \mathbb{R}^d$ by the sublinearity of M^c

$$egin{aligned} \partial_e \mathrm{M}^\mathrm{c} f(x) &\sim rac{\mathrm{M}^\mathrm{c} f(x+he) - \mathrm{M}^\mathrm{c} f(x)}{h} \ &\leq rac{\mathrm{M}^\mathrm{c} (f(\cdot + he) - f)(x)}{h} \ &= \mathrm{M}^\mathrm{c} \Big(rac{f(\cdot + he) - f)}{h} \Big)(x) \sim \mathrm{M}^\mathrm{c} (\partial_e f)(x) \end{aligned}$$

If p > 1 then

$$\|\nabla \mathbf{M}^{\mathrm{c}} f\|_{L^{p}(\mathbb{R}^{d})} \leq C_{d,p} \|\nabla f\|_{L^{p}(\mathbb{R}^{d})}$$

Proof: For $e \in \mathbb{R}^d$ by the sublinearity of M^c

$$\partial_{e} \mathrm{M}^{c} f(x) \sim \frac{\mathrm{M}^{c} f(x + he) - \mathrm{M}^{c} f(x)}{h}$$

$$\leq \frac{\mathrm{M}^{c} (f(\cdot + he) - f)(x)}{h}$$

$$= \mathrm{M}^{c} \Big(\frac{f(\cdot + he) - f}{h} \Big)(x) \sim \mathrm{M}^{c} (\partial_{e} f)(x)$$

By the Hardy-Littlewood maximal function theorem for p>1

$$\|
abla \mathrm{M}^{\mathrm{c}} f\|_{L^{p}(\mathbb{R}^{d})} \lesssim \|\mathrm{M}^{\mathrm{c}}(|
abla f|)\|_{L^{p}(\mathbb{R}^{d})} \lesssim \|
abla f\|_{L^{p}(\mathbb{R}^{d})}$$

Question (Hajłasz and Onninen 2004)

Is it true that

$$\|\nabla \mathbf{M}^{\mathbf{c}} f\|_{L^{1}(\mathbb{R}^{d})} \leq C_{d} \|\nabla f\|_{L^{1}(\mathbb{R}^{d})}?$$

Question (Hajłasz and Onninen 2004)

Is it true that

$$\|\nabla \mathbf{M}^{\mathbf{c}} f\|_{L^{1}(\mathbb{R}^{d})} \leq C_{d} \|\nabla f\|_{L^{1}(\mathbb{R}^{d})}?$$

For $f:\mathbb{R}^d \to \mathbb{R}$ the uncentered Hardy-Littlewood maximal function is defined by

$$\widetilde{\mathrm{M}}f(x)=\sup_{B\ni x}f_{B}.$$

The result by Kinnunen also holds for M and various other maximal operators, and the question by Hałjasz and Onninen is being investigated.

- Introduction
 - Background
 - Onedimensional case
 - The fractional maximal function
 - New results
- Proof strategy
 - Reduction and decomposition
 - High density case
 - Low density case

In 2002 Tanaka proved

$$\operatorname{var} \widetilde{\mathrm{M}} f \leq \operatorname{var} f$$

for $f : \mathbb{R} \to \mathbb{R}$, but with a factor 2 on the right hand side. In 2007 Aldaz and Pérez Lázaro reduced that factor to the optimal value 1.

In 2002 Tanaka proved

$$\operatorname{var}\widetilde{\mathrm{M}}f\leq \operatorname{var}f$$

for $f:\mathbb{R}\to\mathbb{R}$, but with a factor 2 on the right hand side. In 2007 Aldaz and Pérez Lázaro reduced that factor to the optimal value 1. They use that in one dimension we have

$$\operatorname{var} f = \sup_{n \in \mathbb{N}, \ x_1 < \ldots < x_n} \sum_{i=1}^{n-1} |f(x_{n+1}) - f(x_n)|.$$

In 2002 Tanaka proved

$$\operatorname{var}\widetilde{\mathrm{M}}f\leq \operatorname{var}f$$

for $f:\mathbb{R}\to\mathbb{R}$, but with a factor 2 on the right hand side. In 2007 Aldaz and Pérez Lázaro reduced that factor to the optimal value 1. They use that in one dimension we have

$$\operatorname{var} f = \sup_{n \in \mathbb{N}, \ x_1 < \dots < x_n} \sum_{i=1}^{n-1} |f(x_{n+1}) - f(x_n)|.$$

Main ingredient: $\widetilde{\mathrm{M}}f$ is convex on connected components of $\{x\in\mathbb{R}:\widetilde{\mathrm{M}}f(x)>f(x)\}.$

$$\begin{split} \operatorname{\mathsf{var}} \widetilde{\mathrm{M}} f &= \operatorname{\mathsf{var}}_{[0,x_0]} \widetilde{\mathrm{M}} f + \operatorname{\mathsf{var}}_{[x_2,1]} \widetilde{\mathrm{M}} f \\ &+ |\widetilde{\mathrm{M}} f(x_0) - \widetilde{\mathrm{M}} f(x_1)| + |\widetilde{\mathrm{M}} f(x_2) - \widetilde{\mathrm{M}} f(x_1)| \end{split}$$

$$\begin{split} \operatorname{var} \widetilde{\mathbf{M}} f &= \operatorname{var}_{[0, x_0]} \widetilde{\mathbf{M}} f + \operatorname{var}_{[x_2, 1]} \widetilde{\mathbf{M}} f \\ &+ |\widetilde{\mathbf{M}} f(x_0) - \widetilde{\mathbf{M}} f(x_1)| + |\widetilde{\mathbf{M}} f(x_2) - \widetilde{\mathbf{M}} f(x_1)| \\ &\leq \operatorname{var}_{[0, x_0]} f + \operatorname{var}_{[x_2, 1]} f \\ &+ |f(x_0) - f(x_1)| + |f(x_2) - f(x_1)| \end{split}$$

$$\begin{split} \operatorname{var} \widetilde{\mathbf{M}} f &= \operatorname{var}_{[0,x_0]} \widetilde{\mathbf{M}} f + \operatorname{var}_{[x_2,1]} \widetilde{\mathbf{M}} f \\ &+ |\widetilde{\mathbf{M}} f(x_0) - \widetilde{\mathbf{M}} f(x_1)| + |\widetilde{\mathbf{M}} f(x_2) - \widetilde{\mathbf{M}} f(x_1)| \\ &\leq \operatorname{var}_{[0,x_0]} f + \operatorname{var}_{[x_2,1]} f \\ &+ |f(x_0) - f(x_1)| + |f(x_2) - f(x_1)| \\ &\leq \operatorname{var}_{[0,x_0]} f + \operatorname{var}_{[x_2,1]} f + \operatorname{var}_{[x_0,x_2]} f \end{split}$$

$$\begin{aligned} \operatorname{var} \widetilde{\mathrm{M}} f &= \operatorname{var}_{[0,x_0]} \widetilde{\mathrm{M}} f + \operatorname{var}_{[x_2,1]} \widetilde{\mathrm{M}} f \\ &+ |\widetilde{\mathrm{M}} f(x_0) - \widetilde{\mathrm{M}} f(x_1)| + |\widetilde{\mathrm{M}} f(x_2) - \widetilde{\mathrm{M}} f(x_1)| \\ &\leq \operatorname{var}_{[0,x_0]} f + \operatorname{var}_{[x_2,1]} f \\ &+ |f(x_0) - f(x_1)| + |f(x_2) - f(x_1)| \\ &\leq \operatorname{var}_{[0,x_0]} f + \operatorname{var}_{[x_2,1]} f + \operatorname{var}_{[x_0,x_2]} f = \operatorname{var} f \end{aligned}$$

For the centered maximal function $M^c f$ the convexity property does not hold. Nevertheless,

centered

Kurka proved $\operatorname{var} \operatorname{M}^{\operatorname{c}} f \leq C \operatorname{var} f$ for $f: \mathbb{R} \to \mathbb{R}$ in a very involved paper in 2015.

For the centered maximal function $M^c f$ the convexity property does not hold. Nevertheless,

centered

Kurka proved var $\mathrm{M}^\mathrm{c} f \leq C$ var f for $f: \mathbb{R} \to \mathbb{R}$ in a very involved paper in 2015.

He did case distinctions with respect to the shape of triples $x_0 < x_1 < x_2$ with $\mathrm{M^c} f(x_0) < \mathrm{M^c} f(x_1) > \mathrm{M^c} f(x_2)$ and a decomposition in scales.

For radial functions $f:\mathbb{R}^d o \mathbb{R}$ with f(x)=f(|x|) we have

$$\|\nabla f\|_{L^1(\mathbb{R}^d)} = \int_0^\infty |\nabla f(r)| r^{d-1} \, \mathrm{d} r$$

and also M_f is radial.

For radial functions $f: \mathbb{R}^d \to \mathbb{R}$ with f(x) = f(|x|) we have

$$\|\nabla f\|_{L^1(\mathbb{R}^d)} = \int_0^\infty |\nabla f(r)| r^{d-1} \, \mathrm{d}r$$

and also M_f is radial.

radial

In 2018 Luiro used this one-dimensional representation to prove $\|\nabla \widetilde{\mathrm{M}} f\|_{L^1(\mathbb{R}^d)} \leq C_d \|\nabla f\|_{L^1(\mathbb{R}^d)}$ for radial functions $f: \mathbb{R}^d \to \mathbb{R}$.

For radial functions $f: \mathbb{R}^d \to \mathbb{R}$ with f(x) = f(|x|) we have

$$\|\nabla f\|_{L^1(\mathbb{R}^d)} = \int_0^\infty |\nabla f(r)| r^{d-1} \, \mathrm{d}r$$

and also $\widetilde{\mathbf{M}} \mathbf{f}$ is radial.

radial

In 2018 Luiro used this one-dimensional representation to prove $\|\nabla \widetilde{\mathrm{M}} f\|_{L^1(\mathbb{R}^d)} \leq C_d \|\nabla f\|_{L^1(\mathbb{R}^d)}$ for radial functions $f: \mathbb{R}^d \to \mathbb{R}$.

block-decreasing

In 2009 Aldaz and Pérez Lázaro proved

$$\|\nabla \widetilde{\mathrm{M}} f\|_{L^1(\mathbb{R}^d)} \leq C_d \|\nabla f\|_{L^1(\mathbb{R}^d)}$$
 for block-decreasing $f: \mathbb{R}^d \to \mathbb{R}$,

which are to some extent similar to radially decreasing functions.

- Introduction
 - Background
 - Onedimensional case
 - The fractional maximal function
 - New results
- 2 Proof strategy
 - Reduction and decomposition
 - High density case
 - Low density case

For $0 < \alpha < d$ the centered fractional Hardy-Littlewood maximal function is

$$\mathrm{M}_{\alpha}^{\mathrm{c}}f(x)=\sup_{r>0}r^{\alpha}f_{B(x,r)},$$

and similarly the uncentered version $\mathrm{M}_{\alpha} f$.

For $0 < \alpha < d$ the centered fractional Hardy-Littlewood maximal function is

$$\mathrm{M}_{\alpha}^{\mathrm{c}}f(x)=\sup_{r>0}r^{\alpha}f_{B(x,r)},$$

and similarly the uncentered version $\mathrm{M}_{\alpha}f$. The corresponding Hardy-Littlewood theorem is

$$\|\mathbf{M}_{\alpha}f\|_{L^{\frac{pd}{d-\alpha p}}(\mathbb{R}^d)} \leq C_{d,\alpha,p}\|f\|_{L^p(\mathbb{R}^d)}$$

if and only if p > 1,

For $0 < \alpha < d$ the centered fractional Hardy-Littlewood maximal function is

$$\mathrm{M}_{\alpha}^{\mathrm{c}}f(x)=\sup_{r>0}r^{\alpha}f_{B(x,r)},$$

and similarly the uncentered version $\mathrm{M}_{\alpha}f$. The corresponding Hardy-Littlewood theorem is

$$\|\mathrm{M}_{\alpha}f\|_{L^{\frac{pd}{d-\alpha p}}(\mathbb{R}^d)} \leq C_{d,\alpha,p}\|f\|_{L^p(\mathbb{R}^d)}$$

if and only if p>1, and the corresponding regularity bound is

$$\|\nabla \mathbf{M}_{\alpha} f\|_{L^{\frac{pd}{d-\alpha p}}(\mathbb{R}^d)} \leq C_{d,\alpha,p} \|\nabla f\|_{L^p(\mathbb{R}^d)},$$

which for p > 1 follows by the same proof as for $\alpha = 0$ in Kinnunen (1997).

Fractional: d=1

Fractional endpoint

Do we have

$$\|\nabla \mathbf{M}_{\alpha} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^d)} \leq C_{d,\alpha} \|\nabla f\|_{L^1(\mathbb{R}^d)}?$$

Fractional: d=1

Fractional endpoint

Do we have

$$\|\nabla \mathbf{M}_{\alpha}f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^d)} \leq C_{d,\alpha}\|\nabla f\|_{L^1(\mathbb{R}^d)}?$$

Also already known for

Fractional: d = 1

Fractional endpoint

Do we have

$$\|\nabla \mathbf{M}_{\alpha}f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^d)} \leq C_{d,\alpha}\|\nabla f\|_{L^1(\mathbb{R}^d)}?$$

Also already known for

•
$$d = 1$$

Fractional: d=1

Fractional endpoint

Do we have

$$\|\nabla \mathbf{M}_{\alpha}f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^d)} \leq C_{d,\alpha}\|\nabla f\|_{L^1(\mathbb{R}^d)}?$$

Also already known for

- d = 1
- radial *f*

For $\alpha \geq 1$ Kinnunen and Saksman proved in 2003

$$|\nabla \mathrm{M}_{\alpha} f(x)| \lesssim |\mathrm{M}_{\alpha-1} f(x)|.$$

For $\alpha \geq 1$ Kinnunen and Saksman proved in 2003

$$|\nabla \mathrm{M}_{\alpha} f(x)| \lesssim |\mathrm{M}_{\alpha-1} f(x)|.$$

This implies

$$\begin{split} \|\nabla \mathbf{M}_{\alpha} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^{d})} &\lesssim \|\mathbf{M}_{\alpha-1} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^{d})} \lesssim \|f\|_{L^{\frac{d}{d-1}}(\mathbb{R}^{d})} \\ &\lesssim \|\nabla f\|_{L^{1}(\mathbb{R}^{d})}. \end{split}$$

For $\alpha \geq 1$ Kinnunen and Saksman proved in 2003

$$|\nabla \mathrm{M}_{\alpha} f(x)| \lesssim |\mathrm{M}_{\alpha-1} f(x)|.$$

This implies

$$\begin{split} \|\nabla \mathbf{M}_{\alpha} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^{d})} &\lesssim \|\mathbf{M}_{\alpha-1} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^{d})} \lesssim \|f\|_{L^{\frac{d}{d-1}}(\mathbb{R}^{d})} \\ &\lesssim \|\nabla f\|_{L^{1}(\mathbb{R}^{d})}. \end{split}$$

Endpoint bound is known for

• $\alpha \geq 1$

For $\alpha \geq 1$ Kinnunen and Saksman proved in 2003

$$|\nabla \mathrm{M}_{\alpha} f(x)| \lesssim |\mathrm{M}_{\alpha-1} f(x)|.$$

This implies

$$\begin{split} \|\nabla \mathrm{M}_{\alpha} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^{d})} &\lesssim \|\mathrm{M}_{\alpha-1} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^{d})} \lesssim \|f\|_{L^{\frac{d}{d-1}}(\mathbb{R}^{d})} \\ &\lesssim \|\nabla f\|_{L^{1}(\mathbb{R}^{d})}. \end{split}$$

Endpoint bound is known for

- $\alpha \geq 1$
- maximal operator that only averages over balls with radii $2^n, n \in \mathbb{Z}$

For $\alpha \geq 1$ Kinnunen and Saksman proved in 2003

$$|\nabla \mathrm{M}_{\alpha} f(x)| \lesssim |\mathrm{M}_{\alpha-1} f(x)|.$$

This implies

$$\begin{split} \|\nabla \mathrm{M}_{\alpha} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^{d})} &\lesssim \|\mathrm{M}_{\alpha-1} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^{d})} \lesssim \|f\|_{L^{\frac{d}{d-1}}(\mathbb{R}^{d})} \\ &\lesssim \|\nabla f\|_{L^{1}(\mathbb{R}^{d})}. \end{split}$$

Endpoint bound is known for

- $\alpha \geq 1$
- maximal operator that only averages over balls with radii $2^n, \ n \in \mathbb{Z}$
- maximal operator that only averages against a smooth kernel

For $\alpha \geq 1$ Kinnunen and Saksman proved in 2003

$$|\nabla \mathrm{M}_{\alpha} f(x)| \lesssim |\mathrm{M}_{\alpha-1} f(x)|.$$

This implies

$$\begin{split} \|\nabla \mathbf{M}_{\alpha} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^{d})} &\lesssim \|\mathbf{M}_{\alpha-1} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^{d})} \lesssim \|f\|_{L^{\frac{d}{d-1}}(\mathbb{R}^{d})} \\ &\lesssim \|\nabla f\|_{L^{1}(\mathbb{R}^{d})}. \end{split}$$

Endpoint bound is known for

- $\alpha \geq 1$
- maximal operator that only averages over balls with radii $2^n, \ n \in \mathbb{Z}$
- maximal operator that only averages against a smooth kernel
- All previous results also known for M_{α}^{c} .

- convolution operators
- local maximal operators
- discrete maximal operators
- bilinear maximal operators

- convolution operators
- local maximal operators
- discrete maximal operators
- bilinear maximal operators
- any combinations of the above

- convolution operators
- local maximal operators
- discrete maximal operators
- bilinear maximal operators
- any combinations of the above
- bounds on other spaces than Sobolev spaces

- convolution operators
- local maximal operators
- discrete maximal operators
- bilinear maximal operators
- any combinations of the above
- bounds on other spaces than Sobolev spaces

related: Continuity of the operator given by $f \mapsto \nabla \mathbf{M} f$ on $W^{1,1}(\mathbb{R}^d) \to L^1(\mathbb{R}^d)$. This is a stronger property than boundedness.

- Introduction
 - Background
 - Onedimensional case
 - The fractional maximal function
 - New results
- Proof strategy
 - Reduction and decomposition
 - High density case
 - Low density case

We prove the endpoint regularity bound for the maximal function for

• characteristic f

We prove the endpoint regularity bound for the maximal function for

- characteristic f
- dyadic maximal operator

We prove the endpoint regularity bound for the maximal function for

- characteristic *f*
- dyadic maximal operator
- fractional maximal operator

We prove the endpoint regularity bound for the maximal function for

- characteristic f
- dyadic maximal operator
- fractional maximal operator
- cube maximal operator

Proof strategy

- Introduction
 - Background
 - Onedimensional case
 - The fractional maximal function
 - New results
- Proof strategy
 - Reduction and decomposition
 - High density case
 - Low density case

Reduction and decomposition

- Introduction
 - BackgroundOnedimensional case
 - The Control of the Case
 - The fractional maximal function
 - New results
- 2 Proof strategy
 - Reduction and decomposition
 - High density case
 - Low density case

definition

$$\operatorname{\mathsf{var}} f = \sup \Bigl\{ \int f \operatorname{\mathsf{div}} arphi : arphi \in \mathit{C}^1_{\operatorname{\mathsf{c}}}(\mathbb{R}^d; \mathbb{R}^d), \ |arphi| \leq 1 \Bigr\}$$

definition

$$egin{aligned} \operatorname{\sf var} f &= \sup \Bigl\{ \int f \operatorname{\sf div} arphi : arphi \in \mathit{C}^1_{\operatorname{\sf c}}(\mathbb{R}^d; \mathbb{R}^d), \ |arphi| \leq 1 \Bigr\} \ &= \|
abla f \|_{\mathit{L}^1(\mathbb{R}^d)} \qquad \text{if } f \in \mathit{W}^{1,1}(\mathbb{R}^d). \end{aligned}$$

definition

$$\begin{aligned} \operatorname{var} f &= \sup \left\{ \int f \operatorname{div} \varphi : \varphi \in C^1_{\operatorname{c}}(\mathbb{R}^d; \mathbb{R}^d), \ |\varphi| \leq 1 \right\} \\ &= \|\nabla f\|_{L^1(\mathbb{R}^d)} \quad \text{ if } f \in W^{1,1}(\mathbb{R}^d). \end{aligned}$$

coarea formula

$$\operatorname{\mathsf{var}} f = \int_{\mathbb{D}} \mathcal{H}^{d-1}(\partial \{x \in \mathbb{R}^d : f(x) > \lambda\}) \, \mathrm{d}\lambda$$

definition

$$\begin{aligned} \operatorname{var} f &= \sup \Bigl\{ \int f \operatorname{div} \varphi : \varphi \in C^1_{\operatorname{c}}(\mathbb{R}^d; \mathbb{R}^d), \ |\varphi| \leq 1 \Bigr\} \\ &= \|\nabla f\|_{L^1(\mathbb{R}^d)} \qquad \text{if } f \in W^{1,1}(\mathbb{R}^d). \end{aligned}$$

coarea formula

$$\operatorname{var} f = \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \{x \in \mathbb{R}^d : f(x) > \lambda\}) \, \mathrm{d}\lambda$$

superlevel sets

$$\{x \in \mathbb{R}^d : \mathrm{M}f(x) > \lambda\} = \{ \int \{B : f_B > \lambda\}$$

for uncentered maximal operators.

definition

$$\begin{aligned} \operatorname{var} f &= \sup \Bigl\{ \int f \operatorname{div} \varphi : \varphi \in C^1_{\operatorname{c}}(\mathbb{R}^d; \mathbb{R}^d), \ |\varphi| \leq 1 \Bigr\} \\ &= \|\nabla f\|_{L^1(\mathbb{R}^d)} \qquad \text{if } f \in W^{1,1}(\mathbb{R}^d). \end{aligned}$$

coarea formula

$$\operatorname{\mathsf{var}} f = \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \{x \in \mathbb{R}^d : f(x) > \lambda\}) \, \mathrm{d}\lambda$$

superlevel sets

$$\{Mf > \lambda\} = \{x \in \mathbb{R}^d : Mf(x) > \lambda\} = \bigcup \{B : f_B > \lambda\}$$

for uncentered maximal operators.

Denote

$$\mathcal{B}_{\lambda}^{<} = \{ B : f_B > \lambda, \ \mathcal{L}(B \cap \{f > \lambda\}) < \mathcal{L}(B)/2 \}$$

and $\mathcal{B}_{\lambda}^{\geq}$ accordingly. We split the boundary

$$\partial \bigcup \{B : f_B > \lambda\} \subset \partial \bigcup \mathcal{B}_{\lambda}^{<} \cup \partial \bigcup \mathcal{B}_{\lambda}^{\geq}. \tag{1}$$

Denote

$$\mathcal{B}_{\lambda}^{<} = \{ \mathbf{B} : f_{\mathbf{B}} > \lambda, \ \mathcal{L}(\mathbf{B} \cap \{f > \lambda\}) < \mathcal{L}(\mathbf{B})/2 \}$$

and $\mathcal{B}_{\lambda}^{\geq}$ accordingly. We split the boundary

$$\partial \bigcup \{B : f_B > \lambda\} \subset \partial \bigcup \mathcal{B}_{\lambda}^{<} \cup \partial \bigcup \mathcal{B}_{\lambda}^{\geq}. \tag{1}$$

Since $\mathrm{M}f \geq f$ a.e. we have $\{f > \lambda\} \subset \{\mathrm{M}f > \lambda\}$ up to measure zero, and thus

$$\partial \bigcup \{B : f_B > \lambda\} \subset \left(\partial \bigcup \{B : f_B > \lambda\}\right) \setminus \overline{\{f > \lambda\}} \cup \partial \{f > \lambda\}. \tag{2}$$

Denote

$$\mathcal{B}_{\lambda}^{<} = \{ \mathbf{B} : f_{\mathbf{B}} > \lambda, \ \mathcal{L}(\mathbf{B} \cap \{f > \lambda\}) < \mathcal{L}(\mathbf{B})/2 \}$$

and $\mathcal{B}_{\lambda}^{\geq}$ accordingly. We split the boundary

$$\partial \bigcup \{B : f_B > \lambda\} \subset \partial \bigcup \mathcal{B}_{\lambda}^{<} \cup \partial \bigcup \mathcal{B}_{\lambda}^{\geq}. \tag{1}$$

Since $\mathrm{M}f \geq f$ a.e. we have $\{f>\lambda\} \subset \{\mathrm{M}f>\lambda\}$ up to measure zero, and thus

$$\partial \bigcup \{B : f_B > \lambda\} \subset \left(\partial \bigcup \{B : f_B > \lambda\}\right) \setminus \overline{\{f > \lambda\}} \cup \partial \{f > \lambda\}. \tag{2}$$

Plug (1) into (2) and that into the coarea formula

$$\operatorname{var} \mathbf{M} f = \int_0^\infty \mathcal{H}^{d-1} \Big(\partial \bigcup \{B : f_B > \lambda\} \Big) \, \mathrm{d}\lambda.$$

Decomposition of the boundary

decomposition

$$\begin{aligned} \operatorname{var} \operatorname{M} & f \leq \int_0^\infty \mathcal{H}^{d-1} \Big(\partial \bigcup \mathcal{B}_{\lambda}^{<} \Big) \, \mathrm{d} \lambda \\ & + \int_0^\infty \mathcal{H}^{d-1} \Big(\Big(\partial \bigcup \mathcal{B}_{\lambda}^{\geq} \Big) \setminus \overline{\{f > \lambda\}} \Big) \, \mathrm{d} \lambda \\ & + \operatorname{var} f \end{aligned}$$

Decomposition of the boundary

decomposition

$$\operatorname{var} \mathbf{M} f \leq \int_0^\infty \mathcal{H}^{d-1} \left(\partial \bigcup \mathcal{B}_{\lambda}^{<} \right) \mathrm{d} \lambda$$
$$+ \int_0^\infty \mathcal{H}^{d-1} \left(\left(\partial \bigcup \mathcal{B}_{\lambda}^{\geq} \right) \setminus \overline{\{f > \lambda\}} \right) \mathrm{d} \lambda$$
$$+ \operatorname{var} f \quad \checkmark$$

- Introduction
 - Background
 - Onedimensional case
 - The fractional maximal function
 - New results
- 2 Proof strategy
 - Reduction and decomposition
 - High density case
 - Low density case

Relative isoperimetric inequality

Let B be a cube or a ball and $\mathcal{L}(B \cap E) \leq \mathcal{L}(B)/2$. Then

$$\mathcal{L}(\underline{B}\cap E)^{\frac{d-1}{d}}\lesssim \mathcal{H}^{d-1}(\underline{B}\cap \partial E)$$

Relative isoperimetric inequality

Let B be a cube or a ball and $\mathcal{L}(B \cap E) \leq \mathcal{L}(B)/2$. Then

$$\mathcal{L}(\underline{B}\cap E)^{\frac{d-1}{d}}\lesssim \mathcal{H}^{d-1}(\underline{B}\cap \partial E)$$

Proposition (High density)

For $\mathcal{L}(B \cap E) \ge \mathcal{L}(B)/2$ we have

$$\mathcal{H}^{d-1}(\partial B \setminus \overline{E}) \lesssim \mathcal{H}^{d-1}(B \cap \partial E).$$

$$egin{aligned} \mathcal{L}(oldsymbol{Q} \cap oldsymbol{E}) &\geq arepsilon \mathcal{L}(oldsymbol{Q}) \ &\Longrightarrow \mathcal{H}^{d-1}(\partial oldsymbol{Q} \setminus oldsymbol{\overline{E}}) \lesssim_{arepsilon} \mathcal{H}^{d-1}(oldsymbol{Q} \cap \partial oldsymbol{E}) \end{aligned}$$

Proposition (High density, general version)

Let \mathcal{B} be a set of balls \underline{B} with $\mathcal{L}(\underline{B} \cap E) \geq \varepsilon \mathcal{L}(\underline{B})$. Then

$$\mathcal{H}^{d-1}\Big(\partial\bigcup\mathcal{B}\setminus\overline{E}\Big)\lesssim_{\varepsilon}\mathcal{H}^{d-1}\Big(\bigcup\mathcal{B}\cap\partial E\Big).$$

Proposition (High density, general version)

Let \mathcal{B} be a set of balls $\underline{\mathcal{B}}$ with $\mathcal{L}(\underline{\mathcal{B}} \cap \underline{\mathcal{E}}) \geq \varepsilon \mathcal{L}(\underline{\mathcal{B}})$. Then

$$\mathcal{H}^{d-1}\Big(\partial\bigcup\mathcal{B}\setminus\overline{\mathcal{E}}\Big)\lesssim_{\varepsilon}\mathcal{H}^{d-1}\Big(\bigcup\mathcal{B}\cap\partial\mathcal{E}\Big).$$

$$\int_{0}^{\infty} \mathcal{H}^{d-1}\left(\left(\partial \bigcup \mathcal{B}_{\lambda}^{\geq}\right) \setminus \overline{\{f > \lambda\}}\right) d\lambda$$

$$\lesssim \int_{0}^{\infty} \mathcal{H}^{d-1}\left(\bigcup \mathcal{B}_{\lambda}^{\geq} \cap \partial \{f > \lambda\}\right) d\lambda$$

$$\leq \operatorname{var} f.$$

- Introduction
 - Background
 - Onedimensional case
 - The fractional maximal function
 - New results
- Proof strategy
 - Reduction and decomposition
 - High density case
 - Low density case

Have to bound

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B}_\lambda^{<}\Big) \,\mathrm{d}\lambda \lesssim \mathsf{var}\,f,$$

$$\mathcal{B}_{\lambda}^{<} = \{ \mathbf{B} : \mathbf{f}_{\mathbf{B}} > \lambda, \ \mathcal{L}(\mathbf{B} \cap \{\mathbf{f} > \lambda\}) < \mathcal{L}(\mathbf{B})/2 \}.$$

Have to bound

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B}_\lambda^{<}\Big) \,\mathrm{d}\lambda \lesssim \mathsf{var}\,f,$$

where

$$\mathcal{B}_{\lambda}^{<} = \{ \mathbf{B} : f_{\mathbf{B}} > \lambda, \ \mathcal{L}(\mathbf{B} \cap \{f > \lambda\}) < \mathcal{L}(\mathbf{B})/2 \}.$$

I can't :(

Have to bound

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B}_\lambda^{<}\Big) \,\mathrm{d}\lambda \lesssim \mathsf{var}\, f,$$

where

$$\mathcal{B}_{\lambda}^{<} = \{ B : f_{B} > \lambda, \ \mathcal{L}(B \cap \{f > \lambda\}) < \mathcal{L}(B)/2 \}.$$

I can't :(

dyadic maximal operator

$$M^{d}f(x) = \sup_{Q\ni x, Q \text{ dyadic}} f_{Q}.$$

Have to bound

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B}_\lambda^<\Big) \,\mathrm{d}\lambda \lesssim \mathsf{var}\, f,$$

where

$$\mathcal{B}_{\lambda}^{<} = \{ B : f_B > \lambda, \ \mathcal{L}(B \cap \{f > \lambda\}) < \mathcal{L}(B)/2 \}.$$

I can't :(

dyadic maximal operator

$$M^{d}f(x) = \sup_{Q \ni x, Q \text{ dyadic}} f_{Q}.$$

$$\{x : \mathrm{M}^{\mathrm{d}} f(x) > \lambda\} = \bigcup \{ \text{maximal dyadic } Q : f_Q > \lambda \}$$

Have to bound

$$\int_0^\infty \mathcal{H}^{d-1}\Big(\partial \bigcup \mathcal{B}_\lambda^{<}\Big) \,\mathrm{d}\lambda \lesssim \mathsf{var}\, f,$$

where

$$\mathcal{B}_{\lambda}^{<} = \{ B : f_{B} > \lambda, \ \mathcal{L}(B \cap \{f > \lambda\}) < \mathcal{L}(B)/2 \}.$$

I can't :(

dyadic maximal operator

$$M^{d}f(x) = \sup_{Q \ni x, Q \text{ dyadic}} f_{Q}.$$

$$\{x: \mathrm{M}^{\mathrm{d}} f(x) > \lambda\} = \bigcup \{\text{maximal dyadic } Q: f_Q > \lambda\} = \bigcup \mathcal{Q}_{\lambda}^{<} \cup \mathcal{Q}_{\lambda}^{<}$$

Q is maximal for $\lambda < f_Q$ if for all $P \supseteq Q$ we have $f_P \le \lambda$.

Q is maximal for $\lambda < f_Q$ if for all $P \supseteq Q$ we have $f_P \leq \lambda$.

$$\int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{<}) \, \mathrm{d}\lambda$$

Q is maximal for $\lambda < f_Q$ if for all $P \supseteq Q$ we have $f_P \leq \lambda$.

$$\int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{<}) \, \mathrm{d}\lambda \leq \int_{\mathbb{R}} \sum_{\mathbf{Q} \in \mathcal{Q}_{\lambda}^{<}} \mathcal{H}^{d-1}(\partial \mathbf{Q}) \, \mathrm{d}\lambda$$

Q is maximal for $\lambda < f_Q$ if for all $P \supseteq Q$ we have $f_P \leq \lambda$.

$$\begin{split} \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{<}) \, \mathrm{d}\lambda &\leq \int_{\mathbb{R}} \sum_{\mathbf{Q} \in \mathcal{Q}_{\lambda}^{<}} \mathcal{H}^{d-1}(\partial \mathbf{Q}) \, \mathrm{d}\lambda \\ &= \int_{\mathbb{R}} \sum_{\mathbf{Q} : \tilde{\lambda}_{\mathbf{Q}} < \lambda < f_{\mathbf{Q}}} \mathcal{H}^{d-1}(\partial \mathbf{Q}) \, \mathrm{d}\lambda \end{split}$$

Q is maximal for $\lambda < f_Q$ if for all $P \supseteq Q$ we have $f_P \le \lambda$. Given Q, let λ_Q be the smallest such λ .

$$\begin{split} \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{<}) \, \mathrm{d}\lambda &\leq \int_{\mathbb{R}} \sum_{\mathbf{Q} \in \mathcal{Q}_{\lambda}^{<}} \mathcal{H}^{d-1}(\partial \mathbf{Q}) \, \mathrm{d}\lambda \\ &= \int_{\mathbb{R}} \sum_{\mathbf{Q} : \tilde{\lambda}_{\mathbf{Q}} < \lambda < f_{\mathbf{Q}}} \mathcal{H}^{d-1}(\partial \mathbf{Q}) \, \mathrm{d}\lambda \end{split}$$

Q is maximal for $\lambda < f_Q$ if for all $P \supsetneq Q$ we have $f_P \le \lambda$. Given Q, let λ_Q be the smallest such λ .

$$\begin{split} \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{<}) \, \mathrm{d}\lambda &\leq \int_{\mathbb{R}} \sum_{\mathbf{Q} \in \mathcal{Q}_{\lambda}^{<}} \mathcal{H}^{d-1}(\partial \mathbf{Q}) \, \mathrm{d}\lambda \\ &= \int_{\mathbb{R}} \sum_{\mathbf{Q} : \tilde{\lambda}_{\mathbf{Q}} < \lambda < f_{\mathbf{Q}}} \mathcal{H}^{d-1}(\partial \mathbf{Q}) \, \mathrm{d}\lambda \end{split}$$

$$\tilde{\lambda}_{m{Q}} = \sup\{\lambda: \mathcal{L}(m{Q} \cap \{f > \tilde{\lambda}_{m{Q}}\}) \ge 2^{-1} \cdot \mathcal{L}(m{Q}) \}$$

Q is maximal for $\lambda < f_Q$ if for all $P \supsetneq Q$ we have $f_P \le \lambda$. Given Q, let λ_Q be the smallest such λ .

$$\begin{split} \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{<}) \, \mathrm{d}\lambda &\leq \int_{\mathbb{R}} \sum_{\mathbf{Q} \in \mathcal{Q}_{\lambda}^{<}} \mathcal{H}^{d-1}(\partial \mathbf{Q}) \, \mathrm{d}\lambda \\ &= \int_{\mathbb{R}} \sum_{\mathbf{Q} : \tilde{\lambda}_{\mathbf{Q}} < \lambda < f_{\mathbf{Q}}} \mathcal{H}^{d-1}(\partial \mathbf{Q}) \, \mathrm{d}\lambda \end{split}$$

$$\tilde{\lambda}_{\mathbf{Q}} = \, \sup \Bigl\{ \lambda_{\mathbf{Q}}, \, \sup \{ \lambda : \mathcal{L}(\mathbf{Q} \cap \{f > \tilde{\lambda}_{\mathbf{Q}}\}) \geq 2^{-1} \cdot \mathcal{L}(\mathbf{Q}) \quad \} \Bigr\}$$

Q is maximal for $\lambda < f_Q$ if for all $P \supsetneq Q$ we have $f_P \le \lambda$. Given Q, let λ_Q be the smallest such λ .

$$\int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{<}) \, \mathrm{d}\lambda \leq \int_{\mathbb{R}} \sum_{\mathbf{Q} \in \mathcal{Q}_{\lambda}^{<}} \mathcal{H}^{d-1}(\partial \mathbf{Q}) \, \mathrm{d}\lambda
= \int_{\mathbb{R}} \sum_{\mathbf{Q}: \tilde{\lambda}_{\mathbf{Q}} < \lambda < f_{\mathbf{Q}}} \mathcal{H}^{d-1}(\partial \mathbf{Q}) \, \mathrm{d}\lambda
= \sum_{\mathbf{Q}} (f_{\mathbf{Q}} - \tilde{\lambda}_{\mathbf{Q}}) \mathcal{H}^{d-1}(\partial \mathbf{Q})$$

$$\tilde{\lambda}_{\boldsymbol{Q}} = \, \sup \Bigl\{ \lambda_{\boldsymbol{Q}}, \, \sup \{ \lambda : \mathcal{L}(\boldsymbol{Q} \cap \{f > \tilde{\lambda}_{\boldsymbol{Q}}\}) \geq 2^{-d-2} \cdot \mathcal{L}(\boldsymbol{Q}) \} \Bigr\}$$

Proposition

$$(f_{Q} - \tilde{\lambda}_{Q})\mathcal{L}(Q) \lesssim \int_{\mathbb{R}} \sum_{P \subseteq Q: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda$$

where P is maximal above $\bar{\lambda}_P$ and

$$"\mathcal{L}(P \cap \{f > \bar{\lambda}_P\}) = 2^{-1}\mathcal{L}(P)"$$

$$"\mathcal{L}(Q \cap \{f > \tilde{\lambda}_Q\}) = 2^{-d-2}\mathcal{L}(Q)"$$

$$\sum_{Q} (f_{Q} - \tilde{\lambda}_{Q}) \mathcal{H}^{d-1}(\partial Q) \lesssim \int_{\mathbb{R}} \sum_{Q} \mathsf{I}(Q)^{-1} \sum_{P \subsetneq Q: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathrm{d}\lambda$$

$$\begin{split} \sum_{Q} (f_{Q} - \tilde{\lambda}_{Q}) \mathcal{H}^{d-1}(\partial Q) &\lesssim \int_{\mathbb{R}} \sum_{Q} \mathsf{I}(Q)^{-1} \sum_{P \subsetneq Q: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathrm{d}\lambda \\ &= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \sum_{Q \supsetneq P} \mathsf{I}(Q)^{-1} \, \mathrm{d}\lambda \end{split}$$

$$\sum_{\mathbf{Q}} (f_{\mathbf{Q}} - \tilde{\lambda}_{\mathbf{Q}}) \mathcal{H}^{d-1}(\partial \mathbf{Q}) \lesssim \int_{\mathbb{R}} \sum_{\mathbf{Q}} \mathsf{I}(\mathbf{Q})^{-1} \sum_{P \subsetneq \mathbf{Q}: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathrm{d}\lambda$$

$$= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \sum_{\mathbf{Q} \supsetneq P} \mathsf{I}(\mathbf{Q})^{-1} \, \mathrm{d}\lambda$$

$$= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathsf{I}(P)^{-1} \, \mathrm{d}\lambda$$

$$\sum_{\mathbf{Q}} (f_{\mathbf{Q}} - \tilde{\lambda}_{\mathbf{Q}}) \mathcal{H}^{d-1}(\partial \mathbf{Q}) \lesssim \int_{\mathbb{R}} \sum_{\mathbf{Q}} \mathsf{I}(\mathbf{Q})^{-1} \sum_{P \subsetneq \mathbf{Q}: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathrm{d}\lambda$$

$$= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \sum_{\mathbf{Q} \supsetneq P} \mathsf{I}(\mathbf{Q})^{-1} \, \mathrm{d}\lambda$$

$$= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathsf{I}(P)^{-1} \, \mathrm{d}\lambda$$

$$\leq \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \frac{d-1}{d} \, \mathrm{d}\lambda$$

$$\sum_{\mathbf{Q}} (f_{\mathbf{Q}} - \tilde{\lambda}_{\mathbf{Q}}) \mathcal{H}^{d-1}(\partial \mathbf{Q}) \lesssim \int_{\mathbb{R}} \sum_{\mathbf{Q}} \mathsf{I}(\mathbf{Q})^{-1} \sum_{P \subsetneq \mathbf{Q}: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathrm{d}\lambda$$

$$= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \sum_{\mathbf{Q} \supsetneq P} \mathsf{I}(\mathbf{Q})^{-1} \, \mathrm{d}\lambda$$

$$= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathsf{I}(P)^{-1} \, \mathrm{d}\lambda$$

$$\leq \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \frac{d-1}{d} \, \mathrm{d}\lambda$$

$$\lesssim \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{H}^{d-1}(P \cap \partial \{f > \lambda\}) \, \mathrm{d}\lambda$$

$$\sum_{\mathbf{Q}} (f_{\mathbf{Q}} - \tilde{\lambda}_{\mathbf{Q}}) \mathcal{H}^{d-1}(\partial \mathbf{Q}) \lesssim \int_{\mathbb{R}} \sum_{\mathbf{Q}} \mathsf{I}(\mathbf{Q})^{-1} \sum_{P \subsetneq \mathbf{Q}: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathrm{d}\lambda$$

$$= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \sum_{\mathbf{Q} \supsetneq P} \mathsf{I}(\mathbf{Q})^{-1} \, \mathrm{d}\lambda$$

$$= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathsf{I}(P)^{-1} \, \mathrm{d}\lambda$$

$$\leq \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \frac{d-1}{d} \, \mathrm{d}\lambda$$

$$\lesssim \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{H}^{d-1}(P \cap \partial \{f > \lambda\}) \, \mathrm{d}\lambda$$

$$\leq \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \{f > \lambda\}) \, \mathrm{d}\lambda = \mathsf{var} f$$

$$\sum_{\mathbf{Q}} (f_{\mathbf{Q}} - \tilde{\lambda}_{\mathbf{Q}}) \mathcal{H}^{d-1}(\partial \mathbf{Q}) \lesssim \int_{\mathbb{R}} \sum_{\mathbf{Q}} \mathsf{I}(\mathbf{Q})^{-1} \sum_{P \subsetneq \mathbf{Q}: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathrm{d}\lambda$$

$$= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \sum_{\mathbf{Q} \supsetneq P} \mathsf{I}(\mathbf{Q})^{-1} \, \mathrm{d}\lambda$$

$$= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \, \mathsf{I}(P)^{-1} \, \mathrm{d}\lambda$$

$$\leq \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \frac{d-1}{d} \, \mathrm{d}\lambda$$

$$\lesssim \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{H}^{d-1}(P \cap \partial \{f > \lambda\}) \, \mathrm{d}\lambda$$

$$\leq \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \{f > \lambda\}) \, \mathrm{d}\lambda = \mathsf{var} \, f$$

Thank you