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Background

For f : R? — R the centered Hardy-Littlewood maximal function is
defined by

1
MF(x) = sup Fapy  With  Fapey = ———— f.
()= swpFoen with  Foen = gty oI

Theorem (Hardy-Littlewood maximal function theorem)

IMF || p(rey < Capllfll Lo (re)
if and only if p > 1.
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Proof: Interpolation. It suffices to prove ||M°f||1,0 S ||f]]1 and

Moo S 1IFloo-

{Mf > A} = {x e R?: MF(x) > A} C [ J{B: f5 > A}

By the Vitali covering theorem there is a disjoint set B of balls B
with fg > X and

£<U{B g > A}) < £(U{58 B B})
§5d2£(8)§5dz/1\/]f|
B

BeB BeB
5d
<~ [ Ifl
A Rd

MEF(x) < [[f]loov".
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Theorem (Juha Kinnunen (1997))

If p > 1 then

[VMF]| p(rey < Capll VE Lo (re)

Proof: For e € R? by the sublinearity of M¢

N MC¢f(x + he) — M°f(x)
h
< ML he) 1))
_ Mc<—f(' s h:) - f))(x) ~ ME(0,F)(x)

DeMCF (x)

By the Hardy-Littlewood maximal function theorem for p > 1

IVMEF | oray S IMEVED Lo(rey S IV F | Loy
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Question (Hajtasz and Onninen 2004)

Is it true that

IVMf| 1 mey < CallVF 1(re)?

For f : R — R the uncentered Hardy-Littlewood maximal
function is defined by

Mf(x) = sup fg.
B>x

The result by Kinnunen also holds for M and various other
maximal operators, and the question by Hatjasz and Onninen is
being investigated.
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Onedimensional case

In 2002 Tanaka proved
var Mf <varf

for f : R — R, but with a factor 2 on the right hand side. In 2007
Aldaz and Pérez Lazaro reduced that factor to the optimal value 1.
They use that in one dimension we have

n—1
varf= sup > [f(xnp1) — Fxa)l.

neN, x1<...<xn i1

Main ingredient: MF is convex on connected components of
{x e R: Mf(x) > f(x)}.
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Onedimensional case

For the centered maximal function M¢f the convexity property
does not hold. Nevertheless,

centered

Kurka proved var M°f < Cvarf for f : R — R in a very involved
paper in 2015.

He did case distinctions with respect to the shape of triples
xo < x1 < xp with M®f(xg) < M°f(x1) > M°f(x2) and a
decomposition in scales.
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Onedimensional case

For radial functions f : RY — R with f(x) = f(|x|) we have
IVl = [ VA ar
0

and also Mf is radial.

In 2018 Luiro used this one-dimensional representation to prove
[VMf || 1 rey < Call V|1 (wey for radial functions f : RY - R.

v

block-decreasing

In 2009 Aldaz and Pérez Lazaro proved
[VMF||1(ray < Ca|VF]11(ray for block-decreasing f : RY = R,

A

which are to some extent similar to radially decreasing functions.
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function is
Mgf(x) = sup rafB(x,r)v
r>0

and similarly the uncentered version 1\~/Iaf.
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The fractional maximal function

For 0 < a < d the centered fractional Hardy-Littlewood maximal
function is

Mgf(x) = suprafB(x,r)v
r>0

and similarly the uncentered version 1\~/Iaf. The corresponding
Hardy-Littlewood theorem is

<
Ml oo < Coaplf i)
if and only if p > 1, and the corresponding regularity bound is

||VMaf||Ld%p(Rd) < Ca,apllVFlle(ray,

which for p > 1 follows by the same proof as for & = 0 in
Kinnunen (1997).
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Fractional: d =1

Fractional endpoint

Do we have

HVMafHLﬁ(R < Caal VIl prey?

I)

Also already known for
ed=1

@ radial
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Fractional: Improvements over nonfractional

For @ > 1 Kinnunen and Saksman proved in 2003
[VMaf(x)| < [Ma-1f(x)|.
This implies

IVMof| g S [Ma-if]
Ld—a (R L

5 Sl o
) )

d
d Ld-1(RY)

—a (Rd
S AV ray-

Endpoint bound is known for
ea>1
@ maximal operator that only averages over balls with radii
2" nel
@ maximal operator that only averages against a smooth kernel

@ All previous results also known for M.
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Other maximal operators and related questions

convolution operators

local maximal operators

o
o
@ discrete maximal operators
@ bilinear maximal operators
o

any combinations of the above

bounds on other spaces than Sobolev spaces

related: Continuity of the operator given by f — VMf on
WHL(RY) — LY(RY). This is a stronger property than
boundedness.
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New results

We prove the endpoint regularity bound for the maximal function
for

@ characteristic f
@ dyadic maximal operator
@ fractional maximal operator

@ cube maximal operator
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reformulations

varf = SUP{/fdiVQD Lo € CLRERY), Jgf < 1}

=||Vfllpgey  if f e WHI(RY).

V,

coarea formula

var f — / HI-L(Ax € RY : F(x) > A}) dA
R

superlevel sets

{Mf > A} ={xeRY: Mf(x) > A} = {B:fs > A}

for uncentered maximal operators.
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Denote
By, ={B:fg >\ L(BN{f>A\})<L(B)/2}
and Bf accordingly. We split the boundary
o|J{B: fs >} col Byual JBs. (1)

Since Mf > f a.e. we have {f > A} C {Mf > A} up to measure
zero, and thus

oiB:fs>atc (0UiB: fo > A}) \{F > AFUB{f > AL
(2)

Plug (1) into (2) and that into the coarea formula

var Mf = /OO ”Hd_1<8U{B S fg > A}) dA.
0
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High density case

Relative isoperimetric inequality
Let B be a cube or a ball and £L(BN E) < £(B)/2. Then

d—1
d

L(BNE)T <SHIYBNIE)

Proposition (High density)

For L(BN E) > L(B)/2 we have

HIY OB\ E) < HIYBNJE).
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High density case

Proposition (High density, general version)
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High density case

Proposition (High density, general version)
Let B be a set of balls B with L(BN E) > eL(B). Then

H(alB\E) 5. 1o (UBN9E),

/OOOHd—l((aUBj) \m) dA
S /OOOH“(UBf nolf > A}) A

<wvarf.
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Low density case

Have to bound

/ H (B5) ar S varf,
0
where
By ={B:fg >\ L(BN{f>A})<L(B)/2}.

I can't :(

dyadic maximal operator

M4f(x) = sup fq.
Q3x, Q dyadic

{x: Mf(x) > A} = U{maximal dyadic Q: fg > A} = U o5uUQy
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Definition
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Definition

@ is maximal for A < fq if for all P 2 Q we have fp < A. Given
Q, let Ag be the smallest such A.

/Hd Yol Jox) d)\</ > 1N 0Q)d

QeQs
_/ S HTH0Q)dA
RQ-f\Q<>\<fQ

= (fo—Ag)H!1(0Q)
Q

where

Ag = sup{)\Q, sup{\: L(QN{f > S\Q}) > p~d-2. E(Q)}}
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(fo —A)L(Q / S© L(Pn{f>A}dx

PCQAp<A<fp
where P is maximal above A\p and

LPN{f>Xp})=271L(P)
LQN{f > Xo}) =2"92L(Q)"
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