Endpoint regularity bounds of maximal functions in any dimensions

Julian Weigt

Aalto University

17.06.2022

Outline

1 Introduction

- **•** Background
- **Onedimensional case**
- **o** The fractional maximal function
- New results

- Reduction and decomposition
- High density case
- Low density case

Introduction

1 Introduction

- **•** Background
- **Onedimensional case**
- **o** The fractional maximal function
- New results

- Reduction and decomposition
- High density case
- Low density case

Background

1 Introduction

• Background

- **Onedimensional case**
- **The fractional maximal function**
- New results

- Reduction and decomposition
- High density case
- Low density case

Background

For $f:\mathbb{R}^d\to\mathbb{R}$ the centered Hardy-Littlewood maximal function is defined by

$$
\mathrm{M}^{\mathrm{c}} f(x) = \sup_{r>0} f_{B(x,r)} \quad \text{ with } \quad f_{B(x,r)} = \frac{1}{\mathcal{L}(B(x,r))} \int_{B(x,r)} |f|.
$$

Background

For $f:\mathbb{R}^d\to\mathbb{R}$ the centered Hardy-Littlewood maximal function is defined by

$$
\mathrm{M}^{\mathrm{c}} f(x) = \sup_{r>0} f_{B(x,r)} \quad \text{ with } \quad f_{B(x,r)} = \frac{1}{\mathcal{L}(B(x,r))} \int_{B(x,r)} |f|.
$$

Theorem (Hardy-Littlewood maximal function theorem)

$$
\|\mathrm{M}^{\mathrm{c}} f\|_{L^p(\mathbb{R}^d)}\leq C_{d,p}\|f\|_{L^p(\mathbb{R}^d)}
$$

if and only if $p > 1$.

 $\{M^cf > \lambda\} = \{x \in \mathbb{R}^d : M^cf(x) > \lambda\} \subset \bigcup \{B : f_B > \lambda\}.$

$$
\{M^c f > \lambda\} = \{x \in \mathbb{R}^d : M^c f(x) > \lambda\} \subset \bigcup \{B : f_B > \lambda\}.
$$

By the Vitali covering theorem there is a disjoint set β of balls β with $f_B > \lambda$ and

$$
\mathcal{L}\left(\bigcup\{B : f_B > \lambda\}\right) \le \mathcal{L}\left(\bigcup\{5B : B \in \mathcal{B}\}\right)
$$

$$
\le 5^d \sum_{B \in \mathcal{B}} \mathcal{L}(B) \le 5^d \sum_{B \in \mathcal{B}} \frac{1}{\lambda} \int_B |f|
$$

$$
\le \frac{5^d}{\lambda} \int_{\mathbb{R}^d} |f|
$$

$$
\{M^c f > \lambda\} = \{x \in \mathbb{R}^d : M^c f(x) > \lambda\} \subset \bigcup \{B : f_B > \lambda\}.
$$

By the Vitali covering theorem there is a disjoint set β of balls B with $f_B > \lambda$ and

$$
\mathcal{L}\left(\bigcup\{B : f_B > \lambda\}\right) \le \mathcal{L}\left(\bigcup\{5B : B \in \mathcal{B}\}\right)
$$

\n
$$
\le 5^d \sum_{B \in \mathcal{B}} \mathcal{L}(B) \le 5^d \sum_{B \in \mathcal{B}} \frac{1}{\lambda} \int_B |f|
$$

\n
$$
\le \frac{5^d}{\lambda} \int_{\mathbb{R}^d} |f|
$$

 $M^c f(x) \leq ||f||_{\infty} \checkmark$.

If $p > 1$ then

$$
\|\nabla \mathrm{M}^{\mathrm{c}} f\|_{L^p(\mathbb{R}^d)} \leq C_{d,p} \|\nabla f\|_{L^p(\mathbb{R}^d)}
$$

If $p > 1$ then

$$
\|\nabla \mathrm{M}^{\mathrm{c}} f\|_{L^p(\mathbb{R}^d)} \leq C_{d,p} \|\nabla f\|_{L^p(\mathbb{R}^d)}
$$

Proof: For $e \in \mathbb{R}^d$ by the sublinearity of M^c

$$
\partial_e \mathbf{M}^c f(\mathbf{x}) \sim \frac{\mathbf{M}^c f(\mathbf{x} + h \mathbf{e}) - \mathbf{M}^c f(\mathbf{x})}{h}
$$

$$
\leq \frac{\mathbf{M}^c (f(\cdot + h \mathbf{e}) - f)(\mathbf{x})}{h}
$$

If $p > 1$ then

$$
\|\nabla \mathrm{M}^{\mathrm{c}} f\|_{L^p(\mathbb{R}^d)} \leq C_{d,p} \|\nabla f\|_{L^p(\mathbb{R}^d)}
$$

Proof: For $e \in \mathbb{R}^d$ by the sublinearity of M^c

$$
\partial_e M^c f(x) \sim \frac{M^c f(x + he) - M^c f(x)}{h}
$$

\n
$$
\leq \frac{M^c (f(\cdot + he) - f)(x)}{h}
$$

\n
$$
= M^c \Big(\frac{f(\cdot + he) - f}{h} \Big)(x)
$$

If $p > 1$ then

$$
\|\nabla \mathrm{M}^{\mathrm{c}} f\|_{L^p(\mathbb{R}^d)} \leq C_{d,p} \|\nabla f\|_{L^p(\mathbb{R}^d)}
$$

Proof: For $e \in \mathbb{R}^d$ by the sublinearity of M^c

$$
\partial_e \mathbf{M}^c f(\mathbf{x}) \sim \frac{\mathbf{M}^c f(\mathbf{x} + h \mathbf{e}) - \mathbf{M}^c f(\mathbf{x})}{h}
$$

$$
\leq \frac{\mathbf{M}^c (f(\cdot + h \mathbf{e}) - f)(\mathbf{x})}{h}
$$

=
$$
\mathbf{M}^c \Big(\frac{f(\cdot + h \mathbf{e}) - f}{h} \Big) (\mathbf{x}) \sim \mathbf{M}^c (\partial_e f)(\mathbf{x})
$$

If $p > 1$ then

$$
\|\nabla \mathrm{M}^{\mathrm{c}} f\|_{L^p(\mathbb{R}^d)} \leq C_{d,p} \|\nabla f\|_{L^p(\mathbb{R}^d)}
$$

Proof: For $e \in \mathbb{R}^d$ by the sublinearity of M^c

$$
\partial_e M^c f(x) \sim \frac{M^c f(x + he) - M^c f(x)}{h}
$$

\n
$$
\leq \frac{M^c (f(\cdot + he) - f)(x)}{h}
$$

\n
$$
= M^c \Big(\frac{f(\cdot + he) - f}{h} \Big)(x) \sim M^c (\partial_e f)(x)
$$

By the Hardy-Littlewood maximal function theorem for $p > 1$

$$
\|\nabla \mathrm{M}^{\mathrm{c}} f\|_{L^p(\mathbb{R}^d)} \lesssim \|\mathrm{M}^{\mathrm{c}}(|\nabla f|)\|_{L^p(\mathbb{R}^d)} \lesssim \|\nabla f\|_{L^p(\mathbb{R}^d)}
$$

Question (Hajłasz and Onninen 2004)

Is it true that

$$
\|\nabla \mathrm{M}^{\mathrm{c}} f\|_{L^1(\mathbb{R}^d)} \leq C_d \|\nabla f\|_{L^1(\mathbb{R}^d)}
$$
?

Question (Hajłasz and Onninen 2004)

Is it true that

$$
\|\nabla \mathrm{M}^c f\|_{L^1(\mathbb{R}^d)} \leq C_d \|\nabla f\|_{L^1(\mathbb{R}^d)}
$$
?

For $f:\mathbb{R}^d\to\mathbb{R}$ the uncentered Hardy-Littlewood maximal function is defined by

$$
\widetilde{\mathbf{M}}f(x)=\sup_{B\ni x}f_B.
$$

The result by Kinnunen also holds for M and various other maximal operators, and the question by Haljasz and Onninen is being investigated.

1 Introduction

• Background

Onedimensional case

- **The fractional maximal function**
- New results

- Reduction and decomposition
- High density case
- Low density case

In 2002 Tanaka proved

var $\widetilde{\mathrm{M}} f$ < var f

for $f : \mathbb{R} \to \mathbb{R}$, but with a factor 2 on the right hand side. In 2007 Aldaz and Pérez Lázaro reduced that factor to the optimal value 1.

In 2002 Tanaka proved

var $\widetilde{\mathbf{M}}\mathbf{f} <$ var f

for $f : \mathbb{R} \to \mathbb{R}$, but with a factor 2 on the right hand side. In 2007 Aldaz and Pérez Lázaro reduced that factor to the optimal value 1. They use that in one dimension we have

$$
\text{var } f = \sup_{n \in \mathbb{N}, \ x_1 < ... < x_n} \sum_{i=1}^{n-1} |f(x_{n+1}) - f(x_n)|.
$$

In 2002 Tanaka proved

var $\widetilde{\mathrm{M}} f$ \leq var f

for $f : \mathbb{R} \to \mathbb{R}$, but with a factor 2 on the right hand side. In 2007 Aldaz and Pérez Lázaro reduced that factor to the optimal value 1. They use that in one dimension we have

$$
\text{var } f = \sup_{n \in \mathbb{N}, \ x_1 < ... < x_n} \sum_{i=1}^{n-1} |f(x_{n+1}) - f(x_n)|.
$$

Main ingredient: Mf is convex on connected components of $\{x \in \mathbb{R} : \mathrm{M}f(x) > f(x)\}.$

$$
\begin{aligned}\n\text{var } \widetilde{\mathbf{M}}f &= \text{var}_{[0,x_0]} \widetilde{\mathbf{M}}f + \text{var}_{[x_2,1]} \widetilde{\mathbf{M}}f \\
&\quad + |\widetilde{\mathbf{M}}f(x_0) - \widetilde{\mathbf{M}}f(x_1)| + |\widetilde{\mathbf{M}}f(x_2) - \widetilde{\mathbf{M}}f(x_1)|\n\end{aligned}
$$

$$
\begin{aligned}\n\text{var } \widetilde{\mathbf{M}}f &= \text{var}_{[0,x_0]} \widetilde{\mathbf{M}}f + \text{var}_{[x_2,1]} \widetilde{\mathbf{M}}f \\
&\quad + |\widetilde{\mathbf{M}}f(x_0) - \widetilde{\mathbf{M}}f(x_1)| + |\widetilde{\mathbf{M}}f(x_2) - \widetilde{\mathbf{M}}f(x_1)| \\
&\le \text{var}_{[0,x_0]} f + \text{var}_{[x_2,1]} f \\
&\quad + |f(x_0) - f(x_1)| + |f(x_2) - f(x_1)|\n\end{aligned}
$$

$$
\begin{aligned}\n\text{var } \widetilde{\mathbf{M}}f &= \text{var}_{[0,x_0]} \widetilde{\mathbf{M}}f + \text{var}_{[x_2,1]} \widetilde{\mathbf{M}}f \\
&\quad + |\widetilde{\mathbf{M}}f(x_0) - \widetilde{\mathbf{M}}f(x_1)| + |\widetilde{\mathbf{M}}f(x_2) - \widetilde{\mathbf{M}}f(x_1)| \\
&\le \text{var}_{[0,x_0]} f + \text{var}_{[x_2,1]} f \\
&\quad + |f(x_0) - f(x_1)| + |f(x_2) - f(x_1)| \\
&\le \text{var}_{[0,x_0]} f + \text{var}_{[x_2,1]} f + \text{var}_{[x_0,x_2]} f\n\end{aligned}
$$

$$
\begin{aligned}\n\text{var } \widetilde{\mathbf{M}}f &= \text{var}_{[0,x_0]} \widetilde{\mathbf{M}}f + \text{var}_{[x_2,1]} \widetilde{\mathbf{M}}f \\
&\quad + |\widetilde{\mathbf{M}}f(x_0) - \widetilde{\mathbf{M}}f(x_1)| + |\widetilde{\mathbf{M}}f(x_2) - \widetilde{\mathbf{M}}f(x_1)| \\
&\le \text{var}_{[0,x_0]} f + \text{var}_{[x_2,1]} f \\
&\quad + |f(x_0) - f(x_1)| + |f(x_2) - f(x_1)| \\
&\le \text{var}_{[0,x_0]} f + \text{var}_{[x_2,1]} f + \text{var}_{[x_0,x_2]} f = \text{var } f\n\end{aligned}
$$

For the centered maximal function $M^c f$ the convexity property does not hold. Nevertheless,

centered

Kurka proved var $M^cf \leq C$ var f for $f : \mathbb{R} \to \mathbb{R}$ in a very involved paper in 2015.

For the centered maximal function $M^c f$ the convexity property does not hold. Nevertheless,

centered

Kurka proved var $M^cf \leq C$ var f for $f : \mathbb{R} \to \mathbb{R}$ in a very involved paper in 2015.

He did case distinctions with respect to the shape of triples $x_0 < x_1 < x_2$ with $\mathrm{M}^{\mathrm{c}} f(x_0) < \mathrm{M}^{\mathrm{c}} f(x_1) > \mathrm{M}^{\mathrm{c}} f(x_2)$ and a decomposition in scales.

For radial functions $f: \mathbb{R}^d \to \mathbb{R}$ with $f(x) = f(|x|)$ we have

$$
\|\nabla f\|_{L^1(\mathbb{R}^d)} = \int_0^\infty |\nabla f(r)| r^{d-1} \,\mathrm{d} r
$$

and also \overline{Mf} is radial.

For radial functions $f: \mathbb{R}^d \to \mathbb{R}$ with $f(x) = f(|x|)$ we have

$$
\|\nabla f\|_{L^1(\mathbb{R}^d)} = \int_0^\infty |\nabla f(r)| r^{d-1} \,\mathrm{d} r
$$

and also $\overline{M}f$ is radial.

radial

In 2018 Luiro used this one-dimensional representation to prove $\|\nabla \widetilde{\mathrm{M}} f\|_{L^1(\mathbb{R}^d)} \leq \mathcal{C}_d \|\nabla f\|_{L^1(\mathbb{R}^d)}$ for radial functions $f: \mathbb{R}^d \to \mathbb{R}$.

For radial functions $f: \mathbb{R}^d \to \mathbb{R}$ with $f(x) = f(|x|)$ we have

$$
\|\nabla f\|_{L^1(\mathbb{R}^d)} = \int_0^\infty |\nabla f(r)| r^{d-1} \,\mathrm{d} r
$$

and also $\overline{M}f$ is radial.

radial

In 2018 Luiro used this one-dimensional representation to prove $\|\nabla \widetilde{\mathrm{M}} f\|_{L^1(\mathbb{R}^d)} \leq \mathcal{C}_d \|\nabla f\|_{L^1(\mathbb{R}^d)}$ for radial functions $f: \mathbb{R}^d \to \mathbb{R}$.

block-decreasing

In 2009 Aldaz and Pérez Lázaro proved $\|\nabla \widetilde{\mathrm{M}} f\|_{L^1(\mathbb{R}^d)} \leq \mathcal{C}_d \|\nabla f\|_{L^1(\mathbb{R}^d)}$ for block-decreasing $f: \mathbb{R}^d \rightarrow \mathbb{R}$,

which are to some extent similar to radially decreasing functions.

1 Introduction

- **•** Background
- **Onedimensional case**
- **The fractional maximal function**
- New results

- Reduction and decomposition
- High density case
- Low density case

For $0 < \alpha < d$ the centered fractional Hardy-Littlewood maximal function is

$$
M_{\alpha}^{c} f(x) = \sup_{r>0} r^{\alpha} f_{B(x,r)},
$$

and similarly the uncentered version $M_{\alpha}f$.

For $0 < \alpha < d$ the centered fractional Hardy-Littlewood maximal function is

$$
M_{\alpha}^{c} f(x) = \sup_{r>0} r^{\alpha} f_{B(x,r)},
$$

and similarly the uncentered version $M_{\alpha}f$. The corresponding Hardy-Littlewood theorem is

$$
\|\mathbf{M}_{\alpha}f\|_{L^{\frac{pd}{d-\alpha p}}(\mathbb{R}^d)} \leq C_{d,\alpha,p}\|f\|_{L^p(\mathbb{R}^d)}
$$

if and only if $p > 1$,

For $0 < \alpha < d$ the centered fractional Hardy-Littlewood maximal function is

$$
M_{\alpha}^{c} f(x) = \sup_{r>0} r^{\alpha} f_{B(x,r)},
$$

and similarly the uncentered version $M_{\alpha}f$. The corresponding Hardy-Littlewood theorem is

$$
\|\mathrm{M}_{\alpha}f\|_{L^{\frac{pd}{d-\alpha p}}(\mathbb{R}^d)}\leq C_{d,\alpha,p}\|f\|_{L^p(\mathbb{R}^d)}
$$

if and only if $p > 1$, and the corresponding regularity bound is

$$
\|\nabla \mathrm{M}_{\alpha} f\|_{L^{\frac{pd}{d-\alpha p}}(\mathbb{R}^d)} \leq C_{d,\alpha,p} \|\nabla f\|_{L^p(\mathbb{R}^d)},
$$

which for $p > 1$ follows by the same proof as for $\alpha = 0$ in Kinnunen (1997).

Fractional: $d = 1$

Fractional endpoint

Do we have

$$
\|\nabla \mathrm{M}_{\alpha} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^d)} \leq C_{d,\alpha} \|\nabla f\|_{L^1(\mathbb{R}^d)}
$$
?
Fractional: $d = 1$

Fractional endpoint

Do we have

$$
\|\nabla \mathrm{M}_{\alpha} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^d)} \leq C_{d,\alpha} \|\nabla f\|_{L^1(\mathbb{R}^d)}
$$
?

Also already known for

Fractional: $d = 1$

Fractional endpoint

Do we have

$$
\|\nabla \mathrm{M}_{\alpha} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^d)} \leq C_{d,\alpha} \|\nabla f\|_{L^1(\mathbb{R}^d)}
$$
?

Also already known for

$$
\bullet\ d=1
$$

Fractional: $d = 1$

Fractional endpoint

Do we have

$$
\|\nabla \mathrm{M}_{\alpha} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^d)} \leq C_{d,\alpha} \|\nabla f\|_{L^1(\mathbb{R}^d)}
$$
?

Also already known for

$$
\bullet \ \ d=1
$$

 \bullet radial f

For $\alpha \geq 1$ Kinnunen and Saksman proved in 2003

 $|\nabla M_{\alpha} f(x)| \leq |M_{\alpha-1} f(x)|.$

For $\alpha \geq 1$ Kinnunen and Saksman proved in 2003

 $|\nabla M_{\alpha} f(x)| \leq |M_{\alpha-1} f(x)|.$

This implies

$$
\|\nabla \mathbf{M}_{\alpha} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^d)} \lesssim \|\mathbf{M}_{\alpha-1} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^d)} \lesssim \|f\|_{L^{\frac{d}{d-1}}(\mathbb{R}^d)}
$$

$$
\lesssim \|\nabla f\|_{L^1(\mathbb{R}^d)}.
$$

For $\alpha \geq 1$ Kinnunen and Saksman proved in 2003

 $|\nabla M_{\alpha} f(x)| \leq |M_{\alpha-1} f(x)|.$

This implies

$$
\|\nabla \mathbf{M}_{\alpha} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^d)} \lesssim \|\mathbf{M}_{\alpha-1} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^d)} \lesssim \|f\|_{L^{\frac{d}{d-1}}(\mathbb{R}^d)}
$$

$$
\lesssim \|\nabla f\|_{L^1(\mathbb{R}^d)}.
$$

Endpoint bound is known for

 $\bullet \ \alpha \geq 1$

For $\alpha \geq 1$ Kinnunen and Saksman proved in 2003

 $|\nabla M_{\alpha} f(x)| \leq |M_{\alpha-1} f(x)|.$

This implies

$$
\|\nabla \mathbf{M}_{\alpha} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^d)} \lesssim \|\mathbf{M}_{\alpha-1} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^d)} \lesssim \|f\|_{L^{\frac{d}{d-1}}(\mathbb{R}^d)}
$$

$$
\lesssim \|\nabla f\|_{L^1(\mathbb{R}^d)}.
$$

Endpoint bound is known for

- $\bullet \ \alpha \geq 1$
- maximal operator that only averages over balls with radii $2^n, n \in \mathbb{Z}$

For $\alpha \geq 1$ Kinnunen and Saksman proved in 2003

 $|\nabla M_{\alpha} f(x)| \leq |M_{\alpha-1} f(x)|.$

This implies

$$
\|\nabla \mathbf{M}_{\alpha} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^d)} \lesssim \|\mathbf{M}_{\alpha-1} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^d)} \lesssim \|f\|_{L^{\frac{d}{d-1}}(\mathbb{R}^d)}
$$

$$
\lesssim \|\nabla f\|_{L^1(\mathbb{R}^d)}.
$$

Endpoint bound is known for

- $\bullet \ \alpha \geq 1$
- maximal operator that only averages over balls with radii $2^n, n \in \mathbb{Z}$
- maximal operator that only averages against a smooth kernel

For $\alpha \geq 1$ Kinnunen and Saksman proved in 2003

 $|\nabla M_{\alpha} f(x)| \leq |M_{\alpha-1} f(x)|.$

This implies

$$
\|\nabla \mathbf{M}_{\alpha} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^d)} \lesssim \|\mathbf{M}_{\alpha-1} f\|_{L^{\frac{d}{d-\alpha}}(\mathbb{R}^d)} \lesssim \|f\|_{L^{\frac{d}{d-1}}(\mathbb{R}^d)}
$$

$$
\lesssim \|\nabla f\|_{L^1(\mathbb{R}^d)}.
$$

Endpoint bound is known for

- $\bullet \ \alpha \geq 1$
- maximal operator that only averages over balls with radii $2^n, n \in \mathbb{Z}$
- maximal operator that only averages against a smooth kernel
- All previous results also known for $\mathrm{M}^\mathrm{c}_\alpha.$

- convolution operators
- local maximal operators
- discrete maximal operators
- bilinear maximal operators

- convolution operators
- **•** local maximal operators
- discrete maximal operators
- **•** bilinear maximal operators
- any combinations of the above

- convolution operators
- **•** local maximal operators
- discrete maximal operators
- **•** bilinear maximal operators
- any combinations of the above
- **•** bounds on other spaces than Sobolev spaces

- convolution operators
- **•** local maximal operators
- discrete maximal operators
- **•** bilinear maximal operators
- any combinations of the above
- bounds on other spaces than Sobolev spaces

related: Continuity of the operator given by $f \mapsto \nabla Mf$ on $W^{1,1}(\mathbb{R}^d) \to L^1(\mathbb{R}^d)$. This is a stronger property than boundedness.

New results

1 Introduction

- **•** Background
- **Onedimensional case**
- **The fractional maximal function**
- New results

2 Proof strategy

- Reduction and decomposition
- High density case
- Low density case

 \bullet characteristic f

- \bullet characteristic f
- dyadic maximal operator

- \bullet characteristic f
- dyadic maximal operator
- o fractional maximal operator

- \bullet characteristic f
- dyadic maximal operator
- **•** fractional maximal operator
- cube maximal operator

Proof strategy

Introduction

- **•** Background
- **Onedimensional case**
- **The fractional maximal function**
- New results

2 Proof strategy

- Reduction and decomposition
- High density case
- Low density case

Reduction and decomposition

1 Introduction

- **•** Background
- **Onedimensional case**
- **The fractional maximal function**
- New results

2 Proof strategy

- Reduction and decomposition
- High density case
- Low density case

definition

$$
\text{var }f=\sup\Bigl\{\int f\,\mathsf{div}\,\varphi:\varphi\in\mathit{C}^{1}_{c}(\mathbb{R}^{d};\mathbb{R}^{d}),\;|\varphi|\leq1\Bigr\}
$$

definition

$$
\begin{aligned}\n\text{var } f &= \sup \Bigl\{ \int f \, \text{div } \varphi : \varphi \in C^1_c(\mathbb{R}^d; \mathbb{R}^d), \ |\varphi| \le 1 \Bigr\} \\
&= \|\nabla f\|_{L^1(\mathbb{R}^d)} \qquad \text{if } f \in W^{1,1}(\mathbb{R}^d).\n\end{aligned}
$$

definition

$$
\begin{aligned}\n\text{var } f &= \sup \Bigl\{ \int f \, \text{div } \varphi : \varphi \in C^1_c(\mathbb{R}^d; \mathbb{R}^d), \ |\varphi| \le 1 \Bigr\} \\
&= \|\nabla f\|_{L^1(\mathbb{R}^d)} \qquad \text{if } f \in W^{1,1}(\mathbb{R}^d).\n\end{aligned}
$$

coarea formula

$$
\text{var } f = \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \{x \in \mathbb{R}^d : f(x) > \lambda\}) \, \mathrm{d}\lambda
$$

definition

$$
\begin{aligned}\n\text{var } f &= \sup \Bigl\{ \int f \, \text{div } \varphi : \varphi \in C^1_c(\mathbb{R}^d; \mathbb{R}^d), \ |\varphi| \le 1 \Bigr\} \\
&= \|\nabla f\|_{L^1(\mathbb{R}^d)} \qquad \text{if } f \in W^{1,1}(\mathbb{R}^d).\n\end{aligned}
$$

coarea formula

$$
\text{var } f = \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \{x \in \mathbb{R}^d : f(x) > \lambda\}) \, \mathrm{d}\lambda
$$

superlevel sets

$$
\{x \in \mathbb{R}^d : \mathrm{M}f(x) > \lambda\} = \bigcup \{B : f_B > \lambda\}
$$

for uncentered maximal operators.

definition

$$
\begin{aligned}\n\text{var } f &= \sup \Bigl\{ \int f \, \text{div } \varphi : \varphi \in C^1_c(\mathbb{R}^d; \mathbb{R}^d), \ |\varphi| \le 1 \Bigr\} \\
&= \|\nabla f\|_{L^1(\mathbb{R}^d)} \qquad \text{if } f \in W^{1,1}(\mathbb{R}^d).\n\end{aligned}
$$

coarea formula

$$
\text{var } f = \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \{x \in \mathbb{R}^d : f(x) > \lambda\}) \, \mathrm{d}\lambda
$$

superlevel sets

$$
\{Mf > \lambda\} = \{x \in \mathbb{R}^d : Mf(x) > \lambda\} = \bigcup \{B : f_B > \lambda\}
$$

for uncentered maximal operators.

Denote

$$
\mathcal{B}_{\lambda}^{<} = \{ B : f_B > \lambda, \ \mathcal{L}(B \cap \{ f > \lambda \}) < \mathcal{L}(B)/2 \}
$$

and $\mathcal{B}_{\lambda}^{\geq}$ $\frac{1}{\lambda}$ accordingly. We split the boundary

$$
\partial \bigcup \{ B : f_B > \lambda \} \subset \partial \bigcup \mathcal{B}_{\lambda}^{<} \cup \partial \bigcup \mathcal{B}_{\lambda}^{>}. \tag{1}
$$

Denote

 $\mathcal{B}_{\lambda}^{\leq} = \{B : f_B > \lambda, \ \mathcal{L}(B \cap \{f > \lambda\}) < \mathcal{L}(B)/2\}$

and $\mathcal{B}_{\lambda}^{\geq}$ $\frac{1}{\lambda}$ accordingly. We split the boundary

$$
\partial \bigcup \{ B : f_B > \lambda \} \subset \partial \bigcup \mathcal{B}_{\lambda}^{<} \cup \partial \bigcup \mathcal{B}_{\lambda}^{>}. \tag{1}
$$

Since $Mf \geq f$ a.e. we have $\{f > \lambda\} \subset \{Mf > \lambda\}$ up to measure zero, and thus

$$
\partial \bigcup \{ B : f_B > \lambda \} \subset \left(\partial \bigcup \{ B : f_B > \lambda \} \right) \setminus \overline{\{ f > \lambda \}} \cup \partial \{ f > \lambda \}. \tag{2}
$$

Denote

 $\mathcal{B}_{\lambda}^{\leq} = \{B : f_B > \lambda, \ \mathcal{L}(B \cap \{f > \lambda\}) < \mathcal{L}(B)/2\}$

and $\mathcal{B}_{\lambda}^{\geq}$ $\frac{1}{\lambda}$ accordingly. We split the boundary

$$
\partial \bigcup \{ B : f_B > \lambda \} \subset \partial \bigcup \mathcal{B}_{\lambda}^{<} \cup \partial \bigcup \mathcal{B}_{\lambda}^{<}.
$$
 (1)

Since $Mf \geq f$ a.e. we have $\{f > \lambda\} \subset \{Mf > \lambda\}$ up to measure zero, and thus

$$
\partial \bigcup \{ B : f_B > \lambda \} \subset \left(\partial \bigcup \{ B : f_B > \lambda \} \right) \setminus \overline{\{ f > \lambda \}} \cup \partial \{ f > \lambda \}. \tag{2}
$$

Plug (1) into (2) and that into the coarea formula

$$
\text{var } \mathrm{M} f = \int_0^\infty \mathcal{H}^{d-1} \Big(\partial \bigcup \{ B : f_B > \lambda \} \Big) \, \mathrm{d} \lambda.
$$

Decomposition of the boundary

decomposition

$$
\operatorname{var} \mathrm{M} f \leq \int_0^\infty \mathcal{H}^{d-1} \left(\partial \bigcup \mathcal{B}_\lambda^{\lt} \right) \mathrm{d}\lambda
$$

$$
+ \int_0^\infty \mathcal{H}^{d-1} \left(\left(\partial \bigcup \mathcal{B}_\lambda^{\geq} \right) \setminus \overline{\{f > \lambda\}} \right) \mathrm{d}\lambda
$$

$$
+ \operatorname{var} f
$$

Decomposition of the boundary

decomposition

$$
\operatorname{var} \mathbf{M}f \le \int_0^\infty \mathcal{H}^{d-1} \left(\partial \bigcup \mathcal{B}_\lambda^{\ltimes} \right) d\lambda
$$

+
$$
\int_0^\infty \mathcal{H}^{d-1} \left(\left(\partial \bigcup \mathcal{B}_\lambda^{\geq} \right) \setminus \overline{\{f > \lambda\}} \right) d\lambda
$$

+
$$
\operatorname{var} f \quad \checkmark
$$

1 Introduction

- **•** Background
- **Onedimensional case**
- **The fractional maximal function**
- New results

2 Proof strategy

- Reduction and decomposition
- High density case
- Low density case

Relative isoperimetric inequality

Let B be a cube or a ball and $\mathcal{L}(B \cap E) \leq \mathcal{L}(B)/2$. Then

$$
\mathcal{L}(B\cap E)^{\frac{d-1}{d}}\lesssim \mathcal{H}^{d-1}(B\cap \partial E)
$$

Relative isoperimetric inequality

Let B be a cube or a ball and $\mathcal{L}(B \cap E) \leq \mathcal{L}(B)/2$. Then

$$
\mathcal{L}(B\cap E)^{\frac{d-1}{d}}\lesssim \mathcal{H}^{d-1}(B\cap \partial E)
$$

Proposition (High density)

For $\mathcal{L}(B \cap E) \geq \mathcal{L}(B)/2$ we have

 $\mathcal{H}^{d-1}(\partial B \setminus \overline{E}) \lesssim \mathcal{H}^{d-1}(B \cap \partial E).$

Proposition (High density, general version)

Let B be a set of balls B with $\mathcal{L}(B \cap E) \geq \varepsilon \mathcal{L}(B)$. Then

$$
\mathcal{H}^{d-1}\Big(\partial\bigcup\mathcal{B}\setminus\overline{E}\Big)\lesssim_\varepsilon\mathcal{H}^{d-1}\Big(\bigcup\mathcal{B}\cap\partial E\Big).
$$

Proposition (High density, general version)

Let B be a set of balls B with $\mathcal{L}(B \cap E) \geq \varepsilon \mathcal{L}(B)$. Then

$$
\mathcal{H}^{d-1}\Big(\partial\bigcup\mathcal{B}\setminus\overline{E}\Big)\lesssim_\varepsilon\mathcal{H}^{d-1}\Big(\bigcup\mathcal{B}\cap\partial E\Big).
$$

$$
\int_0^\infty \mathcal{H}^{d-1}\Big(\Big(\partial \bigcup \mathcal{B}_\lambda^{\geq}\Big) \setminus \overline{\{f > \lambda\}}\Big) d\lambda
$$

\$\lesssim \int_0^\infty \mathcal{H}^{d-1}\Big(\bigcup \mathcal{B}_\lambda^{\geq} \cap \partial \{f > \lambda\}\Big) d\lambda\$
\$\leq \text{var } f\$.
1 Introduction

- **•** Background
- **Onedimensional case**
- **The fractional maximal function**
- New results

2 Proof strategy

- Reduction and decomposition
- High density case
- Low density case

Have to bound

$$
\int_0^\infty \mathcal{H}^{d-1}\Big(\partial\bigcup \mathcal{B}_\lambda^< \Big)\,\mathrm{d}\lambda \lesssim \mathop{\textup{var}} f,
$$

$$
\mathcal{B}_{\lambda}^{<} = \{ B : f_B > \lambda, \ \mathcal{L}(B \cap \{ f > \lambda \}) < \mathcal{L}(B)/2 \}.
$$

Have to bound

$$
\int_0^\infty \mathcal{H}^{d-1}\Big(\partial\bigcup \mathcal{B}_\lambda^< \Big)\,\mathrm{d}\lambda \lesssim \mathsf{var}\, f,
$$

where

$$
\mathcal{B}_{\lambda}^{<} = \{ B : f_B > \lambda, \ \mathcal{L}(B \cap \{ f > \lambda \}) < \mathcal{L}(B)/2 \}.
$$

I can't :(

Have to bound

$$
\int_0^\infty \mathcal{H}^{d-1}\Big(\partial\bigcup \mathcal{B}_\lambda^< \Big)\,\mathrm{d}\lambda \lesssim \mathsf{var}\, f,
$$

where

$$
\mathcal{B}_{\lambda}^{<}=\{B:f_B>\lambda,\ \mathcal{L}(B\cap\{f>\lambda\})<\mathcal{L}(B)/2\}.
$$

I can't :(

dyadic maximal operator

$$
M^{d} f(x) = \sup_{Q \ni x, Q \text{ dyadic}} f_{Q}.
$$

Have to bound

$$
\int_0^\infty \mathcal{H}^{d-1}\Big(\partial\bigcup \mathcal{B}_\lambda^< \Big)\,\mathrm{d}\lambda \lesssim \mathsf{var}\, f,
$$

where

$$
\mathcal{B}_{\lambda}^{<}=\{B:f_B>\lambda,\ \mathcal{L}(B\cap\{f>\lambda\})<\mathcal{L}(B)/2\}.
$$

I can't :(

dyadic maximal operator

$$
M^{d} f(x) = \sup_{Q \ni x, Q \text{ dyadic}} f_{Q}.
$$

 $\{x: \mathrm{M}^{\mathrm{d}} f(x) > \lambda\} = \bigcup \{ \text{maximal dyadic } Q : f_Q > \lambda\}$

Have to bound

$$
\int_0^\infty \mathcal{H}^{d-1}\Big(\partial\bigcup \mathcal{B}_\lambda^< \Big)\,\mathrm{d}\lambda \lesssim \mathsf{var}\, f,
$$

where

$$
\mathcal{B}_{\lambda}^{<}=\{B:f_B>\lambda,\ \mathcal{L}(B\cap\{f>\lambda\})<\mathcal{L}(B)/2\}.
$$

I can't :(

dyadic maximal operator

$$
M^{d} f(x) = \sup_{Q \ni x, Q \text{ dyadic}} f_{Q}.
$$

 $\{x: \mathrm{M}^{\mathrm{d}} f(x) > \lambda\} = \bigcup \{$ maximal dyadic $Q: f_Q > \lambda\} = \bigcup Q_\lambda^{\mathrm{d}} \cup Q_\lambda^{\mathrm{d}}$

Q is maximal for $\lambda < f_Q$ if for all $P \supsetneq Q$ we have $f_P \leq \lambda$.

Q is maximal for $\lambda < f_Q$ if for all $P \supsetneq Q$ we have $f_P \leq \lambda$.

$$
\int_{\mathbb{R}}\mathcal{H}^{d-1}(\partial\bigcup\mathcal{Q}_{\lambda}^{<})\,\mathrm{d}\lambda
$$

Q is maximal for $\lambda < f_Q$ if for all $P \supsetneq Q$ we have $f_P \leq \lambda$.

$$
\int_{\mathbb{R}}\mathcal{H}^{d-1}(\partial\bigcup\mathcal{Q}_{\lambda}^{<})\,\mathrm{d}\lambda\leq\int_{\mathbb{R}}\sum_{Q\in\mathcal{Q}_{\lambda}^{<}}\mathcal{H}^{d-1}(\partial Q)\,\mathrm{d}\lambda
$$

Q is maximal for
$$
\lambda < f_Q
$$
 if for all $P \supsetneq Q$ we have $f_P \leq \lambda$.

$$
\int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{\leq}) d\lambda \leq \int_{\mathbb{R}} \sum_{Q \in \mathcal{Q}_{\lambda}^{\leq}} \mathcal{H}^{d-1}(\partial Q) d\lambda
$$

$$
= \int_{\mathbb{R}} \sum_{Q: \tilde{\lambda}_Q < \lambda < f_Q} \mathcal{H}^{d-1}(\partial Q) d\lambda
$$

Q is maximal for $\lambda < f_Q$ if for all $P \supsetneq Q$ we have $f_P \leq \lambda$. Given Q, let λ_Q be the smallest such λ .

$$
\int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{\leq}) d\lambda \leq \int_{\mathbb{R}} \sum_{Q \in \mathcal{Q}_{\lambda}^{\leq}} \mathcal{H}^{d-1}(\partial Q) d\lambda
$$

$$
= \int_{\mathbb{R}} \sum_{Q: \tilde{\lambda}_Q < \lambda < f_Q} \mathcal{H}^{d-1}(\partial Q) d\lambda
$$

Q is maximal for $\lambda < f_Q$ if for all $P \supsetneq Q$ we have $f_P \leq \lambda$. Given Q, let λ_Q be the smallest such λ .

$$
\int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{\leq}) d\lambda \leq \int_{\mathbb{R}} \sum_{Q \in \mathcal{Q}_{\lambda}^{\leq}} \mathcal{H}^{d-1}(\partial Q) d\lambda
$$

$$
= \int_{\mathbb{R}} \sum_{Q: \tilde{\lambda}_Q < \lambda < f_Q} \mathcal{H}^{d-1}(\partial Q) d\lambda
$$

$$
\tilde{\lambda}_Q = \qquad \qquad \sup \{ \lambda : \mathcal{L}(Q \cap \{f > \tilde{\lambda}_Q\}) \geq 2^{-1} \cdot \mathcal{L}(Q) \quad \}
$$

Q is maximal for $\lambda < f_Q$ if for all $P \supsetneq Q$ we have $f_P \leq \lambda$. Given Q, let λ_Q be the smallest such λ .

$$
\int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{\leq}) d\lambda \leq \int_{\mathbb{R}} \sum_{Q \in \mathcal{Q}_{\lambda}^{\leq}} \mathcal{H}^{d-1}(\partial Q) d\lambda
$$

$$
= \int_{\mathbb{R}} \sum_{Q: \tilde{\lambda}_Q < \lambda < f_Q} \mathcal{H}^{d-1}(\partial Q) d\lambda
$$

$$
\tilde{\lambda}_Q = \, \sup \Bigl\{ \lambda_Q, \, \sup \{ \lambda : \mathcal{L}(Q \cap \{ f > \tilde{\lambda}_Q \}) \geq 2^{-1} \cdot \mathcal{L}(Q) \quad \} \Bigr\}
$$

Q is maximal for $\lambda < f_Q$ if for all $P \supsetneq Q$ we have $f_P \leq \lambda$. Given Q, let λ_Q be the smallest such λ .

$$
\int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \bigcup \mathcal{Q}_{\lambda}^{\leq}) d\lambda \leq \int_{\mathbb{R}} \sum_{Q \in \mathcal{Q}_{\lambda}^{\leq}} \mathcal{H}^{d-1}(\partial Q) d\lambda
$$
\n
$$
= \int_{\mathbb{R}} \sum_{Q: \tilde{\lambda}_{Q} < \lambda < f_{Q}} \mathcal{H}^{d-1}(\partial Q) d\lambda
$$
\n
$$
= \sum_{Q} (f_{Q} - \tilde{\lambda}_{Q}) \mathcal{H}^{d-1}(\partial Q)
$$

$$
\tilde{\lambda}_Q = \sup \Bigl\{ \lambda_Q, \, \sup \{ \lambda : \mathcal{L}(Q \cap \{ f > \tilde{\lambda}_Q \}) \geq 2^{-d-2} \cdot \mathcal{L}(Q) \} \Bigr\}
$$

Proposition

$$
(f_{Q}-\tilde{\lambda}_{Q})\mathcal{L}(Q) \lesssim \int_{\mathbb{R}} \sum_{P \subsetneq Q: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda
$$

where P is maximal above $\bar{\lambda}_P$ and

$$
\mathcal{L}(P \cap \{f > \bar{\lambda}_P\}) = 2^{-1} \mathcal{L}(P)''
$$

$$
\mathcal{L}(Q \cap \{f > \tilde{\lambda}_Q\}) = 2^{-d-2} \mathcal{L}(Q)''
$$

$$
\sum_{Q} (f_{Q} - \tilde{\lambda}_{Q}) \mathcal{H}^{d-1}(\partial Q) \lesssim \int_{\mathbb{R}} \sum_{Q} |(Q)^{-1} \sum_{P \subsetneq Q: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda
$$

$$
\sum_{Q} (f_{Q} - \tilde{\lambda}_{Q}) \mathcal{H}^{d-1}(\partial Q) \lesssim \int_{\mathbb{R}} \sum_{Q} |(Q)^{-1} \sum_{P \subsetneq Q: \tilde{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda
$$
\n
$$
= \int_{\mathbb{R}} \sum_{P: \tilde{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \sum_{Q \supsetneq P} |(Q)^{-1} d\lambda
$$

$$
\sum_{Q} (f_{Q} - \tilde{\lambda}_{Q}) \mathcal{H}^{d-1}(\partial Q) \lesssim \int_{\mathbb{R}} \sum_{Q} I(Q)^{-1} \sum_{P \subsetneq Q: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda
$$
\n
$$
= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \sum_{Q \supsetneq P} I(Q)^{-1} d\lambda
$$
\n
$$
= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) I(P)^{-1} d\lambda
$$

$$
\sum_{Q} (f_{Q} - \tilde{\lambda}_{Q}) \mathcal{H}^{d-1}(\partial Q) \lesssim \int_{\mathbb{R}} \sum_{Q} I(Q)^{-1} \sum_{P \subsetneq Q: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda
$$
\n
$$
= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \sum_{Q \supsetneq P} I(Q)^{-1} d\lambda
$$
\n
$$
= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) I(P)^{-1} d\lambda
$$
\n
$$
\leq \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\})^{\frac{d-1}{d}} d\lambda
$$

$$
\sum_{Q} (f_{Q} - \tilde{\lambda}_{Q}) \mathcal{H}^{d-1}(\partial Q) \lesssim \int_{\mathbb{R}} \sum_{Q} I(Q)^{-1} \sum_{P \subsetneq Q: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda
$$

\n
$$
= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \sum_{Q \supsetneq P} I(Q)^{-1} d\lambda
$$

\n
$$
= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) I(P)^{-1} d\lambda
$$

\n
$$
\leq \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\})^{\frac{d-1}{d}} d\lambda
$$

\n
$$
\lesssim \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{H}^{d-1}(P \cap \partial \{f > \lambda\}) d\lambda
$$

$$
\sum_{Q} (f_{Q} - \tilde{\lambda}_{Q}) \mathcal{H}^{d-1}(\partial Q) \lesssim \int_{\mathbb{R}} \sum_{Q} I(Q)^{-1} \sum_{P \subsetneq Q: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda
$$

\n
$$
= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \sum_{Q \supsetneq P} I(Q)^{-1} d\lambda
$$

\n
$$
= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) I(P)^{-1} d\lambda
$$

\n
$$
\leq \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\})^{\frac{d-1}{d}} d\lambda
$$

\n
$$
\lesssim \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{H}^{d-1}(P \cap \partial \{f > \lambda\}) d\lambda
$$

\n
$$
\leq \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \{f > \lambda\}) d\lambda = \text{var } f
$$

$$
\sum_{Q} (f_{Q} - \tilde{\lambda}_{Q}) \mathcal{H}^{d-1}(\partial Q) \lesssim \int_{\mathbb{R}} \sum_{Q} I(Q)^{-1} \sum_{P \subsetneq Q: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) d\lambda
$$
\n
$$
= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) \sum_{Q \supsetneq P} I(Q)^{-1} d\lambda
$$
\n
$$
= \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\}) I(P)^{-1} d\lambda
$$
\n
$$
\leq \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{L}(P \cap \{f > \lambda\})^{\frac{d-1}{d}} d\lambda
$$
\n
$$
\lesssim \int_{\mathbb{R}} \sum_{P: \bar{\lambda}_{P} < \lambda < f_{P}} \mathcal{H}^{d-1}(P \cap \partial \{f > \lambda\}) d\lambda
$$
\n
$$
\leq \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial \{f > \lambda\}) d\lambda = \text{var } f \qquad \Box
$$

Thank you