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Background

For f : Rd → R the centered Hardy-Littlewood maximal function is
defined by

Mcf (x) = sup
r>0

f B(x ,r) with f B(x ,r) =
1

L(B(x , r))

ˆ
B(x ,r)

|f |.

Theorem (Hardy-Littlewood maximal function theorem)

∥Mcf ∥Lp(Rd ) ≤ Cd ,p∥f ∥Lp(Rd )

if and only if p > 1.
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Proof: Interpolation. It suffices to prove ∥Mcf ∥1,∞ ≲ ∥f ∥1 and
∥Mcf ∥∞ ≲ ∥f ∥∞.

{Mcf > λ} = {x ∈ Rd : Mcf (x) > λ} ⊂
⋃

{B : f B > λ}.

By the Vitali covering theorem there is a disjoint set B of balls B
with f B > λ and

L
(⋃

{B : f B > λ}
)
≤ L

(⋃
{5B : B ∈ B}

)
≤ 5d

∑
B∈B

L(B) ≤ 5d
∑
B∈B

1

λ

ˆ
B
|f |

≤ 5d

λ

ˆ
Rd

|f |

Mcf (x) ≤ ∥f ∥∞✓.
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Theorem (Juha Kinnunen (1997))

If p > 1 then

∥∇Mcf ∥Lp(Rd ) ≤ Cd ,p∥∇f ∥Lp(Rd )

Proof: For e ∈ Rd by the sublinearity of Mc

∂eM
cf (x) ∼ Mcf (x + he) −Mcf (x)

h

≤ Mc(f (· + he) − f )(x)

h

= Mc
( f (· + he) − f )

h

)
(x) ∼ Mc(∂e f )(x)

By the Hardy-Littlewood maximal function theorem for p > 1

∥∇Mcf ∥Lp(Rd ) ≲ ∥Mc(|∇f |)∥Lp(Rd ) ≲ ∥∇f ∥Lp(Rd )
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Question (Haj lasz and Onninen 2004)

Is it true that

∥∇Mcf ∥L1(Rd ) ≤ Cd∥∇f ∥L1(Rd )?

For f : Rd → R the uncentered Hardy-Littlewood maximal
function is defined by

M̃f (x) = sup
B∋x

f B .

The result by Kinnunen also holds for M̃ and various other
maximal operators, and the question by Ha ljasz and Onninen is
being investigated.
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Onedimensional case

In 2002 Tanaka proved

var M̃f ≤ var f

for f : R → R, but with a factor 2 on the right hand side. In 2007
Aldaz and Pérez Lázaro reduced that factor to the optimal value 1.

They use that in one dimension we have

var f = sup
n∈N, x1<...<xn

n−1∑
i=1

|f (xn+1) − f (xn)|.

Main ingredient: M̃f is convex on connected components of
{x ∈ R : M̃f (x) > f (x)}.
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x0 x1 x2

f
M̃f

var M̃f = var[0,x0] M̃f + var[x2,1] M̃f

+ |M̃f (x0) − M̃f (x1)| + |M̃f (x2) − M̃f (x1)|

≤ var[0,x0] f + var[x2,1] f

+ |f (x0) − f (x1)| + |f (x2) − f (x1)|
≤ var[0,x0] f + var[x2,1] f + var[x0,x2] f = var f
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Onedimensional case

For the centered maximal function Mcf the convexity property
does not hold. Nevertheless,

centered

Kurka proved varMcf ≤ C var f for f : R → R in a very involved
paper in 2015.

He did case distinctions with respect to the shape of triples
x0 < x1 < x2 with Mcf (x0) < Mcf (x1) > Mcf (x2) and a
decomposition in scales.
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Onedimensional case

For radial functions f : Rd → R with f (x) = f (|x |) we have

∥∇f ∥L1(Rd ) =

ˆ ∞

0
|∇f (r)|rd−1 dr

and also M̃f is radial.

radial

In 2018 Luiro used this one-dimensional representation to prove
∥∇M̃f ∥L1(Rd ) ≤ Cd∥∇f ∥L1(Rd ) for radial functions f : Rd → R.

block-decreasing

In 2009 Aldaz and Pérez Lázaro proved
∥∇M̃f ∥L1(Rd ) ≤ Cd∥∇f ∥L1(Rd ) for block-decreasing f : Rd → R,

which are to some extent similar to radially decreasing functions.
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The fractional maximal function

For 0 < α < d the centered fractional Hardy-Littlewood maximal
function is

Mc
αf (x) = sup

r>0
rαf B(x ,r),

and similarly the uncentered version M̃αf .

The corresponding
Hardy-Littlewood theorem is

∥Mαf ∥
L

pd
d−αp (Rd )

≤ Cd ,α,p∥f ∥Lp(Rd )

if and only if p > 1, and the corresponding regularity bound is

∥∇Mαf ∥
L

pd
d−αp (Rd )

≤ Cd ,α,p∥∇f ∥Lp(Rd ),

which for p > 1 follows by the same proof as for α = 0 in
Kinnunen (1997).
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Fractional: d = 1

Fractional endpoint

Do we have

∥∇Mαf ∥
L

d
d−α (Rd )

≤ Cd ,α∥∇f ∥L1(Rd )?

Also already known for

d = 1

radial f
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Fractional: Improvements over nonfractional

For α ≥ 1 Kinnunen and Saksman proved in 2003

|∇Mαf (x)| ≲ |Mα−1f (x)|.

This implies

∥∇Mαf ∥
L

d
d−α (Rd )

≲ ∥Mα−1f ∥
L

d
d−α (Rd )

≲ ∥f ∥
L

d
d−1 (Rd )

≲ ∥∇f ∥L1(Rd ).

Endpoint bound is known for

α ≥ 1

maximal operator that only averages over balls with radii
2n, n ∈ Z
maximal operator that only averages against a smooth kernel

All previous results also known for Mc
α.



Introduction Proof strategy

Fractional: Improvements over nonfractional

For α ≥ 1 Kinnunen and Saksman proved in 2003

|∇Mαf (x)| ≲ |Mα−1f (x)|.

This implies

∥∇Mαf ∥
L

d
d−α (Rd )

≲ ∥Mα−1f ∥
L

d
d−α (Rd )

≲ ∥f ∥
L

d
d−1 (Rd )

≲ ∥∇f ∥L1(Rd ).

Endpoint bound is known for

α ≥ 1

maximal operator that only averages over balls with radii
2n, n ∈ Z
maximal operator that only averages against a smooth kernel

All previous results also known for Mc
α.



Introduction Proof strategy

Fractional: Improvements over nonfractional

For α ≥ 1 Kinnunen and Saksman proved in 2003

|∇Mαf (x)| ≲ |Mα−1f (x)|.

This implies

∥∇Mαf ∥
L

d
d−α (Rd )

≲ ∥Mα−1f ∥
L

d
d−α (Rd )

≲ ∥f ∥
L

d
d−1 (Rd )

≲ ∥∇f ∥L1(Rd ).

Endpoint bound is known for

α ≥ 1

maximal operator that only averages over balls with radii
2n, n ∈ Z
maximal operator that only averages against a smooth kernel

All previous results also known for Mc
α.



Introduction Proof strategy

Fractional: Improvements over nonfractional

For α ≥ 1 Kinnunen and Saksman proved in 2003

|∇Mαf (x)| ≲ |Mα−1f (x)|.

This implies

∥∇Mαf ∥
L

d
d−α (Rd )

≲ ∥Mα−1f ∥
L

d
d−α (Rd )

≲ ∥f ∥
L

d
d−1 (Rd )

≲ ∥∇f ∥L1(Rd ).

Endpoint bound is known for

α ≥ 1

maximal operator that only averages over balls with radii
2n, n ∈ Z

maximal operator that only averages against a smooth kernel

All previous results also known for Mc
α.



Introduction Proof strategy

Fractional: Improvements over nonfractional

For α ≥ 1 Kinnunen and Saksman proved in 2003

|∇Mαf (x)| ≲ |Mα−1f (x)|.

This implies

∥∇Mαf ∥
L

d
d−α (Rd )

≲ ∥Mα−1f ∥
L

d
d−α (Rd )

≲ ∥f ∥
L

d
d−1 (Rd )

≲ ∥∇f ∥L1(Rd ).

Endpoint bound is known for

α ≥ 1

maximal operator that only averages over balls with radii
2n, n ∈ Z
maximal operator that only averages against a smooth kernel

All previous results also known for Mc
α.



Introduction Proof strategy

Fractional: Improvements over nonfractional

For α ≥ 1 Kinnunen and Saksman proved in 2003

|∇Mαf (x)| ≲ |Mα−1f (x)|.

This implies

∥∇Mαf ∥
L

d
d−α (Rd )

≲ ∥Mα−1f ∥
L

d
d−α (Rd )

≲ ∥f ∥
L

d
d−1 (Rd )

≲ ∥∇f ∥L1(Rd ).

Endpoint bound is known for

α ≥ 1

maximal operator that only averages over balls with radii
2n, n ∈ Z
maximal operator that only averages against a smooth kernel

All previous results also known for Mc
α.



Introduction Proof strategy

Other maximal operators and related questions

convolution operators

local maximal operators

discrete maximal operators

bilinear maximal operators

any combinations of the above

bounds on other spaces than Sobolev spaces

related: Continuity of the operator given by f 7→ ∇Mf on
W 1,1(Rd) → L1(Rd). This is a stronger property than
boundedness.
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reformulations

definition

var f = sup
{ˆ

f divφ : φ ∈ C 1
c (Rd ;Rd), |φ| ≤ 1

}

= ∥∇f ∥L1(Rd ) if f ∈ W 1,1(Rd).

coarea formula

var f =

ˆ
R
Hd−1(∂{x ∈ Rd : f (x) > λ})dλ

superlevel sets

{Mf > λ} =

{x ∈ Rd : Mf (x) > λ} =
⋃

{B : f B > λ}

for uncentered maximal operators.
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Denote

B<
λ = {B : f B > λ, L(B ∩ {f > λ})<L(B)/2}

and B≥
λ accordingly. We split the boundary

∂
⋃

{B : f B > λ} ⊂ ∂
⋃

B<
λ ∪ ∂

⋃
B≥
λ . (1)

Since Mf ≥ f a.e. we have {f > λ} ⊂ {Mf > λ} up to measure
zero, and thus

∂
⋃

{B : f B > λ} ⊂
(
∂
⋃

{B : f B > λ}
)
\ {f > λ} ∪ ∂{f > λ}.

(2)
Plug (1) into (2) and that into the coarea formula

varMf =

ˆ ∞

0
Hd−1

(
∂
⋃

{B : f B > λ}
)
dλ.
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High density case

Relative isoperimetric inequality

Let B be a cube or a ball and L(B ∩ E ) ≤ L(B)/2. Then

L(B ∩ E )
d−1
d ≲ Hd−1(B ∩ ∂E )

Proposition (High density)

For L(B ∩ E ) ≥ L(B)/2 we have

Hd−1(∂B \ E ) ≲ Hd−1(B ∩ ∂E ).
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Proposition (High density, general version)

Let B be a set of balls B with L(B ∩ E ) ≥ εL(B). Then
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Low density case

Have to bound ˆ ∞

0
Hd−1

(
∂
⋃

B<
λ

)
dλ ≲ var f ,

where

B<
λ = {B : f B > λ, L(B ∩ {f > λ}) < L(B)/2}.

I can’t :(

dyadic maximal operator

Mdf (x) = sup
Q∋x , Q dyadic

f Q .

{x : Mdf (x) > λ} =
⋃

{maximal dyadic Q : f Q > λ}

=
⋃

Q<
λ∪Q

<
λ
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Definition

Q is maximal for λ < f Q if for all P ⊋ Q we have f P ≤ λ.

Given
Q, let λQ be the smallest such λ.

ˆ
R
Hd−1(∂

⋃
Q<

λ )dλ

≤
ˆ
R

∑
Q∈Q<

λ

Hd−1(∂Q)dλ

=

ˆ
R

∑
Q:λ̃Q<λ<f Q

Hd−1(∂Q)dλ

=
∑
Q

(f Q − λ̃Q)Hd−1(∂Q)

where

λ̃Q =

sup
{
λQ ,

sup{λ : L(Q ∩ {f > λ̃Q}) ≥ 2−1 · L(Q) }

}
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Proposition

(f Q − λ̃Q)L(Q) ≲
ˆ
R

∑
P⊊Q:λ̄P<λ<f P

L(P ∩ {f > λ}) dλ

where P is maximal above λ̄P and

”L(P ∩ {f > λ̄P}) = 2−1L(P)”

”L(Q ∩ {f > λ̃Q}) = 2−d−2L(Q)”
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∑
Q

(f Q − λ̃Q)Hd−1(∂Q) ≲
ˆ
R

∑
Q

l(Q)−1
∑

P⊊Q:λ̄P<λ<f P

L(P ∩ {f > λ}) dλ

=

ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ})
∑
Q⊋P

l(Q)−1 dλ

=

ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ}) l(P)−1 dλ

≤
ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ})
d−1
d dλ

≲
ˆ
R

∑
P:λ̄P<λ<f P

Hd−1(P ∩ ∂{f > λ})dλ

≤
ˆ
R
Hd−1(∂{f > λ})dλ = var f



Introduction Proof strategy

∑
Q

(f Q − λ̃Q)Hd−1(∂Q) ≲
ˆ
R

∑
Q

l(Q)−1
∑

P⊊Q:λ̄P<λ<f P

L(P ∩ {f > λ}) dλ

=

ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ})
∑
Q⊋P

l(Q)−1 dλ

=

ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ}) l(P)−1 dλ

≤
ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ})
d−1
d dλ

≲
ˆ
R

∑
P:λ̄P<λ<f P

Hd−1(P ∩ ∂{f > λ})dλ

≤
ˆ
R
Hd−1(∂{f > λ})dλ = var f



Introduction Proof strategy

∑
Q

(f Q − λ̃Q)Hd−1(∂Q) ≲
ˆ
R

∑
Q

l(Q)−1
∑

P⊊Q:λ̄P<λ<f P

L(P ∩ {f > λ}) dλ

=

ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ})
∑
Q⊋P

l(Q)−1 dλ

=

ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ}) l(P)−1 dλ

≤
ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ})
d−1
d dλ

≲
ˆ
R

∑
P:λ̄P<λ<f P

Hd−1(P ∩ ∂{f > λ})dλ

≤
ˆ
R
Hd−1(∂{f > λ})dλ = var f



Introduction Proof strategy

∑
Q

(f Q − λ̃Q)Hd−1(∂Q) ≲
ˆ
R

∑
Q

l(Q)−1
∑

P⊊Q:λ̄P<λ<f P

L(P ∩ {f > λ}) dλ

=

ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ})
∑
Q⊋P

l(Q)−1 dλ

=

ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ}) l(P)−1 dλ

≤
ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ})
d−1
d dλ

≲
ˆ
R

∑
P:λ̄P<λ<f P

Hd−1(P ∩ ∂{f > λ})dλ

≤
ˆ
R
Hd−1(∂{f > λ})dλ = var f



Introduction Proof strategy

∑
Q

(f Q − λ̃Q)Hd−1(∂Q) ≲
ˆ
R

∑
Q

l(Q)−1
∑

P⊊Q:λ̄P<λ<f P

L(P ∩ {f > λ}) dλ

=

ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ})
∑
Q⊋P

l(Q)−1 dλ

=

ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ}) l(P)−1 dλ

≤
ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ})
d−1
d dλ

≲
ˆ
R

∑
P:λ̄P<λ<f P

Hd−1(P ∩ ∂{f > λ}) dλ

≤
ˆ
R
Hd−1(∂{f > λ})dλ = var f



Introduction Proof strategy

∑
Q

(f Q − λ̃Q)Hd−1(∂Q) ≲
ˆ
R

∑
Q

l(Q)−1
∑

P⊊Q:λ̄P<λ<f P

L(P ∩ {f > λ}) dλ

=

ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ})
∑
Q⊋P

l(Q)−1 dλ

=

ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ}) l(P)−1 dλ

≤
ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ})
d−1
d dλ

≲
ˆ
R

∑
P:λ̄P<λ<f P

Hd−1(P ∩ ∂{f > λ}) dλ

≤
ˆ
R
Hd−1(∂{f > λ})dλ = var f



Introduction Proof strategy

∑
Q

(f Q − λ̃Q)Hd−1(∂Q) ≲
ˆ
R

∑
Q

l(Q)−1
∑

P⊊Q:λ̄P<λ<f P

L(P ∩ {f > λ}) dλ

=

ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ})
∑
Q⊋P

l(Q)−1 dλ

=

ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ}) l(P)−1 dλ

≤
ˆ
R

∑
P:λ̄P<λ<f P

L(P ∩ {f > λ})
d−1
d dλ

≲
ˆ
R

∑
P:λ̄P<λ<f P

Hd−1(P ∩ ∂{f > λ}) dλ

≤
ˆ
R
Hd−1(∂{f > λ})dλ = var f



Introduction Proof strategy

Thank you


	Introduction
	Background
	Onedimensional case
	The fractional maximal function
	New results

	Proof strategy
	Reduction and decomposition
	High density case
	Low density case


