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The Poincaré inequality bounds the oscillation of a function by its
gradient ˆ

Q
|f − fQ | ≲d l(Q)

ˆ
Q
|∇f |, (1)

where

fQ =
1

L(Q)

ˆ
Q
f

and l(Q) is the sidelength of the cube Q.

It also holds for a ball or
other similar domains. It is equivalent to the relative isoperimetric
inequality

min{L(Q ∩ E ),L(Q \ E )} ≲d Hd−1(Q ∩ ∂E ) (2)

in the sense that

eq. (1) =⇒ eq. (2) by plugging in f = 1E and f = 1Rd\E and

eq. (2) =⇒ eq. (1) by taking E = 1f>λ and using the coarea
formula.
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The Poincaré inequality also comes in its strengthened form(ˆ
Q
|f − fQ |

d
d−1

) d−1
d

≲d

ˆ
Q
|∇f |, (3)

and by Hölder for any 1 ≤ p ≤ d/(d − 1) we have(ˆ
Q
|f − fQ |p

) 1
p
≲d l(Q)

d
p
−d+1

ˆ
Q
|∇f |,

Also eq. (3) is equivalent to the relative isoperimetric inequality in
the previously mentioned way.
For 1 ≤ p ≤ d there exist Lp-versions of the Poincaré inequality(ˆ

Q
|f − fQ |p

∗
) 1

p∗
≲d

(ˆ
Q
|∇f |p

) 1
p
, (4)

where 1
p∗ = 1

p − 1
d .

Note, that with Q = [−r , r ]d and r → ∞ we obtain Sobolev
embedding from eq. (4),

∥f ∥p∗ ≲d ∥∇f ∥p.
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Q
|f − fQ |p

∗
) 1

p∗
≲d

(ˆ
Q
|∇f |p

) 1
p
, (4)

where 1
p∗ = 1

p − 1
d .

Note, that with Q = [−r , r ]d and r → ∞ we obtain Sobolev
embedding from eq. (4),

∥f ∥p∗ ≲d ∥∇f ∥p.
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and by Hölder for any 1 ≤ p ≤ d/(d − 1) we have(ˆ
Q
|f − fQ |p

) 1
p
≲d l(Q)

d
p
−d+1

ˆ
Q
|∇f |,

Also eq. (3) is equivalent to the relative isoperimetric inequality in
the previously mentioned way.

For 1 ≤ p ≤ d there exist Lp-versions of the Poincaré inequality(ˆ
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Fractional

Theorem (Bourgain, Brezis, and Mironescu 2002; Maz’ya and
Shaposhnikova 2002)

Let 0 ≤ δ < 1. Then

ˆ
Q
|f − fQ | ≲d (1− δ) l(Q)δ

ˆ
Q

 
Q

|f (x)− f (y)|
|x − y |d+δ

dx dy

This improves the classical Poincaré inequality since the right
hand side can be bounded by the integral over |∇f |.
The proof employs Fourier analysis.
Note, that  

[0,1]d

1

rd+δ−1
∼d

1

1− δ
.

Without the factor (1− δ) this follows directly from the
triangle inequality and |x − y | ≲ l(Q).
In fact they prove an Lp version, with exponent p∗δ given by
1
p∗δ

= 1
p − δ

d .
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Fractional

Theorem (Ponce 2004)

For a bounded Lipschitz domain Ω and certain radial kernels ρ ≥ 0
with

´
Rd ρ = 1 we have

ˆ
Ω
|f − fΩ|p ≲d ,Ω

ˆ
Ω

ˆ
Ω

|f (x)− f (y)|p

|x − y |p
ρ(|x − y |) dx dy .

generalizes Bourgain, Brezis, and Mironescu 2002 by
ρ(r) ∼ rα

direct real analysis proof

Higher exponent q > p on the left hand side missing

Milman 2005 also proves the result from Bourgain, Brezis, and
Mironescu 2002, using some general interpolation.
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With weights

For 0 ≤ α ≤ d we define the fractional maximal function of a
weight w by

Mαw(x) = sup
r>0

rα
1

L(B(x , r))

ˆ
B(x ,r)

w .

Theorem (Franchi, Pérez, and Wheeden 2000)

Let w be a weight. Then for all 1 ≤ q ≤ d
d−1 we have

(ˆ
Q
|f − fQ |qw

) 1
q
≲d ,q

ˆ
Q
|∇f |(Md−q(d−1)w)

1
q .
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Recall the term l(Q)α in front of the original Poincaré. That
term is absorbed in the fractional maximal function, and in an
optimal way due to Mαw(x) ≤ diam(Q)αM0w(x).

Their result extends to the metric setting.

Their constant blows up for q ↘ 1, but is finite for q = 1.

We found a unified proof for all 1 ≤ q ≤ d
d−1 , avoiding the

blow-up.

WIP: version with |∇f |p, p > 1.
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Fractional with weights

Theorem (WIP)

(ˆ
Q
|f − fQ |qw

) 1
q
≲d

(1− δ)

ˆ
Q

ˆ
Q

|f (x)− f (y)|
|x − y |n+δ

dyMd−q(d−δ)w(x)
1
q dx

For q = d
d−δ this has been proven in Hurri-Syrjänen et al.

2022 (arXiv).

Note again how the fractional maximal operator absorbs the
factor l(Q)α in front.

Can the right hand side again be bounded by an integral over
the gradient? Yes, for A1-weights, and with loss of additional
(1− δ) due to Hurri-Syrjänen et al. 2022.

also version with |f (x)− f (y)|p, p > 1 in progress
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Proof strategy

Our proofs are in the spirit of the following proof of the Poincaré
inequality by the relative isoperimetric inequality.

Consider
Poincaré with the median

mf (Q) = sup{λ ∈ R : L({x ∈ Q : f (x) > λ}) ≥ L(Q)}

instead of the average

ˆ
Q
|f −mf (Q)|

=

ˆ ∞

mf (Q)
L({x ∈ Q : f (x) > λ})dλ

+

ˆ mf (Q)

−∞
L({x ∈ Q : f (x) < λ})

By potentially replacing f by −f we can assume that the first
summand is larger, so it suffices to bound that one.
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Fractional lemma

To prove weighted versions of the fractional Poincaré inequality the
relative isoperimetric inequality is of not much use since we don’t
estimate by the gradient.

Its role plays the following finite version.

Lemma

Let a > 0 and A ⊂ Q with ad ≤ L(A) ≤ L(Q)/2. Then

ˆ
Q

ˆ
Q∩B(x ,a)\B(x ,a/2)

1A×(Q\A)(x , y)dy dx ≳ ad+1L(A)
d−1
d .

By the relative isoperimetric inequality we have

L(A)
d−1
d ≲ Hd−1(Q ∩ ∂A).

So the Lemma detects the rough
size of the boundary of A by integrating over pairs x , y ∈ Q
with a/2 < |x − y | < a.
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