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Background

For f : R™ — R the centered Hardy-Littlewood maximal function is
defined by

. 1
M¢f(x) =sup fp,, with I Bar) = ‘(B(l‘?“))/ | f]-
’ B(x,r)

r>0

Theorem (Hardy-Littlewood maximal function theorem)
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if and only if p > 1.
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Background

Theorem (Juha Kinnunen (1997))
For p > 1 we have

IVME £l o gy S p IV £l Lo ge)
Proof: For e € R" by the sublinearity of M¢

_ MCf(x + he) — M f(x)
h
< MUt he) = o)
= yie (LRI DY ) o, ) )

.M f(x)

By the Hardy-Littlewood maximal function theorem for p > 1
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Background

Question (Hajtasz and Onninen 2004)
Is it true that
IVME fll 1gny Sn IV Fllrgn)?

Uncentered Hardy-Littlewood maximal function

Mf(z) = sup fp.
Box

Endpoint question by Hatjasz and Onninen is interesting for M and
other maximal operators.



In one dimension

Theorem (Tanaka 2002, Aldaz and Pérez Lazaro 2007)
For f : R — R we have

IVM£l, < IV £l
Proof:

@ In one dimension

IVf], = sup er x1) — f(z;)] = var f.

T <Ty<

e For almost all z € R%: Mf(x) > f(z)
e and Mf(z) = f(x) at a strict local maximum of Mf.



Lo Ty Lo

vary, .0 Mf = [Mf(2;) — Mf(2o)] + [Mf(25) — Mf(2)]
< |f(z1) = f(@o)] + [f(z2) — f(21)]

= Var[woﬂ/’z] f



Progress

[Tanaka 2002, Aldaz

n=1 +Pérez Lazaro 2007]
block decreasing f [Aldaz+Pérez Lazaro 2009]
centered M, n =1 [Kurka 2015]

radial f [Luiro 2018]

_ _ . [Kinnunen + Saksman 2003,
fractional maximal function o > 1 Carneiro + Madrid 2016]

characteristic f [W 2020]
dyadic maximal function [W 2020]
fractional maximal function [W 2020]
cube maximal function o > 0 [W 2021]

@ bounds on other maximal operators, such as local,... ,

@ local regularity and smoothing, i.e. does f — VMf map
BV(R") — L*(R™) or only into Radon measures?

e operator continuity of f = VMf on WH1(R™) — LY(R™),
stronger than boundedness.

@ best constants in one dimension



Characteristic functions

Coarea formula

I £l o2 oy = / H 10z € R™ + f(z) > A}) dA
R
= H"1(OF) if f=1g

{Mf>A}={zeR":Mf(z) > A} = {B: fz >}
for uncentered maximal operators. (= [ J{B: fz = A} for balls)

Case distinction

A>1/2: L(BNE) >
A<1/2: £L(BNE) <




High density case A > 1/2

For Q, E with £(Q NE) > £(Q)/2 we have

HLOQ\E) <, K HQNOE)
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Low density case A < 1/2

relative isoperimetric inequality

min{£(Q N E), £(Q\ E)}""" <, H"1(Q N OE)™.
For @, E with A := L(Q N E)/L(Q) < 1/2 we have

n—1
n

HHOQ) ~ £(Q)
= A% min{£(Q N E), £(Q\ E)}
S, A HHQNOE)

n—1
n



Conclusion
For A\ := £L(Q N E)/L(Q) we have

HLHOQ\E) S A" H" 1 (Q N IE).

dyadic maximal operator M. For 0 < A\ < 1 let O, be the set of
maximal dyadic cubes @ with £(Q N E) > AL(Q). Then

var(Mdl,) = /1 ot (OU QA) dA

0

1 1
< / FrL <6UQA\E) A+ / HL(OE) dA
0 0

> HTHOQNE) s AT > H QN OE)

QeQ, QeQ,
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Thus,
1
var(M?1,) <, / A HY(E) AN <, var(1g).
0

Balls? Not disjoint, but

Proposition
Let B, be a set of balls. with £(B N E) = A{(B). Then

g (a UER E) < [log AN~ " K™ 1(9E).

Same proof for M1 can be done, despite log A term. Can also be
used to prove

Theorem (Vitali for boundary)

Any bounded set B of balls has a disjoint subset B with

Fnl (a U B) <, Hrl (a | 2”3) .

This can in turn be used to remove log A term.



Lemma (Vitali covering lemma)

Any bounded set B of balls has a disjoint subset B with

(U3) s, <(U3).

That means Vitali selection strategy doesn't work for boundary. As
it turns out, the Besicovitch covering theorem strategy combined
with log \-proposition does, however.



Proof of Vitali for boundary

Apply Besicovitch covering theorem, which gives N < n families
By, ..., By of disjoint balls that together contain all centers of
balls in B. In fact, for each B(z,r) € B exists a

B(y,s) € ByU...UB, with s =7 and z € B(y,s). Thus,
L(B(z,r) N B(y,s)) =, £(B(x,r)). Using log A-proposition,

g (aU za) <, H" ! (aUzal U..U BN)
< kEN:%n—l (oU3:)

SNkn;l’ax’: HT I(GUB )



Can we get a disjoint subset B C B that witnesses both the Vitali

covering lemma and the Vitali covering lemma for the boundary?
No.




For each B and any € > 0 exists a subset B C B such that for any
distinct B, B, € B we have

L(By N By) <emin{L(By), £(By)}
and with

c(UB) s <(U2), 7 (oU3) s, e am(oJ3).

n—=1 ,
The rate e n+1 is sharp. But:

Theorem

|

In one dimension exists a subset B C B of intervals with disjoint
closures such that

£<U23> < 5£(U2§), }(”—1<8U23> g%”—1<6U2§>.



Thank you



