Higher Dimensional Techniques for the Regularity of Maximal Functions

Julian Weigt

Aalto University

June 2022

For $f : \mathbb{R}^n \to \mathbb{R}$ the centered Hardy-Littlewood maximal function is defined by

$$
\mathrm{M}^{\mathrm{c}} f(x) = \sup_{r>0} f_{B(x,r)} \quad \text{ with } \quad f_{B(x,r)} = \frac{1}{\mathcal{L}(B(x,r))} \int_{B(x,r)} |f|.
$$

For $f : \mathbb{R}^n \to \mathbb{R}$ the centered Hardy-Littlewood maximal function is defined by

$$
\mathrm{M}^{\mathrm{c}} f(x) = \sup_{r>0} f_{B(x,r)} \quad \text{ with } \qquad f_{B(x,r)} = \frac{1}{\mathcal{L}(B(x,r))} \int_{B(x,r)} |f|.
$$

The Hardy-Littlewood maximal function theorem:

$$
\|\mathrm{M}^{\mathrm{c}} f\|_{L^p(\mathbb{R}^n)} \leq C_{n,p} \|f\|_{L^p(\mathbb{R}^n)} \qquad \text{if and only if } p > 1
$$

For $f : \mathbb{R}^n \to \mathbb{R}$ the centered Hardy-Littlewood maximal function is defined by

$$
\mathrm{M}^{\mathrm{c}} f(x) = \sup_{r>0} f_{B(x,r)} \quad \text{ with } \quad f_{B(x,r)} = \frac{1}{\mathcal{L}(B(x,r))} \int_{B(x,r)} |f|.
$$

The Hardy-Littlewood maximal function theorem:

$$
\|\mathbf{M}^c f\|_{L^p(\mathbb{R}^n)} \leq C_{n,p} \|f\|_{L^p(\mathbb{R}^n)} \qquad \text{if and only if } p > 1
$$

Juha Kinnunen (1997):

$$
\|\nabla \mathbf{M}^c f\|_{L^p(\mathbb{R}^n)} \leq C_{n,p} \|\nabla f\|_{L^p(\mathbb{R}^n)} \qquad \qquad \text{if } p>1
$$

For $f : \mathbb{R}^n \to \mathbb{R}$ the centered Hardy-Littlewood maximal function is defined by

$$
\mathrm{M}^{\mathrm{c}} f(x) = \sup_{r>0} f_{B(x,r)} \quad \text{ with } \quad f_{B(x,r)} = \frac{1}{\mathcal{L}(B(x,r))} \int_{B(x,r)} |f|.
$$

The Hardy-Littlewood maximal function theorem:

$$
\|M^cf\|_{L^p(\mathbb{R}^n)}\leq C_{n,p}\|f\|_{L^p(\mathbb{R}^n)}\qquad\text{if and only if }p>1
$$

Juha Kinnunen (1997):

$$
\|\nabla \mathbf{M}^c f\|_{L^p(\mathbb{R}^n)} \leq C_{n,p} \|\nabla f\|_{L^p(\mathbb{R}^n)} \qquad \qquad \text{if } p>1
$$

Question (Hajłasz and Onninen 2004)

Is it true that

 $\|\nabla M^c f\|_{L^1(\mathbb{R}^n)} \leq C_n \|\nabla f\|_{L^1(\mathbb{R}^n)}$?

For $e \in \mathbb{R}^n$ by the sublinearity of M^c Kinnunen proved

 $|\nabla \mathbf{M}^{\mathbf{c}} f(x)| \leq \mathbf{M}^{\mathbf{c}} |\nabla f|(x).$

Thus by the Hardy-Littlewood maximal function theorem for $p > 1$

 $\|\nabla M^c f\|_{L^p(\mathbb{R}^n)} \lesssim \|M^c(|\nabla f|)\|_{L^p(\mathbb{R}^n)} \lesssim \|\nabla f\|_{L^p(\mathbb{R}^n)}$

For $e \in \mathbb{R}^n$ by the sublinearity of M^c Kinnunen proved

```
|\nabla \mathbf{M}^{\mathbf{c}} f(x)| \leq \mathbf{M}^{\mathbf{c}} |\nabla f|(x).
```
Thus by the Hardy-Littlewood maximal function theorem for $p > 1$

$$
\|\nabla \mathrm{M}^{\mathrm{c}} f\|_{L^p(\mathbb{R}^n)} \lesssim \|\mathrm{M}^{\mathrm{c}}(|\nabla f|)\|_{L^p(\mathbb{R}^n)} \lesssim \|\nabla f\|_{L^p(\mathbb{R}^n)}
$$

In 2002 Tanaka proved

$$
\|\nabla \widetilde{\mathbf{M}}f\|_1 \leq 2\|\nabla f\|_1
$$

for the uncentered maximal function of a function $f : \mathbb{R} \to \mathbb{R}$. The proof depends strongly on one-dimensional geometry.

For $0 < \alpha < n$ the centered fractional Hardy-Littlewood maximal function is

$$
\mathcal{M}_{\alpha}^{\mathcal{C}}f(x)=\sup_{r>0}r^{\alpha}f_{B(x,r)}.
$$

For $0 < \alpha < n$ the centered fractional Hardy-Littlewood maximal function is

$$
\mathcal{M}_{\alpha}^{c} f(x) = \sup_{r>0} r^{\alpha} f_{B(x,r)}.
$$

The corresponding Hardy-Littlewood theorem is is

$$
\|\mathrm{M}_{\alpha}f\|_{L^{\frac{pn}{n-\alpha p}}(\mathbb{R}^n)}\leq C_{n,\alpha,p}\|f\|_{L^p(\mathbb{R}^n)}
$$

if and only if $p > 1$.

For $0 < \alpha < n$ the centered fractional Hardy-Littlewood maximal function is

$$
\mathcal{M}_{\alpha}^{c} f(x) = \sup_{r>0} r^{\alpha} f_{B(x,r)}.
$$

The corresponding Hardy-Littlewood theorem is is

$$
\|\mathrm{M}_{\alpha}f\|_{L^{\frac{pn}{n-\alpha p}}(\mathbb{R}^n)}\leq C_{n,\alpha,p}\|f\|_{L^p(\mathbb{R}^n)}
$$

if and only if $p > 1$. The corresponding regularity bound is

$$
\|\nabla \mathrm{M}_{\alpha} f\|_{L^{\frac{pn}{n-\alpha p}}(\mathbb{R}^n)} \leq C_{n,\alpha,p} \|\nabla f\|_{L^p(\mathbb{R}^n)}.
$$

centered M, $n = 1$ [Kurka 2015] radial f [Luiro 2018]

 $n = 1$ [Tanaka 2002, Aldaz+Pérez Lázaro 2007] block decreasing f [Aldaz+Pérez Lázaro 2009]

block decreasing f [Aldaz+Pérez Lázaro 2009] centered M, $n = 1$ [Kurka 2015] radial f [Luiro 2018] fractional: $n = 1$ [Beltran + Madrid 2016] $1 \leq \alpha$ [Kinnunen + Saksman 2003] radial f $\left[$ Luiro + Madrid 2017 $\right]$ $n = 1$, radial for centered f [Beltran + Madrid 2019]

 $n = 1$ [Tanaka 2002, Aldaz+Pérez Lázaro 2007]

Carneiro $+$ Madrid 2016] $lacunary$ [Beltran + Ramos + Saari 2018]

There are more related bounds, bounds on other maximal operators,. . . .

There are more related bounds, bounds on other maximal operators,. . . .

For example: Continuity of the operator given by $f \mapsto \nabla Mf$ on $W^{1,1}(\mathbb{R}^n) \to L^1(\mathbb{R}^n)$. This is a stronger property than boundedness.

 \bullet characteristic f

- \bullet characteristic f
- dyadic maximal operator

- \bullet characteristic f
- dyadic maximal operator
- **•** fractional maximal operator

- \bullet characteristic f
- dyadic maximal operator
- **•** fractional maximal operator
- o cube maximal operator

Coarea formula

$$
\|\nabla f\|_{L^1(\mathbb{R}^n)} = \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial\{x\in\mathbb{R}^n : f(x) > \lambda\}) d\lambda
$$

Coarea formula

$$
\|\nabla f\|_{L^1(\mathbb{R}^n)} = \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial\{x\in\mathbb{R}^n : f(x) > \lambda\}) d\lambda
$$

Superlevel sets

$$
\{x \in \mathbb{R}^n : \mathrm{M}f(x) > \lambda\} = \bigcup \{B : f_B > \lambda\}
$$

for uncentered maximal operators.

Coarea formula

$$
\|\nabla f\|_{L^1(\mathbb{R}^n)} = \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial\{x\in\mathbb{R}^n : f(x) > \lambda\}) d\lambda
$$

Superlevel sets

$$
\{Mf > \lambda\} = \{x \in \mathbb{R}^n : Mf(x) > \lambda\} = \bigcup \{B : f_B > \lambda\}
$$

for uncentered maximal operators.

Coarea formula

$$
\|\nabla f\|_{L^1(\mathbb{R}^n)} = \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial\{x\in\mathbb{R}^n : f(x) > \lambda\}) d\lambda
$$

Superlevel sets

$$
\{Mf > \lambda\} = \{x \in \mathbb{R}^n : Mf(x) > \lambda\} = \bigcup \{B : f_B > \lambda\}
$$

for uncentered maximal operators.

Decomposition of the boundary

Denote

$$
\mathcal{B}_{\lambda}^{<} = \{ B : f_B > \lambda, \ \mathcal{L}(B \cap \{ f > \lambda \}) < 2^{-n-1} \mathcal{L}(B) \}
$$

and $\mathcal{B}_{\lambda}^{\geq}$ $\frac{1}{\lambda}$ accordingly.

Coarea formula

$$
\|\nabla f\|_{L^1(\mathbb{R}^n)} = \int_{\mathbb{R}} \mathcal{H}^{d-1}(\partial\{x\in\mathbb{R}^n : f(x) > \lambda\}) d\lambda
$$

Superlevel sets

$$
\{Mf > \lambda\} = \{x \in \mathbb{R}^n : Mf(x) > \lambda\} = \bigcup \{B : f_B > \lambda\}
$$

for uncentered maximal operators.

Decomposition of the boundary

Denote

$$
\mathcal{B}_{\lambda}^{<}=\{B:f_B>\lambda,\ \mathcal{L}(B\cap\{f>\lambda\})<2^{-n-1}\mathcal{L}(B)\}
$$

and $\mathcal{B}_{\lambda}^{\geq}$ $\frac{1}{\lambda}$ accordingly.

We will estimate the perimeter of $\bigcup \mathcal{B}_\lambda^<$ and $\bigcup \mathcal{B}_\lambda^\geq$ $\frac{1}{\lambda}$ separately.

Proof: High density case $\mathcal{B}_\lambda^{\geq}$ λ

Proposition

$$
\mathcal{L}(\mathcal{Q} \cap \mathcal{E}) \geq 2^{-n-1} \mathcal{L}(\mathcal{Q}) \quad \Longrightarrow \mathcal{H}^{d-1}(\partial \mathcal{Q} \setminus \overline{\mathcal{E}}) \lesssim \mathcal{H}^{d-1}(\mathcal{Q} \cap \partial \mathcal{E})
$$

Proof: High density case $\mathcal{B}_\lambda^{\geq}$ λ

Proposition

$$
\mathcal{L}(\mathcal{Q} \cap \mathcal{E}) \geq 2^{-n-1} \mathcal{L}(\mathcal{Q}) \quad \Longrightarrow \mathcal{H}^{d-1}(\partial \mathcal{Q} \setminus \overline{\mathcal{E}}) \lesssim \mathcal{H}^{d-1}(\mathcal{Q} \cap \partial \mathcal{E})
$$

relative isoperimetric inequality

If $\mathcal{L}(Q \cap E) \leq \mathcal{L}(Q)/2$ then

$$
{\mathcal L} (Q \cap E)^{n-1} \lesssim {\mathcal H}^{d-1} (Q \cap \partial E)^n
$$

dyadic maximal operator

$$
M^{d} f(x) = \sup_{Q \ni x, Q \text{ dyadic}} f_{Q}.
$$

dyadic maximal operator

$$
M^{d} f(x) = \sup_{Q \ni x, Q \text{ dyadic}} f_{Q}.
$$

$$
\int_{\mathbb{R}}\mathcal{H}^{d-1}(\partial\bigcup\mathcal{Q}_{\lambda}^{<})\,\mathrm{d}\lambda
$$

dyadic maximal operator

$$
M^{d} f(x) = \sup_{Q \ni x, Q \text{ dyadic}} f_{Q}.
$$

$$
\int_{\mathbb{R}}\mathcal{H}^{d-1}(\partial\bigcup\mathcal{Q}_{\lambda}^{<})\,\mathrm{d}\lambda\leq\sum_{Q\;\text{ dyadic}}(f_{Q}-\lambda_{Q})\mathcal{H}^{d-1}(\partial Q)
$$

with

$$
\mathcal{L}(Q \cap \{f > \lambda_Q\}) = 2^{-n-1} \mathcal{L}(Q)
$$

Proof: Low density case $\mathcal{B}_{\lambda}^{\leq}$ λ

Proposition

$$
(f_Q - \lambda_Q)\mathcal{L}(Q) \lesssim \int_{\mathbb{R}} \sum_{P \subsetneq Q: \bar{\lambda}_P < \lambda < f_P} \mathcal{L}(P \cap \{f > \lambda\}) \, d\lambda
$$

where P is maximal above $\bar{\lambda}_P$ and

$$
\mathcal{L}(P \cap \{f > \bar{\lambda}_P\}) = 2^{-1} \mathcal{L}(P)
$$

$$
\mathcal{L}(Q \cap \{f > \lambda_Q\}) = 2^{-n-1} \mathcal{L}(Q)
$$

Proof: Low density case $\mathcal{B}_{\lambda}^{\leq}$ λ

Proposition

$$
(f_Q - \lambda_Q) \mathcal{L}(Q) \lesssim \int_{\mathbb{R}} \sum_{P \subsetneq Q: \bar{\lambda}_P < \lambda < f_P} \mathcal{L}(P \cap \{f > \lambda\}) \, d\lambda
$$

where P is maximal above $\bar{\lambda}_P$ and

$$
\mathcal{L}(P \cap \{f > \bar{\lambda}_P\}) = 2^{-1} \mathcal{L}(P)
$$

$$
\mathcal{L}(Q \cap \{f > \lambda_Q\}) = 2^{-n-1} \mathcal{L}(Q)
$$

Then we sum over all Q and change the order of summation, use the convergence of a geometric sum and apply the relative isoperimetric inequality to P. We recover $\|\nabla f\|_1$ on the right hand side.

Proof: Low density case $\mathcal{B}_{\lambda}^{\leq}$ $\mathcal{L}_{\lambda}^{\lt}$, general cubes

cube maximal function

$$
\mathrm{M}f(x)=\sup_{\text{cube }Q,\ Q\ni x}f_{Q}.
$$

Proof: Low density case $\mathcal{B}_{\lambda}^{\leq}$ $\mathcal{L}_{\lambda}^{\lt}$, general cubes

cube maximal function

$$
\mathrm{M}f(x)=\sup_{\text{cube }Q,\ Q\ni x}f_{Q}.
$$

We reduce to almost dyadic cubes, using

Proof: Low density case $\mathcal{B}_{\lambda}^{\leq}$ $\mathcal{L}_{\lambda}^{\lt}$, general cubes

cube maximal function

$$
\mathrm{M}f(x)=\sup_{\text{cube }Q,\ Q\ni x}f_Q.
$$

We reduce to almost dyadic cubes, using

Proposition (Vitali for perimeter)

For any (finite) set of cubes Q there is a subset $S \subset Q$ of disjoint cubes such that

$$
\mathcal{H}^{d-1}\left(\partial\bigcup\mathcal{Q}\right)\lesssim \sum_{S\in\mathcal{S}}\mathcal{H}^{d-1}(\partial S).
$$

cube maximal function

$$
\mathrm{M}f(x)=\sup_{\text{cube }Q,\ Q\ni x}f_Q.
$$

We reduce to almost dyadic cubes, using

Proposition (Vitali for perimeter)

For any (finite) set of cubes Q there is a subset $S \subset Q$ of disjoint cubes such that

$$
\mathcal{H}^{d-1}\left(\partial\bigcup\mathcal{Q}\right)\lesssim \sum_{S\in\mathcal{S}}\mathcal{H}^{d-1}(\partial S).
$$

The Vitali covering for the perimeter also works for balls, however we do not have the earlier bound on $(f_Q - \lambda_Q) \mathcal{L}(Q)$ for balls.

$1 \leq \alpha$ [Kinnunen + Saksman, Carneiro + Madrid] $\|\nabla \mathbf{M}_{\alpha} f\|_{\frac{n}{n-\alpha}} \lesssim \|\mathbf{M}_{\alpha-1} f\|_{\frac{n}{n-\alpha}} \lesssim \|f\|_{\frac{n}{n-1}} \lesssim \|\nabla f\|_1.$

$$
1 \leq \alpha \text{ [Kinnunen + Saksman, Carneiro + Madrid]}
$$

$$
\|\nabla M_{\alpha}f\|_{\frac{n}{n-\alpha}} \lesssim \|M_{\alpha-1}f\|_{\frac{n}{n-\alpha}} \lesssim \|f\|_{\frac{n}{n-1}} \lesssim \|\nabla f\|_1.
$$

$$
0 < \alpha \qquad \|\nabla M_{\alpha}f\|_{\frac{n}{n-\alpha}} \lesssim \|M_{\alpha,-1}f\|_{\frac{n}{n-\alpha}} \lesssim \|\nabla f\|_1.
$$

Thank you