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Introduction: Background

For f : Rn → R the centered Hardy-Littlewood maximal function is
defined by

Mcf (x) = sup
r>0

f B(x ,r) with f B(x ,r) =
1

L(B(x , r))

ˆ
B(x ,r)

|f |.

The Hardy-Littlewood maximal function theorem:

∥Mcf ∥Lp(Rn) ≤ Cn,p∥f ∥Lp(Rn) if and only if p > 1

Juha Kinnunen (1997):

∥∇Mcf ∥Lp(Rn) ≤ Cn,p∥∇f ∥Lp(Rn) if p > 1

Question (Haj lasz and Onninen 2004)

Is it true that

∥∇Mcf ∥L1(Rn) ≤ Cn∥∇f ∥L1(Rn)?
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Introduction: Motivation

For e ∈ Rn by the sublinearity of Mc Kinnunen proved

|∇Mcf (x)| ≤ Mc|∇f |(x).

Thus by the Hardy-Littlewood maximal function theorem for p > 1

∥∇Mcf ∥Lp(Rn) ≲ ∥Mc(|∇f |)∥Lp(Rn) ≲ ∥∇f ∥Lp(Rn)

In 2002 Tanaka proved

∥∇M̃f ∥1 ≤ 2∥∇f ∥1

for the uncentered maximal function of a function f : R → R. The
proof depends strongly on one-dimensional geometry.
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Introduction: The fractional maximal function

For 0 < α < n the centered fractional Hardy-Littlewood maximal
function is

Mc
αf (x) = sup

r>0
rαf B(x ,r).

The corresponding Hardy-Littlewood theorem is is

∥Mαf ∥
L

pn
n−αp (Rn)

≤ Cn,α,p∥f ∥Lp(Rn)

if and only if p > 1. The corresponding regularity bound is

∥∇Mαf ∥
L

pn
n−αp (Rn)

≤ Cn,α,p∥∇f ∥Lp(Rn).
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Introduction: Progress

n = 1 [Tanaka 2002, Aldaz+Pérez Lázaro 2007]
block decreasing f [Aldaz+Pérez Lázaro 2009]
centered M, n = 1 [Kurka 2015]
radial f [Luiro 2018]

fractional:
n = 1 [Beltran + Madrid 2016]
1 ≤ α [Kinnunen + Saksman 2003

Carneiro + Madrid 2016]
radial f [Luiro + Madrid 2017]
lacunary [Beltran + Ramos + Saari 2018]
n = 1, radial for centered f [Beltran + Madrid 2019]

There are more related bounds, bounds on other maximal
operators,. . . .
For example: Continuity of the operator given by f 7→ ∇Mf on
W 1,1(Rn) → L1(Rn). This is a stronger property than
boundedness.
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Introduction: New results

We prove the endpoint regularity bound for the maximal function
for

characteristic f

dyadic maximal operator

fractional maximal operator

cube maximal operator
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Proof: Reformulation and decomposition

Coarea formula

∥∇f ∥L1(Rn) =

ˆ
R
Hd−1(∂{x ∈ Rn : f (x) > λ}) dλ

Superlevel sets

{Mf > λ} =

{x ∈ Rn : Mf (x) > λ} =
⋃

{B : f B > λ}

for uncentered maximal operators.

Decomposition of the boundary

Denote

B<
λ = {B : f B > λ, L(B ∩ {f > λ})< 2−n−1L(B)}

and B≥
λ accordingly.

We will estimate the perimeter of
⋃
B<
λ and

⋃
B≥
λ separately.
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Proof: High density case B≥
λ

Proposition

L(Q ∩ E ) ≥ 2−n−1L(Q) =⇒
Hd−1(∂Q \ E ) ≲ Hd−1(Q ∩ ∂E ) E

Q

relative isoperimetric inequality

If L(Q ∩ E ) ≤ L(Q)/2 then

L(Q ∩ E )n−1 ≲ Hd−1(Q ∩ ∂E )n
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Proof: Low density case B<
λ

dyadic maximal operator

Mdf (x) = sup
Q∋x , Q dyadic

f Q .

ˆ
R
Hd−1(∂

⋃
Q<

λ ) dλ

≤
∑

Q dyadic

(f Q − λQ)Hd−1(∂Q)

with
L(Q ∩ {f > λQ}) = 2−n−1L(Q)
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Proof: Low density case B<
λ

Proposition

(f Q − λQ)L(Q) ≲
ˆ
R

∑
P⊊Q:λ̄P<λ<f P

L(P ∩ {f > λ}) dλ

where P is maximal above λ̄P and

L(P ∩ {f > λ̄P}) = 2−1L(P)

L(Q ∩ {f > λQ}) = 2−n−1L(Q)

Then we sum over all Q and change the order of summation, use
the convergence of a geometric sum and apply the relative
isoperimetric inequality to P. We recover ∥∇f ∥1 on the right hand
side.
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Proof: Low density case B<
λ , general cubes

cube maximal function

Mf (x) = sup
cube Q, Q∋x

f Q .

We reduce to almost dyadic cubes, using

Proposition (Vitali for perimeter)

For any (finite) set of cubes Q there is a subset S ⊂ Q of disjoint
cubes such that

Hd−1
(
∂
⋃

Q
)
≲

∑
S∈S

Hd−1(∂S).

The Vitali covering for the perimeter also works for balls, however
we do not have the earlier bound on (f Q − λQ)L(Q) for balls.
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Proof: Low density case B<
λ , fractional

1 ≤ α [Kinnunen + Saksman, Carneiro + Madrid]

∥∇Mαf ∥ n
n−α

≲ ∥Mα−1f ∥ n
n−α

≲ ∥f ∥ n
n−1

≲ ∥∇f ∥1.

0 < α
∥∇Mαf ∥ n

n−α
≲ ∥Mα,−1f ∥ n

n−α
≲ ∥∇f ∥1.
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Thank you


