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Abstract
We prove sharp local and global variation bounds for the centred Hardy–Littlewood
maximal functions of indicator functions in one dimension. We characterise maximis-
ers, treat both the continuous and discrete settings and extend our results to a larger
class of functions.
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1 Introduction

We are concerned with sharp variation bounds for the centred Hardy-Littlewood
maximal function M f on the real line R defined by

M f (x) = sup
r>0

 x+r

x−r
| f (y)| dy = sup

r>0

1

2r

ˆ x+r

x−r
| f (y)| dy.

The variation of a function f : R → R on an interval I ⊆ R is

var I ( f ) = sup
φ : Z→I monotone

∑

i∈Z
| f (φ(i)) − f (φ(i + 1))|.

We write var( f ) = varR( f ) and say that f is of bounded variation if var( f ) < ∞.
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Kurka [8] proved that for any such function it holds that

var(M f ) ≤ C var( f ) (1.1)

for some large constant C independent of f . It is an open conjecture that the optimal
constant in this inequality is C = 1, see e.g. [4, 8]. The following main result proves
this in the case of indicator functions.

Theorem 1.1 Let f : R → {0, 1} be a function of bounded variation. Then (1.1) holds
withC = 1. Equality is attained if and only if f is constant or the set {x ∈ R| f (x) = 1}
is a bounded interval of positive length.

Note that an indicator function is of bounded variation precisely if it has at most
finitely many jumps. This directly implies that f (x) = 0 or f (x) = M f (x) for
Lebesgue/almost every x ∈ R. Our methods only require this weaker assumption,
allowing us to prove the following more general result for nonnegative functions.

Theorem 1.2 Let f : R → [0,∞) be a function of bounded variation such that for
almost every x ∈ R we have that f (x) = 0 or f (x) = M f (x). Then (1.1) holds with
C = 1. Equality is attained if and only if f is constant or the set {x ∈ R| f (x) > 0}
is a bounded interval of positive length and for any x ∈ R,

lim inf
y→x

f (y) ≤ f (x) ≤ lim sup
y→x

f (y).

The regularity of maximal functions was first studied by Kinnunen [6] who proved
that the d-dimensional centred Hardy-Littlewood maximal operator is bounded on the
Sobolev spaceW 1,p(Rd) when 1 < p ≤ ∞ and d ≥ 1. Hajłasz and Onninen [5] later
asked whether the endpoint inequality

‖∇M f ‖L1(Rd ) ≤ C‖∇ f ‖L1(Rd ) (1.2)

also holds and Kurka’s inequality (1.1) provides a positive answer to this question in
the one/dimensional case. The higher/dimensional case remains completely open.

In comparison to the one/dimensional centredHardy–Littlewoodmaximal function,
its uncentred counterpart

∼

M f (x) = sup
x0<x<x1

1

x1 − x0

ˆ x1

x0
| f (y)| dy

allows averages over a larger class of intervals and hence may be expected to be
smoother. Indeed, Tanaka [13] gave a short proof of the uncentred version of (1.1)
with C = 2 and later Aldaz and Pérez Lázaro [2] showed that the optimal constant is
C = 1. Ramos [12] studied the sharp version of (1.1) for a family of nontangential
maximal functions interpolating between the centred and uncentredHardy–Littlewood
maximal functions.

Similarly, higher/dimensional partial results are available for the uncentredmaximal
function where the corresponding results are not known in the centred case. The first
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such result is due to Aldaz and Pérez Lázaro [1] who proved the uncentred version of
(1.2) for so/called block decreasing functions. Later, Luiro [10] proved the same for
radial functions and the second author [15] proved the corresponding inequality for
indicator functions.

1.1 Discrete Setting

Our methods also imply discrete analogues of Theorems 1.1 and 1.2. The discrete
centred Hardy-Littlewood maximal function M f : Z → R of a bounded function
f : Z → R is defined by

M f (n) = sup
r∈Z≥0

n+r∑

m=n−r

| f (m)| = sup
r∈Z≥0

1

2r + 1

n+r∑

m=n−r

| f (m)|.

For a discrete interval I ⊆ Z, i.e. the intersection ofZ and a real interval, the variation
of f on I is

var I ( f ) =
∑

n,n+1∈I
| f (n) − f (n + 1)|.

We say that f is of bounded variation if varZ( f ) < ∞.
Bober, Carneiro, Hughes and Pierce [4] proved that

varZ(M f ) ≤ C
∑

n∈Z
| f (n)|

for C = 2+ 146
315 . They asked whether the optimal constant in this inequality is C = 2

and whether the stronger inequality

varZ(M f ) ≤ C varZ( f ) (1.3)

analogous to (1.1) holds. Madrid [11] affirmatively answered the first question and
Temur [14] adapted Kurka’s method to prove (1.3) with a non/optimal constant. We
improve a special case of Temur’s result by establishing the optimal constant C = 1
in the case of indicator functions.

Theorem 1.3 Let f : Z → {0, 1} be a function of bounded variation. Then (1.3) holds
withC = 1. Equality is attained if and only if f is constant or the set {n ∈ Z| f (n) = 1}
is a bounded nonempty discrete interval.

In fact this result quickly follows from the continuous Theorem 1.1 and an embed-
ding argument. In the same way, we also establish the following relationship between
the optimal constants in the continuous and discrete variation bounds for general
functions of bounded variation.
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Proposition 1.4 If (1.1) holds for all functions of bounded variation, then the same is
true for (1.3) with the same constant.

However, we do not know whether a similar embedding argument can be used to
prove the following discrete analogue of the stronger Theorem 1.2. This is mainly
because of the additional assumptions in these theorems. We circumvent this issue by
adapting the proof of Theorem 1.2 to the discrete setting.

Theorem 1.5 Let f : Z → [0,∞) be a function of bounded variation such that for any
n ∈ Z we have f (n) = 0 or f (n) = M f (n). Then (1.3) holds with C = 1. Equality
is attained if and only if f is constant or the set {n ∈ Z| f (n) > 0} is a bounded
nonempty discrete interval.

Although the proofs of Theorems 1.2 and 1.5 are quite similar, different techni-
cal difficulties arise in each case. In the continuous setting, we have to deal with
compactness issues and exceptional sets of measure zero. In the discrete setting, one
inconvenience is that not every integer interval has an integer midpoint.

1.2 Proof Strategy

Let us explain some ideas of the proofs using the example of the continuous setting.
Ourmain observation is that for a function f : R → [0,∞) satisfying the assumptions
of Theorem 1.2, the local variation bound

var[a,b](M f ) ≤ var[a,b]( f ) (1.4)

holds for any real numbers a < b such that f (a) = M f (a) and f (b) = M f (b), i.e.
such that M f is attached to f at a and b. Our proof of Theorem 1.2 heavily relies on
this property. The following example shows a typical situation. Denote

χ[a,b](x) =

⎧
⎪⎨

⎪⎩

1 if a < x < b,

1/2 if x = a or x = b,

0 otherwise.

Example 1.6 Let c ∈ (1, 3) and f = χ[−c,−1] + χ[1,c]. Then M f is attached to f at
any point x with 1 ≤ |x | ≤ c and

var[−1,1](M f ) = c−1 < 1 = var[−1,1]( f ).

The maximal function M f has a strict local maximum of value (c− 1)/c at 0 and two
strict local minima of value (3c − 3)/(4c) at ±c/3, see Fig. 1.

The calculations leading to Example 1.6 and Fig. 1, as well as to Example 1.8 Figs. 2
and 3 below, are straightforward because for step functions it holds that

M f (x) = sup
y 
=xis a jump of f

 x+|x−y|

x−|x−y|
| f (z)| dz.
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Fig. 1 The functions f and M f in Example 1.6 with c = 3/2

Fig. 2 The functions f and M f in Example 1.8

Fig. 3 The auxiliary maximal functions M0 f and M1 f on [0, 1] when f = χ[−5/2,−2] + χ[−3/2,−1] +
χ[1,2] + χ[3,7/2]

The local variation bound (1.4) will follow from part ((1)) of the following result.
An analogue for unbounded intervals is contained in part ((2)).

Proposition 1.7 Let f : R → [0,∞) be a bounded Lebesgue/measurable function
and let I ⊆ R be an interval such that f (x) = 0 for almost every x ∈ I . Then the
following holds:

(1) If I = [a, b] for some real numbers a < b, then var[a,(a+b)/2](M f ) ≤ M f (a)

and var[(a+b)/2,b](M f ) ≤ M f (b). Both of these inequalities are strict unless f
vanishes almost everywhere on R.
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(2) If I = (−∞, a] or I = [a,∞) for some real a, then M f is monotone on I and
var I (M f ) = M f (a) − infx∈I M f (x).

We prove this local variation bound in Example 2 and we apply it in Example 3
to show Theorem 1.2 and hence Theorem 1.1. In Sect. 4.2 we prove an analogous
discrete local variation bound which we then apply in Sects. 4.3 and 4.4 to show the
discrete Theorem 1.5. These proofs can be read mostly independently from Sects. 2
and 3. Section4.1 contains the embedding argument leading to Proposition 1.4 and
the derivation of Theorem 1.3 from Theorem 1.1.

Our approach can be compared to the strategy in [2] for the uncentred Hardy-
-Littlewood maximal function

∼

M f . They show that if f : R → R is of bounded
variation and satisfies f (x) = lim supy→x f (y) for any x ∈ R, then

∼

M f ≥ f and
∼

M f is attached to f at any strict local maximum point of
∼

M f . This can be used to
show (1.4) when M f is replaced by

∼

M f and a and b are neighbouring strict local
maximum points of

∼

M f .
However, in the centred case, M f is not necessarily attached to f at strict local

maxima of M f , see Example 1.6 above. We overcome this obstruction by making
use of a gradient bound for M f in the proof of Proposition 1.7. On the other hand,
this bound becomes less useful for our purposes if a function fails to satisfy the
assumptions of Theorem 1.2. In fact, for general functions of bounded variation, the
local variation bound (1.4) can fail between some points of attachment. This prevents
us from generalising our results to a substantially larger class of functions than in
Theorem 1.2.

Example 1.8 Let h = 2/5 and f = χ[−3/2,−1] + h · χ[−1/2,1/2] + χ[1,3/2]. Then f is
constant in (−1/2, 1/2) and M f is attached to f at any point x with 2 ≤ 8|x | ≤ 3,
but M f has a strict local maximum of value 7/15 > h at 0. In particular, (1.4) fails
between the points of attachment a = −1/3 and b = 1/3, see Fig. 2.

1.3 Further Remarks

Maximisers and Maximising Sequences

ByTheorem1.1, all indicator functions f satisfy the inequality var(M f ) ≤ var( f ) and
equality is attained for example for f = χ(0,1). Thismeans thatχ(0,1) is amaximiser of
(1.1) in the class of indicator functions and thus also in the larger class from Theorem
1.2.However, not every sequence of indicator functions fn with var(M fn)/ var( fn) →
1 converges pointwise modulo symmetries to a nonzero maximiser, e.g. take c → 1
in Example 1.6.

Sobolev Variation

Another common notion of variation is given by the total variation |D f |(Rd) of the
distributional derivative D f , i.e. the measure satisfying the integration by parts rule

ˆ
Rd

f ϕ′ dx = −
ˆ
Rd

ϕ d(D f )
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for all functions ϕ ∈ C∞
c (Rd). The variation of a function onR

d with d > 1 is usually
defined in this way. For any function f : R → R of bounded variation it holds that
|D f |(R) ≤ var( f ). Conversely, if |D f |(R) < ∞, then there exists a function f̄ equal
to f almost everywhere such that var( f̄ ) = |D f |(R), see e.g. [9, Theorem 7.2]. If f
satisfies the hypotheses of Theorem 1.2, then it follows that

|DM f |(R) ≤ var(M f ) = var(M f̄ ) ≤ var( f̄ ) = |D f |(R).

Hence Theorem 1.2 remains true for this definition of the variation.

2 Proof of Proposition 1.7

Throughout this section, let f : R → [0,∞) be a bounded measurable function. The
following result proves the unbounded case in Proposition 1.7((2)). By symmetry, it
suffices to take I = [a,∞).

Lemma 2.1 Let a ∈ R be such that f (x) = 0 for almost every x ≥ a. Then M f is
nonincreasing on [a,∞) and hence

var[a,∞)(M f ) = M f (a) − inf
x∈[a,∞)

M f (x).

Proof Let a ≤ x ≤ y. By the definition of M f and the assumptions on f ,

M f (x) = sup
r>x−a

 x+r

x−r
f (z) dz ≥ sup

r>x−a

 x+r+2(y−x)

x−r
f (z) dz = M f (y).

This completes the proof. �

The rest of this section is devoted to the proof of Proposition 1.7((1)), i.e. the case

that I = [a, b] for some real numbers a < b. It suffices to consider the special case
that a = −1 and b = 1 and to prove the strict inequality

var[0,1](M f ) < M f (1) (2.1)

under the assumption that f (x) = 0 for almost every x ∈ [−1, 1] and that f does not
vanish almost everywhere on R. The general case follows from this because for any
nonconstant affine map φ : R → R we have that M( f ◦ φ)(1) = M f (φ(1)) and

varφ([0,1])(M f ) = var[0,1]((M f ) ◦ φ) = var[0,1](M( f ◦ φ)).

For the proof of (2.1) we first note that M f restricted to [0,∞) is the pointwise
maximum of the auxiliary maximal functions M0 f , M1 f : [0,∞) → [0,∞) defined
by

M0 f (x) = sup
r≤1+x

 x+r

x−r
f (y) dy, M1 f (x) = sup

r≥1+x

 x+r

x−r
f (y) dy,
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see Fig. 3 for an example.
Of these,M1 f only permits averages over large radii. Based on this, our first lemma

bounds the difference quotients of M1 f .

Lemma 2.2 Let x, y ≥ 0 be distinct and let r ≥ 1 + x be such that

M1 f (x) = sup
s≥r

 x+s

x−s
f (z) dz.

Then,

M1 f (x) − M1 f (y)

|x − y| ≤ M1 f (x)

r + |x − y| ≤ M1 f (y)

r
.

Note that by the definition of M1 f , we can always take r to be at least 1 + x . The
lemma also holds forM f instead of M1 f , but then we are not guaranteed a good lower
bound on r .

Proof We have that M1 f (x) < ∞ since f is bounded. Hence, for any ε > 0 there
exists an s ≥ r such that (1 − ε)M1 f (x) ≤ ffl x+s

x−s f (z) dz and therefore,

(1 − ε)M1 f (x) − M1 f (y) ≤
 x+s

x−s
f (z) dz −

 y+s+|x−y|

y−s−|x−y|
f (z) dz

≤
( 1

2s
− 1

2s + 2|x − y|
) ˆ x+s

x−s
f (z) dz

= |x − y|
s + |x − y|

 x+s

x−s
f (z) dz

≤ |x − y|
r + |x − y|M1 f (x).

The first inequality uses the definition of M1 f (y) together with the fact that s + |x −
y| ≥ 1+y. In the second inequality,we use the nonnegativity of f to reduce the domain
of integration of the second integral. The last two relations follow from definitions.
Now the first inequality in the lemma follows by letting ε → 0. The second inequality
follows after rearranging terms. �


Bounds similar to Lemma 2.2 have frequently appeared in the literature, including
in higher dimensions. The related inequality |∇Mα f (x)| ≤ CMα−1 f (x) for the
fractional maximal function Mα f with 1 ≤ α ≤ d was proved in [7]. A generalisation
to the range 0 ≤ α ≤ d can be found in [3, Section 2.5].

We now employ the previous result to prove a local variation bound for M1 f . The
strictness of this inequality will be crucial to the characterisation of maximisers in our
results.

Lemma 2.3 It holds that var[0,1](M1 f ) ≤ M1 f (1) and this inequality is strict if
f (x) = 0 for almost every x ∈ [−1, 1] and f (x) > 0 for any x in some set of positive
measure.
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Proof First assume that f (x) = 0 for almost every x ∈ [−1, 1] and f (x) > 0 for any x
in some set of positivemeasure. ThenM1 f (x) > 0 for any x ≥ 0.ByLemma2.2,M1 f
is continuous. Since the map (x, s) �→ ffl x+s

x−s f (y) dy is continuous at (x, s) = (0, 1)
and f (y) = 0 for almost every y ∈ [−1, 1], this implies the existence of a δ ∈ (0, 1)
such that for any x ∈ [0, δ),

M1 f (x) = sup
s≥1+x+δ

 x+s

x−s
f (y) dy

and hence f and x satisfy the hypotheses of Lemma 2.2with r = 1+x+δ.Without the
additional assumptions that f (x) = 0 for almost every x ∈ [−1, 1] and that f (x) > 0
for any x in some set of positive measure, this remains true for δ = 0.

In order to estimate the variation of M1 f on [0, 1], we let k ≥ 1 and

0 = x0 < x1 < . . . < xk = 1

We write δi = δ if xi < δ and δi = 0 otherwise. By the two inequalities in Lemma
2.2 and the monotonicity of the sequences xi and δi ,

k−1∑

i=0

|M1 f (xi ) − M1 f (xi+1)|

≤
k−1∑

i=0

max
( M1 f (xi )

1 + xi+1 + δi
,

M1 f (xi+1)

1 + 2xi+1 − xi + δi+1

)
(xi+1 − xi )

≤
k−1∑

i=0

max(M1 f (xi ), M1 f (xi+1))
xi+1 − xi

1 + xi + δi+1

≤
k−1∑

i=0

max
( 2 + δi

1 + xi + δi
,

2 + δi+1

1 + xi+1 + δi+1

) xi+1 − xi
1 + xi + δi+1

M1 f (1)

≤
k−1∑

i=0

(2 + δi )(xi+1 − xi )

(1 + xi + δi+1)2
M1 f (1).

Except for the summand corresponding to the case xi < δ ≤ xi+1, this is a Riemann
sum and therefore

var[0,1](M1 f ) ≤
(ˆ δ

0

2 + δ

(1 + x + δ)2
dx +

ˆ 1

δ

2

(1 + x)2
dx

)
M1 f (1)

≤
ˆ 1

0

2

(1 + x)2
dx · M1 f (1)

= M1 f (1)

and the second inequality is strict if δ > 0. This completes the proof. �
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Remark 2.4 Let us sketch a shorter but less elementary version of the second part of
the above proof. By Lemma 2.2, the auxiliary maximal function M1 f is Lipschitz
continuous. Hence it is differentiable almost everywhere and

var[0,1](M1 f ) =
ˆ 1

0
|(M1 f )

′(x)| dx .

At any point of differentiability x ∈ (0, 1) we have by Lemma 2.2 that

|(M1 f )
′(x)| ≤ M1 f (x)

1 + x
≤ 2M1 f (1)

(1 + x)2

and the first inequality is strict in some neighbourhood of 0. Plugging this into the
above formula for var[0,1](M1 f ) yields Lemma 2.3.

The next lemma concerns the other auxiliary maximal function M0 f .

Lemma 2.5 Let f (x) = 0 for almost every x ∈ [−1, 1]. Then M0 f is nondecreasing
on [0, 1].
Proof This is similar to the proof of Lemma 2.1. Let 0 < x ≤ y ≤ 1. Then,

M0 f (x) = sup
1−x<r≤1+x

 x+r

x−r
f (z) dz ≤ sup

1−x<r≤1+x

 x+r

x−r+2(y−x)
f (z) dz ≤ M0 f (y).

Since M0 f (0) = 0 and M0 f is nonnegative, this completes the proof. �

We have established the monotonicity of M0 f in Lemma 2.5 and a variation bound

for M1 f in Lemma 2.3. The next result will allow us to deduce a variation bound for
the pointwise maximum M f = max(M0 f , M1 f ).

Lemma 2.6 Let g, h : [0, 1] → R be functions such that g(1) ≤ h(1) and let g be
nondecreasing. Then var[0,1](max(g, h)) ≤ var[0,1](h).

Proof Write u = max(g, h). We need to show that for any k ≥ 1 and any

0 = x0 < x1 < . . . < xk = 1

it holds that

k−1∑

i=0

|u(xi ) − u(xi+1)| ≤ var[0,1](h).

Write xk+1 = 1 and let p(−1) < p(0) < . . . < p(�) be the elements of the set

P = {−1} ∪ {i ∈ {0, . . . , k}|h(xi ) ≥ u(xi+1)}.
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Clearly, p(−1) = −1. Since xk = xk+1 = 1 and by assumption, h(xk) = u(xk+1) and
hence p(�) = k. If i ∈ {0, . . . , k}\P , then h(xi ) < u(xi+1). Since g is nondecreasing,
we also have that g(xi ) ≤ g(xi+1) and hence u(xi ) ≤ u(xi+1). On the other hand, if
i ∈ P \ {−1}, then

h(xi ) ≥ u(xi+1) ≥ g(xi+1) ≥ g(xi ).

Hence, h(xi ) = u(xi ) and u(xi ) ≥ u(xi+1). This shows that for any 0 ≤ j ≤ �,

u(xp( j−1)+1) ≤ u(xp( j−1)+2) ≤ . . . ≤ u(xp( j)) = h(xp( j)) ≥ u(xp( j)+1).

We conclude that

k−1∑

i=0

|u(xi ) − u(xi+1)| =
�∑

j=0

p( j)∑

i=p( j−1)+1

|u(xi ) − u(xi+1)|

=
�∑

j=0

2h(xp( j)) − u(xp( j−1)+1) − u(xp( j)+1)

≤
�∑

j=0

2h(xp( j)) − h(xp( j−1)+1) − h(xp( j)+1)

≤ var[0,1](h).

This completes the proof. �

We are now ready to prove (2.1). Let f (x) = 0 for almost every x ∈ [−1, 1] and

let h : [0, 1] → [0,∞) be the function defined by h(x) = M1 f (x) for 0 ≤ x < 1
and h(1) = M f (1). Then M0 f (1) ≤ h(1) and M f restricted to [0, 1] is the pointwise
maximum of M0 f and h. Hence by an application of Lemmas 2.5 and 2.6 and then
Lemma 2.3,

var[0,1](M f ) ≤ var[0,1](h) ≤ var[0,1](M1 f ) + M f (1) − M1 f (1) ≤ M f (1).

The last inequality is strict if f does not vanish almost everywhere on R. This shows
(2.1) and hence completes the proof of Proposition 1.7.

Remark 2.7 One can show that M0 f is also Lipschitz continuous on [0, 1] and that
M0 f and M1 f do not coincide at more than one point in [0, 1] if f does not vanish
almost everywhere onR. Let us only sketch a proof of the fact that if y ∈ [0, 1] is such
that M0 f (y) ≥ M1 f (y), then M0 f (x) > M1 f (x) for any x ∈ (y, 1]. By Lemma
2.2,

M1 f (x) − M1 f (y)

x − y
≤ M1 f (y)

1 + x
.
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Similarly as in the proofs of Lemmas 2.2 and 2.5, one can show that

M0 f (x) − M0 f (y)

x − y
≥ M0 f (y)

1 − x + 2y
.

Since M0 f (y) ≥ M1 f (y) > 0 and y < x it follows that M0 f (x) > M1 f (x).

3 Proof of Theorem 1.2

Throughout this section, let f : R → [0,∞) be a function of bounded variation such
that for almost every x ∈ R we have that f (x) = 0 or f (x) = M f (x). In order to
prove Theorem 1.2, we need to show the inequality

var(M f ) ≤ var( f ) (3.1)

and determine its cases of equality.Wewill accomplish this by using a certain canonical
representative f̄ whose properties facilitate the application of Proposition 1.7. In
Sect. 3.1, we define f̄ , show that f and f̄ agree almost everywhere and that

var( f̄ ) ≤ var( f ). (3.2)

There,we also establish some further properties of f̄ . In Sect. 3.2,we applyProposition
1.7 to show (3.1) for f̄ , i.e. we show that

var(M f ) ≤ var( f̄ ). (3.3)

Inequalities (3.2) and (3.3) together imply (3.1). In Sect. 3.3, we characterise the cases
of equality in (3.1) by characterising the cases of equality in (3.3) and then char-
acterising the cases of equality in (3.2) under the assumption that equality holds in
(3.3).

3.1 Canonical Representative

Let us define a function f̄ : R → [0,∞) as follows. If x ∈ R is such that

lim sup
r↘0

 x+r

x−r
f (y) dy = 0, (3.4)

then we let f̄ (x) = 0 and otherwise we let f̄ (x) = M f (x). This canonical represen-
tative is related to but distinct from the homonymous object in [2]. By the Lebesgue
differentiation theorem and the assumption on f , we have that f (x) = f̄ (x) for almost
every x ∈ R and hence M f (x) = M f̄ (x) for any x ∈ R. Since f is of bounded varia-
tion, its one/sided limits exist at any point. It follows that (3.4) can be rewritten without
the use of an integral, but we will not need this.

The following lemma will be used multiple times throughout this section.
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Lemma 3.1 The maximal function M f is lower semi/continuous, i.e. for any x ∈ R it
holds that lim inf y→x M f (y) ≥ M f (x).

Proof By definition, M f is the pointwise supremum of the continuous functions

R � x �→
 x+r

x−r
f (y) dy, r > 0.

The lemma follows from this. �

We now show that the canonical representative does not increase the variation.

Lemma 3.2 Inequality (3.2) holds.

Proof We first claim that it suffices to show that for any x ∈ R and ε > 0 there exist
y1, y2 ∈ (x − ε, x + ε) such that f (y1) − ε ≤ f̄ (x) ≤ f (y2) + ε. Let k ≥ 1 and let

−∞ < x0 < x1 < . . . < xk < ∞.

By iteratively removing any points xi with 1 ≤ i ≤ k − 1 for which f̄ (xi ) lies in the
convex hull of { f̄ (xi−1), f̄ (xi+1)}, we obtain a subsequence x ′

0 < . . . < x ′
� such that

k−1∑

i=0

| f̄ (xi ) − f̄ (xi+1)| = σ

�−1∑

i=0

(−1)i f̄ (x ′
i ) + (−1)i+1 f̄ (x ′

i+1)

for some σ ∈ {−1, 1}. Let ε > 0. By the claim made at the beginning of the proof,
there exist points yi ∈ (x ′

i − ε, x ′
i + ε) such that

σ(−1)i f̄ (x ′
i ) ≤ σ(−1)i f (yi ) + ε

for any 0 ≤ i ≤ �. If ε is small enough, then yi is increasing in i and hence

k−1∑

i=0

| f̄ (xi ) − f̄ (xi+1)| − 2�ε ≤ σ

�−1∑

i=0

(−1)i f (yi ) + (−1)i+1 f (yi+1) ≤ var( f ).

Let ε → 0 and then take the supremum over all k and xi as above to show (3.2).
It remains to show that for any x ∈ R and ε > 0 there exist points y1 and y2 as

above. Let r ∈ (0, ε). We start with the existence of y1. By the definitions of f̄ (x) and
M f (x),

f̄ (x) ≥ lim sup
r↘0

 x+r

x−r
f (y) dy.

Hence if r is sufficiently small, then the integral on the right/hand side is at most
f̄ (x)+ ε and so there exists a y1 ∈ (x −r , x +r)with f (y1)− ε ≤ f̄ (x), as required.
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We complete the proof by showing the existence of y2. If f̄ (x) = 0, then we
may simply choose y2 = x because f is nonnegative. So we assume that f̄ (x) =
M f (x) > 0. Since (3.4) fails, f (y) > 0 for any y in some subset of positive measure
of (x − r , x + r). As f and f̄ are equal almost everywhere, it follows that f (y2) =
f̄ (y2) = M f (y2) for some y2 ∈ (x − r , x + r). Hence if r is small enough, then
Lemma 3.1 implies that f (y2) + ε ≥ f̄ (x), as required. �


In particular, (3.2) shows that f̄ is of bounded variation. Together with the definition
of f̄ , this implies some topological properties of the vanishing set

V = {x ∈ R| f̄ (x) = 0}.

Lemma 3.3 The set V is open and its boundary has no limit points in R.

This can be stated equivalently as follows: There exists a finite or countably infinite
nondecreasing sequence of points ai ∈ R ∪ {±∞} without accumulation points in R

such that V = ⋃
i (a2i , a2i+1).

Proof If f vanishes almost everywhere, then V = R and the lemma follows. Since
f is nonnegative, we may therefore assume that f is positive in a set of positive
measure. Let x ∈ R. Then M f (x) > 0 and by Lemma 3.1 there exists an ε > 0 such
that M f (y) > ε for any y ∈ (x − ε, x + ε).

We first show that x is not a limit point of the boundary of V . Let k ≥ 0 and let

x − ε < x0 < x1 < . . . < x2k+1 < x + ε

be a sequence of points with f̄ (x2i ) = 0 and f̄ (x2i+1) = M f̄ (x2i+1) for any 0 ≤ i ≤
k. It suffices to show that k is bounded by a constant that only depends on f̄ and ε.
Such a bound holds because

(2k + 1)ε <

2k∑

i=0

| f̄ (xi+1) − f̄ (xi )| ≤ var( f̄ ) < ∞.

The first inequality above holds by the properties of ε and xk . The second inequality
holds by definition. Hence x is not a limit point of the boundary of V .

It remains to show that V is open. To this end, let x be a boundary point of V . We
need to show that f̄ (x) > 0. By the first part of the proof, f (y) > ε for any y in some
one/sided neighbourhood of x , i.e. for any y in (x −r , x) or (x, x +r) for some r > 0.
Since f is nonnegative, we see that (3.4) fails and hence f̄ (x) = M f (x) > 0. This
completes the proof. �


3.2 Global Variation Bound

In Sect. 3.1, we proved (3.2). Together with the following result, this implies (3.1),
proving the first part of Theorem 1.2.

Proposition 3.4 Inequality (3.3) holds.
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Proof By Lemma 3.3 and a subdivision of R we see that (3.3) holds if

var I (M f ) ≤ var I ( f̄ ) (3.5)

whenever I is a connected component ofR\V or the closure of a connected component
of V . If I is a connected component of R \ V , then f̄ and M f agree on I , so that
(3.5) holds with equality. Now let I be the closure of a connected component of V . If
I = R, then both sides of (3.5) are zero. On the other hand, if I 
= R, then by Lemma
3.3, f̄ and M f agree on the boundary of I and therefore (3.5) follows from either
((1)) or ((2)) in Proposition 1.7. This completes the proof. �


3.3 Cases of Equality

It remains to characterise the cases of equality in (3.1). We first establish certain
regularity properties of f̄ .

Lemma 3.5 Any connected component of V or R \ V has positive length.

Proof Let x ∈ R. If f̄ (y) > 0 for any y 
= x in some compact neighbourhood of x ,
then by Lemma 3.1 there exists an ε > 0 such that f̄ (y) = M f (y) > ε for any such
y. Hence (3.4) fails and f̄ (x) = M f (x) > ε. This shows that {x} is not a connected
component of V .

On the other hand, if f̄ (y) = 0 for any y 
= x in some neighbourhood of x , then
(3.4) holds and hence f̄ (x) = 0. This shows that {x} is not a connected component of
R \ V . Since x ∈ R was arbitrary, it follows that any connected component of V or
R \ V has positive length. �


Now we investigate the behaviour of the canonical representative f̄ on connected
components of its support

R \ V = {x ∈ R| f̄ (x) > 0}.

This set is closed by Lemma 3.3. Our next result will only be applied in the case
of an unbounded connected component, but its proof is identical in the bounded and
unbounded cases.

Lemma 3.6 The function f̄ is concave on any connected component of R \ V .

Proof Suppose for a contradiction that f̄ is not concave on some connected component
I of R \ V . Then there exist points x0 < x1 < x2 in I such that f̄ (x1) < L(x1) where
L : R → R is the affine linear function defined by L(x0) = f̄ (x0) and L(x2) = f̄ (x2).
Hence for g = f̄ − L we have g(x1) < 0 and g(x0) = g(x2) = 0.

Since f̄ and M f are equal in I , Lemma 3.1 and the continuity of L imply that there
exists a smallest x ′

1 ∈ [x0, x2] such that

g(x ′
1) = inf

x0≤y≤x2
g(y) < 0.
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Since g(x0) = 0, there exists an r > 0 such that [x ′
1 − r , x ′

1 + r ] ⊆ [x0, x2]. We have
that g(y) ≥ g(x ′

1) for any y ∈ [x0, x2] and the inequality is strict if y < x ′
1. Hence by

the mean value property for L ,

M f (x ′
1) ≥

 x ′
1+r

x ′
1−r

f̄ (y) dy =
 x ′

1+r

x ′
1−r

g(y) dy + L(x ′
1) > g(x ′

1) + L(x ′
1) = f̄ (x ′

1).

This is a contradiction to the fact that x ′
1 ∈ R \ V . Therefore f̄ is concave on I . �


The following result is a consequence of Lemma 3.6.

Lemma 3.7 Let I be an unbounded connected component of R \ V . Then,

lim|x |→∞; x∈I f̄ (x) > 0.

Furthermore, if I = R, then f̄ is constant.

Proof Suppose for a contradiction that one of the conclusions of the lemma is false. Let
x0 ∈ I , meaning that f̄ (x0) > 0. Then by symmetry, wemay assume that [x0,∞) ⊆ I
and that there exists a x1 > x0 such that f̄ (x1) < f̄ (x0). By Lemma 3.6, it follows
that f̄ (x2) ≤ L(x2) for any x2 ≥ x1 where L : R → R is the affine linear function
defined by L(x0) = f̄ (x0) and L(x1) = f̄ (x1). Notice that L is strictly decreasing
and hence f̄ (x2) < 0 if x2 is large enough. This is a contradiction to the nonnegativity
of f̄ . �


We can now characterise the cases of equality in the intermediate inequality (3.3).

Proposition 3.8 Equality holds in (3.3) if and only if f̄ is constant or R \ V is a
compact interval of positive length.

Proof It suffices to consider the case that f̄ is not constant since otherwise both sides
of (3.3) are zero. Then R \ V is nonempty. By the second part of Lemma 3.7, we also
have that V is nonempty.

By the proof of Lemma 3.4, equality holds in (3.3) if and only if (3.5) holds with
equality whenever I is the closure of some connected component of V . Any such I has
positive length by Lemma 3.5. By the strictness in Proposition 1.7((1)), this means that
(3.3) can only hold with equality if all connected components of V are unbounded, i.e.
if R \ V is a nonempty interval. This interval is closed by Lemma 3.3 and has positive
length by Lemma 3.5.

Now let I 
= R be an unbounded connected component of V . Since the function f̄
is of bounded variation, its limits at ±∞ exist and for any x ∈ R,

M f (x) ≥ lim
r→∞

 x+r

x−r
f̄ (y) dy = lim

y→∞
f̄ (y) + f̄ (−y)

2
.

Furthermore, if the right/hand side is zero, then lim|x |→∞ M f (x) = 0. By Proposition
1.7((2)), it follows that (3.5) holds with equality if and only if lim|x |→∞ f̄ (x) = 0. By
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Lemma 3.7, this is the case precisely when R \ V has no unbounded components. We
conclude that if f̄ is not constant, then (3.3) holds with equality if and only if R \ V
is a compact interval of positive length. This completes the proof. �


We can now characterise the cases of equality in (3.1). We first assume that equality
holds and show that f is constant or the set {x ∈ R| f (x) > 0} is a bounded interval
of positive length and for any x ∈ R,

lim inf
y→x

f (y) ≤ f (x) ≤ lim sup
y→x

f (y). (3.6)

If f̄ is constant, then M f is constant and equality in (3.1) implies that f is constant.
Now consider the case that f̄ is not constant. By Lemma 3.2 and 3.4, equality in (3.1)
implies equality in (3.3) and (3.2). Hence by Proposition 3.8, it follows that R \ V =
[a, b] for some real numbers a < b. By Lemma 3.6, the canonical representative f̄ is
concave on [a, b] and hence continuous on (a, b) with

0 = lim
y↗a

f̄ (y) ≤ f̄ (a) ≤ lim
y↘a

f̄ (y) and 0 = lim
y↘b

f̄ (y) ≤ f̄ (b) ≤ lim
y↗b

f̄ (y).(3.7)

Since f and f̄ are equal almost everywhere and f̄ is continuous in R\ {a, b}, equality
in (3.2) now implies that f (x) = f̄ (x) for any x ∈ R \ {a, b}. It follows that {x ∈
R| f (x) > 0} contains (a, b) and is contained in [a, b], verifying that this set is a
bounded interval of positive length. Furthermore, (3.6) holds if x /∈ {a, b}. At x = a,
using (3.7) together with the equality in (3.2) we obtain that

0 = lim
y↗a

f̄ (y) ≤ f (a) ≤ lim
y↘a

f̄ (y)

and a similar statement holds at x = b. Since we already established that f (y) = f̄ (y)
for y ∈ R \ {a, b}, we can replace f̄ (y) by f (y) in the above limits. Hence, (3.6)
is true also for x ∈ {a, b}, and we conclude that f has the properties stated in the
previous paragraph.

Conversely, assume that f is constant or the set {x ∈ R| f (x) > 0} is a bounded
interval of positive length and (3.6) holds for any x ∈ R. We need to show equality in
(3.1). This is immediate if f is constant, so it remains to consider the case that there
exist real numbers a < b such that {x ∈ R| f (x) > 0} contains (a, b) and is contained
in [a, b]. Using the Lebesgue differentiation theorem and Lemma 3.3 it follows that
R \ V = [a, b]. Hence equality holds in (3.3) by Proposition 3.8 and f̄ is continuous
in (a, b) by Lemma 3.6. It remains to show equality in (3.2). Since f and f̄ agree
almost everywhere and are of bounded variation, we have that

lim inf
y→x

f (y) = lim inf
y→x

f̄ (y) = f̄ (x)

for every x ∈ (a, b) and the same holds with lim inf replaced by lim sup. Now f (x) =
f̄ (x) holds for any x ∈ (a, b) by (3.6) and for any x ∈ R \ [a, b] by assumption on f ,
i.e. f (x) and f̄ (x)may only disagree if x ∈ {a, b}. However, Lemma 3.6 implies (3.7)
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as before and (3.7) continues to hold if f̄ is replaced by f , which is a consequence of
(3.6). We can conclude equality in (3.2), which implies equality in (3.1) because we
already showed equality in (3.3). This completes the proof of Theorem 1.2.

4 Discrete Setting

In this section, we first use an embedding argument to prove the conditional result
Proposition 1.4 and to derive the discrete Theorem 1.3 from the continuous Theorem
1.1. Afterwards, we adapt the arguments in Sects. 2 and 3 to show the more general
discrete Theorem 1.5.

4.1 Embedding

Let f : Z → R be a function of bounded variation and let M f : Z → R be the
discretemaximal function as defined in Sect. 1.1.We define an associated step function
fc : R → R by setting fc(x) = f (n) for any integer n and any x ∈ [n−1/2, n+1/2).
Let M fc : R → R be the continuous maximal function as defined in Sect. 1.

For any monotone map φ : Z → Z there exists a monotone map ψ : Z → R such
that f ◦ φ = fc ◦ ψ and vice versa. Hence varZ( f ) = var( fc). Our next claim is that
varZ(M f ) ≤ var(M fc). This is an immediate consequence of the following result.

Lemma 4.1 We have that M f (n) = M fc(n) for any integer n.

Proof For any nonnegative integer m, the step function fc is constant on the intervals
[n −m − 1/2, n −m + 1/2) and [n +m − 1/2, n +m + 1/2). Thus for any positive
radius r with |r − m| ≤ 1/2 we have that

1

2r

ˆ n+r

n−r
fc(y) dy = 1

2r

ˆ n+m

n−m
fc(y) dy + r − m

2r
( fc(n − m) + fc(n + m)).

The right/hand side is of the form A + B/r for some constants A and B independent
of r , where B = 0 if m = 0. It follows that the map r �→ ffl n+r

n−r fc(y) dy is constant
on (0, 1/2] and monotone on [m − 1/2,m + 1/2] for any positive integer m. Hence,

M fc(n) = sup
r∈Z≥0

 n+r+1/2

n−r−1/2
fc(y) dy = sup

r∈Z≥0

n+r∑

m=n−r

f (m) = M f (n).

This completes the proof. �

If fc satisfies (1.1) for some constant C , then it follows from the above that

varZ(M f ) ≤ var(M fc) ≤ C var( fc) = C varZ( f ) (4.1)

and hence f satisfies (1.3) with the same constant. This proves Proposition 1.4 and
enables us to derive Theorem 1.3 from Theorem 1.1.
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Proof of Theorem 1.3 By assumption, f is {0, 1}-valued and of bounded variation and
so the same is true for fc. Hence by (4.1) and Theorem 1.1, we see that f satisfies
(1.3) with C = 1. Equality can only hold if equality holds in Theorem 1.1. For a
nonconstant f , this implies that the set {x ∈ R| fc(x) = 1} is a bounded interval of
positive length and hence the set {n ∈ Z| f (n) = 1} is a bounded nonempty discrete
interval. On the other hand, if f is of this form, then equality is attained because for
any integer n with f (n) = 1 we have that

varZ(M f ) ≥ 2M f (n) − lim
m→∞ M f (m) + M f (−m) = 2 − 0 = varZ( f ).

This completes the proof. �


4.2 Discrete Local Variation Bound

The following result is the discrete analogue of Proposition 1.7.Wewill use it to derive
Theorem 1.5 similarly as Theorem 1.2 in the continuous setting, but without any of
the technical difficulties related to compactness issues or exceptional sets of measure
zero.

Proposition 4.2 Let f : Z → [0,∞) be a bounded function and let I ⊆ R be an
interval such that f (n) = 0 for any integer n in the interior of I . Then the following
holds:

(1) If I = [a, b] for some integers a < b, then var I∩Z(M f ) ≤ M f (a) + M f (b). The
inequality is strict unless f vanishes everywhere on Z.

(2) If I = (−∞, a] or I = [a,∞) for some integer a, then M f is monotone on I ∩ Z

and var I∩Z(M f ) = M f (a) − infn∈I∩Z M f (n).

Theproof of this result goes along similar lines of the proof of Proposition 1.7, although
some details differ. In particular we have to work around the fact that not all integer
intervals have integer midpoints.

We first prove the unbounded case in Proposition 4.2((2)). By symmetry, it suffices
to take I = [a,∞).

Lemma 4.3 Let f : Z → [0,∞) be a bounded function and let a ∈ Z be such that
f (n) = 0 for every integer n > a. Then M f is nonincreasing on [a,∞) ∩ Z and
hence

var[a,∞)∩Z(M f ) = M f (a) − inf
n∈[a,∞)∩Z M f (n).

Proof This is similar to the proof of Lemma 2.1. Let n,m ∈ Z be such that a ≤ n ≤ m.
Then,

M f (n) = sup
r≥n−a

n+r∑

k=n−r

f (k) ≥ sup
r≥n−a

n+r+2(m−n)∑

k=n−r

f (k) = M f (m).

This completes the proof. �
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The rest of this section is devoted to the proof of Proposition 4.2((1)), i.e. the case
that I = [a, b] for some integers a < b. We start with a reduction using translation
invariance. We also insert a midpoint in the case that a + b is odd. For this, let f be
as in Proposition 4.2. Set

S =
{

Z if a + b is even,

Z + 1
2 = {

. . . ,− 3
2 ,− 1

2 ,
1
2 ,

3
2 , . . .

}
if a + b is odd

and write S0 = S ∪ {0}. We define a translated function
∼

f : S → [0,∞) by

∼

f (n) = f
(
n + a + b

2

)

and we define its centred maximal function M
∼

f : S0 → [0,∞) by

M
∼

f (n) = sup
v∈S; v≤n

2n−v∑

m=v

∼

f (m).

Given a domain T ∈ {S, S0}, a function g : T → [0,∞) and an interval I ⊆ R we
define the variation of g on the discrete interval I ∩ T by

var I∩T (g) = sup
φ : Z→I∩T monotone

∑

i∈Z
|g(φ(i)) − g(φ(i + 1))|.

If S = Z, then these definitions agree with those in Sect. 1.1. Note that

var[a,b]∩Z(M f ) = var[−(b−a)/2,(b−a)/2]∩S(M
∼

f ) ≤ var[−(b−a)/2,(b−a)/2]∩S0(M
∼

f )

and

M
∼

f
(
−b − a

2

)
= M f (a), M

∼

f
(b − a

2

)
= M f (b).

Fromnowon and for the rest of the proof of Proposition 4.2((1)), let f : S → [0,∞)

be a bounded nonzero function. By the above relations and by symmetry, it is enough
to show the strict inequality

var[0,a]∩S0(M f ) < M f (a) (4.2)

for any positive a ∈ S such that f (n) = 0 for all n ∈ S with −a < n < a. This is
analogous to (2.1).

Similarly as in the continuous setting, M f restricted to [0, a] ∩ S0 is the pointwise
maximum of the auxiliary maximal functions M0 f , M1 f : [0, a] ∩ S0 → [0,∞)
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defined by

M0 f (n) = max
v∈S;−a<v≤n

2n−v∑

m=v

f (m), M1 f (n) = sup
v∈S; v≤−a

2n−v∑

m=v

f (m).

The following gradient bound for M1 f is analogous to the continuous Lemma 2.2.
Since admissible radii in the above discrete setting are separated by a distance of 1,
an additional term 1/2 appears in this bound. Because of this, we also dispense with
the additional lower bound on the radii in Lemma 2.2. Except for these differences,
the proof is similar to the continuous case.

Lemma 4.4 Let n,m ∈ [0,∞) ∩ S0 be distinct. Then,

M1 f (n) − M1 f (m)

|n − m| ≤ M1 f (n)

n + a + 1/2 + |n − m| ≤ M1 f (m)

n + a + 1/2
.

Proof We have M1 f (n) < ∞ since f is bounded. Hence for any ε > 0 there exists a
v ∈ S with v ≤ −a such that (1 − ε)M1 f (n) ≤ ∑2n−v

k=v f (k). Let w be such that

m − w = n − v + |n − m|.

Then w ∈ S because v − w is an integer. Since w ≤ v < 2n − v ≤ 2m − w,

(1 − ε)M1 f (n) − M1 f (m) ≤
2n−v∑

k=v

f (k) −
2m−w∑

k=w

f (k)

≤
( 1

2(n − v) + 1
− 1

2(m − w) + 1

) 2n−v∑

k=v

f (k)

= 2|n − m|
2(m − w) + 1

2n−v∑

k=v

f (k)

≤ |n − m|
n + a + 1/2 + |n − m|M1 f (n).

The first, third and fourth relations follow from definitions and the fact that w ≤ −a.
In the second line, we use that f is nonnegative to reduce the range of summation of
the second sum. Now the first inequality in the lemma follows by letting ε → 0. The
second inequality follows after rearranging terms. �


Our next result is a local variation bound for M1 f analogous to the continuous
Lemma 2.3. Here the proof is somewhat simplified due to a telescoping argument.
Furthermore, due to the additional term 1/2 in Lemma 4.4 above, we are able to show
a slightly stronger inequality than in the continuous setting. This artefact already allows
us to obtain a strict inequality, whereas in the continuous setting we have to work a
little harder to get the strict inequality in Lemma 2.3.
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Lemma 4.5 Let a ∈ S be nonnegative. Then,

var[0,a]∩S0(M1 f ) ≤ 2a

2a + 1
M1 f (a).

Proof Let n < m be elements of [0, a] ∩ S0. By the two inequalities in Lemma 4.4,

|M1 f (n) − M1 f (m)| ≤ m − n

m + a + 1/2
max(M1 f (n), M1 f (m))

≤ (m − n)(2a + 1/2)

(n + a + 1/2)(m + a + 1/2)
M1 f (a)

=
( 2a + 1/2

n + a + 1/2
− 2a + 1/2

m + a + 1/2

)
M1 f (a).

Now let 0 = n0 < n1 < . . . < nk = a be an enumeration of [0, a] ∩ S0. We use the
above estimate and evaluate the resulting telescoping sum to obtain that

var[0,a]∩S0(M1 f ) =
k−1∑

i=0

|M1 f (ni ) − M1 f (ni+1)| ≤
(2a + 1/2

a + 1/2
− 1

)
M1 f (a).

This completes the proof. �

Regarding the other auxiliary maximal function M0 f , the following result similar

to Lemmas 2.5 and 4.3 holds.

Lemma 4.6 Let a ∈ S be nonnegative and let f (n) = 0 for any n ∈ S with −a < n <

a. Then M0 f is nondecreasing on [0, a] ∩ S0.

Proof Let n,m ∈ S be such that 0 < n ≤ m ≤ a. Then,

M0 f (n) = max
v∈S;−a<v≤2n−a

2n−v∑

k=v

f (k) ≤ max
v∈S;−a<v≤2n−a

2n−v∑

k=v+2(m−n)

f (k) ≤ M0 f (m).

Since M0 f (0) = 0 and M0 f is nonnegative, this completes the proof. �

Having established the monotonicity of M0 f and a variation bound for M1 f similarly
as in the continuous setting, the next step is to combine these results using the following
analogue of Lemma 2.6. We omit the proof because it is the same.

Lemma 4.7 Let a ∈ S be nonnegative. Let g, h : [0, a] ∩ S0 → R be functions such
that g(a) ≤ h(a) and let g be nondecreasing. Then,

var[0,a]∩S0(max(g, h)) ≤ var[0,a]∩S0(h).

We are now ready to prove (4.2). Let a ∈ S be positive such that f (n) = 0 for any
n ∈ S with −a < n < a and let h : [0, a] ∩ S0 → [0,∞) be the function defined
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by h(n) = M1 f (n) for n < a and h(a) = M f (a). Then M0 f (a) ≤ h(a) and M f
restricted to [0, a]∩ S0 is the pointwise maximum of M0 f and h. Hence we can apply
Lemmas 4.6 and 4.7 and then Lemma 4.5 to obtain that

var[0,a]∩S0(M f ) ≤ var[0,a]∩S0(h) ≤ var[0,a]∩S0(M1 f ) + M f (a) − M1 f (a) < M f (a).

This proves (4.2) and thus completes the proof of Proposition 4.2.

4.3 Discrete Global Variation Bound

We now prove the inequality in Theorem 1.5. Throughout this section and the next
section, let f : Z → [0,∞) be a function of bounded variation such that for any n ∈ Z

we have f (n) = 0 or f (n) = M f (n). For possibly infinite endpoints a ≤ b we write

[a, b] ∩ Z = {n ∈ Z|a ≤ n ≤ b}.

There exists a possibly unboundeddiscrete intervalI ⊆ Zwith at least two elements
and a nondecreasing sequence (ai )i∈I of points in Z ∪ {±∞} such that

{n ∈ Z| f (n) > 0} =
⋃

i,i+1∈I; i odd
[ai , ai+1] ∩ Z = Z \

⋃

i,i+1∈I; i even
(ai , ai+1)

and ai + 2 ≤ ai+1 for any even i ∈ I such that i + 1 ∈ I. We may further assume
that the points ±∞ each occur at most once in the sequence (ai )i∈I .

Let i ∈ I be such that i + 1 ∈ I. If i is even, then by Proposition 4.2,

var[ai ,ai+1]∩Z(M f ) ≤ var[ai ,ai+1]∩Z( f ). (4.3)

On the other hand, if i is odd, then by assumption it holds that f (n) = M f (n) for all
n ∈ [ai , ai+1] ∩ Z and thus (4.3) holds with equality. We can conclude that

varZ(M f ) =
∑

i,i+1∈I
var[ai ,ai+1]∩Z(M f ) ≤

∑

i,i+1∈I
var[ai ,ai+1]∩Z( f ) = varZ( f ).(4.4)

This proves the inequality in Theorem 1.5.

4.4 Cases of Equality

For the characterisation of the cases of equality in Theorem 1.5, we may assume that
f is not constant since otherwise both sides of (4.4) are zero. By the last subsection,
equality holds in (4.4) if and only if for every even i ∈ I with i + 1 ∈ I we have
equality in (4.3).We need the following concavity result whose proof we omit because
it is similar to the proof of Lemma 3.7. The conclusion of this result slightly differs
from Lemma 3.7 because here we already assume f to be nonconstant.
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Lemma 4.8 Let i ∈ I be odd and such that i + 1 ∈ I and ai+1 = ∞. Then
limn→∞ f (n) > 0 and ai > −∞.

Since f is not constant, it is not the zero function. Hence I is not of the form
{i, i + 1} for any even i . By Lemma 4.8, it is also not of this form for any odd i .
Hence I has at least three elements. If there exists an even i ∈ I with i + 1 ∈ I and
ai , ai+1 ∈ Z, then (4.3) is a strict inequality by Proposition 4.2 and hence (4.4) is
strict. It remains to consider the case that no such i exists. After re/indexing and up to
symmetry, this means that I is either {0, 1, 2, 3} or {0, 1, 2}.

In the first case, f is finitely supported and hence, by Proposition 4.2((2)), equality
holds in (4.3) for the even indices i = 0 and i = 2. Thus (4.4) holds with equality. In
the second case, by Lemma 4.8,

M f (n) ≥ lim
r→∞

n+r∑

m=n−r

f (m) = lim
m→∞

f (m)

2
> 0.

for any integer n. By Proposition 4.2((2)), this means that (4.3) is strict for i = 0
and hence (4.4) is strict. We conclude that equality holds in (4.4) if and only if f is
constant or {n ∈ Z| f (n) > 0} = [a, b] ∩ Z for some integers a ≤ b. This completes
the proof of Theorem 1.5.
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