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Abstract
Our main result is a weighted fractional Poincaré–Sobolev inequality improving the cel-
ebrated estimate by Bourgain–Brezis–Mironescu. This also yields an improvement of the
classical Meyers–Ziemer theorem in several ways. The proof is based on a fractional isoperi-
metric inequality and is new even in the non-weighted setting. We also extend the celebrated
Poincaré–Sobolev estimate with Ap weights of Fabes–Kenig–Serapioni by means of a frac-
tional type result in the spirit of Bourgain–Brezis–Mironescu. Examples are given to show
that the corresponding L p-versions of weighted Poincaré inequalities do not hold for p > 1.
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1 Introduction

The classical (q, p)-Poincaré–Sobolev inequality states that

(ˆ
Q
| f − fQ |qdx

) 1
q ≤ C

(ˆ
Q

|∇ f |pdx

) 1
p

, (1)

where 1 ≤ p < n, q = np
n−p , f ∈ W 1,p

loc (Rn), Q ⊂ R
n is a cube and C is a dimen-

sional constant. In 2002, Bourgain et al. [3] proved the following fractional (q, p)-Poincaré
inequality

( 
Q
| f − fQ |qdx

) 1
q ≤ C(1 − δ)

1
p l(Q)δ

( 
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dydx

) 1
p

, (2)

where 1
2 ≤ δ < 1, 1 ≤ p < n

δ
, q = np

n−δ p , f ∈ L1
loc(R

n), Q ⊂ R
n is a cube and C

is a dimensional constant. Note the factor (1 − δ)
1
p in front of the fractional term which

balances the limiting behaviour of the right-hand side when δ → 1. In particular, it was
shown by Brezis [4] that without the factor the right-hand side of (2) is infinite for non-
constant functions when δ = 1. Moreover, Bourgain et al. [2] showed that with this factor the
fractional term coincides with the L p norm of the gradient when δ → 1. This means that in
the limit (2) turns into the classical Poincaré inequality (1). Later,Maz’ya and Shaposhnikova
[19] proved the corresponding inequality in R

n . They showed in R
n that the fractional term

multiplied with δ
1
p coincides with the L p norm of the function when δ → 0. For other

limiting behaviour results, we refer to Alberico et al. [1], Brezis et al. [5], Drelichman and
Durán [9] and Karadzhov et al. [17].

The existing proofs of the fractional Poincaré inequality apply Fourier analysis techniques
[3], Hardy type inequalities [19] or compactness arguments [23]. We give a new direct and
transparent proof using a relative isoperimetric inequality as ourmain tool.We concentrate on
the case p = 1 in (2). Our approach is based on a new fractional type isoperimetric inequality
in Lemma 3.3 which can be seen as an improvement of the classical relative isoperimetric
inequality, see Remark 3.4. To our knowledge this approach with isoperimetric inequalities
has not been considered in the fractional case before. This allows further investigation of the
theory of fractional Poincaré inequalities.

It is known that the classical (1, 1)-Poincaré inequality implies the classical (q, p)-
Poincaré inequality.We investigate this in the fractional settingwith Ap weights. The strategy
is to first show that the fractional (1, 1)-Poincaré inequality implies the fractional (1, p)-
Poincaré inequality inCorollary 5.2. Thenwe apply a self-improving property and a fractional
truncation method to obtain the fractional (q, p)-Poincaré inequality with Ap weights, see
Theorems 5.7 and 5.9. This extends the fractional Poincaré inequality in Hurri-Syrjänen
et al. [15] from A1 weights to Ap weights. Self-improving results are discussed in Canto
and Pérez [6], Franchi et al. [13], Lerner et al. [18] and Pérez and Rela [22]. For fractional
truncation methods, see Chua [8], Dyda et al. [10, 11] and Maz’ya [20].

Our proof for the fractional Poincaré inequality also works when we measure the oscilla-
tion against a Radon measure μ. Our main result Theorem 4.1 states that

(ˆ
Q
| f − fQ |qdμ

) 1
q ≤ C(1 − δ)

ˆ
Q

ˆ
Q

| f (x) − f (y)|
|x − y|n+δ

dy (Mαμ(x))
1
q dx
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for 0 ≤ δ < 1, 1 ≤ q ≤ n
n−δ

and where Mαμ is the fractional maximal function with
α = n − q(n − δ). This extends [15, Theorem 2.10] to all values 0 ≤ δ < 1 and exponents
1 ≤ q ≤ n

n−δ
.Weighted classical Poincaré inequalities have been studied extensively starting

from the classical result by Meyers and Ziemer [21] and generalized to

(ˆ
Q
| f − fQ |qdμ

) 1
q ≤ C

ˆ
Q

|∇ f | (Mαμ)
1
q dx (3)

for 1 ≤ q ≤ n
n−1 ,α = n−q(n−1) by Franchi, Pérez andWheeden in [14].With Theorem4.1

we extend their results to the fractional setting and are also able to deduce their original results
from ours, see Corollaries 4.3 and 6.5. Moreover, in [14] they show (3) in two separate ranges
of q and their constant C blows up when q → 1. In our argument, C is uniformly bounded
in q and depends only on the dimension. We also give an alternative proof by applying the
relative isoperimetric inequality to highlight the differences between the classical and the
fractional Poincaré inequalities.

It would be a natural question to ask if the weighted fractional or classical Poincaré
inequality holds for p > 1 as in (1) and (2). However, this is not the case. We construct
counterexamples in Sect. 7. This answers a question regarding theweighted classical Poincaré
inequality posed in [14].

2 Preliminaries

Let N = {1, 2, . . . } and N0 = N ∪ {0}. Unless otherwise stated, constants are positive
and dependent only on the dimension n. We denote the standard Euclidean norm of a point
x ∈ R

n by |x |. The Lebesgue measure of a measurable subset A of R
n is denoted by L(A)

and the s-dimensional Hausdorff measure is denoted byHs(A). The absolute continuity of a
measure μ with respect to another measure ν is denoted by μ � ν, that is, ν(A) = 0 implies
μ(A) = 0.

Assume that A ⊂ R
n is ameasurable setwith 0 < L(A) < ∞ and that f : A → [−∞,∞]

is a measurable function. The maximal median of f over A is defined by

m f (A) = inf

{
a ∈ R : L({x ∈ A : f (x) > a}) <

1

2
L(A)

}
.

The integral average of f ∈ L1(A) on A is denoted by

f A =
 

A
f dx = 1

L(A)

ˆ
A

f dx .

We write

{ f > λ} = {x ∈ R
n : f (x) > λ}

for the superlevel set of a function f : R
n → R. We define { f < λ} similarly.

A cube Q ⊂ R
n is the product of n closed intervals of the same length, with sides parallel

to the coordinate axes and equally long, that is, Q = [a1, a1 + l] × · · · × [an, an + l]. In
particular, we always consider a cube to be closed and axes-parallel. All our results hold
for half open cubes as well. If we additionally assume that the measures in our results are
absolutely continuous with respect to the Lebesguemeasure then we can also use open cubes.
We denote by l(Q) = l the side length of Q.
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Let Q0 ⊂ R
n be a cube. For each k ∈ N0 we denote byDk(Q0) the set of dyadic subcubes

of Q0 of generation k. Particularly, Dk(Q0) consists of 2kn cubes Q with pairwise disjoint
interiors and with side length l(Q) = 2−k l(Q0), such that Q0 equals the union of all cubes
in Dk up to a set of measure zero. If k ≥ 1 and Q ∈ Dk(Q0), there exists a unique cube
Q′ ∈ Dk−1(Q0)with Q ⊂ Q′. The cube Q′ is called the dyadic parent of Q, and Q is a dyadic
child of Q′. The set of dyadic subcubesD(Q0) of Q0 is defined asD(Q0) = ⋃∞

k=0 Dk(Q0).
The following lemma is a variant of the classical Calderón–Zygmund decomposition for

sets.

Lemma 2.1 Let Q ⊂ R
n be a cube and E ⊂ R

n a measurable set. Assume that

L(Q ∩ E) ≤ λL(Q)

holds for some 0 < λ < 1. Then there exist countably many pairwise disjoint dyadic cubes
Qi ∈ D(Q), i ∈ N, such that

(i) Q ∩ E ⊂ ⋃
i Qi up to a set of Lebesgue measure zero,

(ii) L(Qi ∩ E) > 2−nλL(Qi ),
(iii) L(Qi ∩ E) ≤ λL(Qi ).

If E is relatively open with respect to Q then Q∩E ⊂ ⋃
i Qi holds literally and not only up to

a set of measure zero. The cubes in the collection {Qi }i∈N are called the Calderón–Zygmund
cubes in Q at level λ.

Proof If

L(Q ∩ E) > 2−nλL(Q),

we pick Q and observe that Q satisfies the required properties. Otherwise, if

L(Q ∩ E) ≤ 2−nλL(Q),

we decompose Q into dyadic subcubes that satisfy the required properties in the following
way. Start by decomposing Q into 2n dyadic subcubes Q1 ∈ D1(Q). We select those Q1 for
which L(Q1 ∩ E) > 2−nλL(Q1) and denote this collection by {Q1, j } j . If L(Q1 ∩ E) ≤
2−nλL(Q1), we subdivide Q1 into 2n dyadic subcubes Q2 ∈ D2(Q) and select Q2 for which
L(Q2 ∩ E) > 2−nλL(Q2). We denote so obtained collection by {Q2, j } j .

At the i th step, we partition unselected Qi−1 into dyadic subcubes Qi ∈ Di (Q) and select
those Qi for which L(Qi ∩ E) > 2−nλL(Qi ). Denote the obtained collection by {Qi, j } j . If
L(Qi ∩ E) ≤ 2−nλL(Qi ), we continue the selection process in Qi . In this manner we obtain
a collection {Qi, j }i, j of pairwise disjoint dyadic subcubes of Q. Reindex {Qi }i = {Qi, j }i, j .
We show that {Qi }i satisfies the required properties.

Let x ∈ Q \ ⋃
i Qi . There exists a decreasing sequence {Qk}k of dyadic subcubes of Q

containing x such that Qk+1 � Qk and L(Qk ∩ E) ≤ 2−nλL(Qk) for every k ∈ N. If E is
relatively open then for k large enoughwe have Qk ⊂ E ∩Q, a contradiction. If E is a general
measurable set, then we have by the Lebesgue differentiation theorem that 1E (x) ≤ 2−nλ

for almost every x ∈ Q \ ⋃
i Qi and thus Q ∩ E ⊂ ⋃

i Qi up to a set of Lebesgue measure
zero. This proves (i). Property (ii) holds by the definition of Qi . By the selection process, it
holds that L(Q′

i ∩ E) ≤ 2−nλL(Q′
i ) for every i ∈ N, where Q′

i is the dyadic parent cube of
Qi . Hence, we have

L(Qi ∩ E) ≤ L(Q′
i ∩ E) ≤ 2−nλL(Q′

i ) = λL(Qi ).

This proves (iii). 
�
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Let μ be a Radon measure. The fractional maximal function of μ is defined by

Mαμ(x) = sup
Q�x

l(Q)α
μ(Q)

L(Q)
.

For α = 0, we have the classical Hardy–Littlewood maximal function M = M0. Let Q0 ⊂
R

n . The dyadic local counterpart is defined by

Md
α,Q0

μ(x) = sup
Q�x,

Q∈D(Q0)

l(Q)α
μ(Q)

L(Q)
,

where we take the supremum only over the dyadic subcubes of Q0.
For a measurable set E ⊂ R

n denote by E̊ , E and ∂ E the topological interior, closure
and boundary of E , respectively. The measure theoretic closure and the measure theoretic
boundary of E are defined by

E
∗ =

{
x : lim sup

r→0

L(B(x, r) ∩ E)

rn
> 0

}
and ∂∗E = E

∗ ∩ Rn \ E
∗
.

The measure theoretic versions are robust against changes with measure zero. Note that
E

∗ ⊂ E and thus ∂∗E ⊂ ∂ E . For a cube, its measure theoretic boundary and its closure
agree with the respective topological quantities.

We will need the following relative isoperimetric inequality [12, Theorem 5.11].

Lemma 2.2 Let Q ⊂ R
n be a cube and E a set of finite perimeter. Then there exists a

dimensional constant C such that

min
{L(Q ∩ E),L(Q \ E)

} n−1
n ≤ CHn−1(Q ∩ ∂∗E).

3 Fractional type isoperimetric inequality

This section discusses a rougher fractional type isoperimetric inequality, Lemma 3.3, which
is used later to prove the weighted fractional Poincaré inequality. To prove this fractional
isoperimetric inequality, we need first some auxiliary results.

Lemma 3.1 Let Q0 ⊂ R
n be a cube, a ≤ l(Q0)/2 and 0 < ε < 1

2 . Let Q ⊂ Q0 be a cube

with l(Q) ≤ a
√

π

2n+4n
. Then for any measurable set E ⊂ R

n with

ε ≤ L(Q ∩ E)

L(Q)
≤ 1 − ε

we have

L(Q) ≤ 4

ε

ˆ
Q

∣∣∣∣1E (x) − L(A(x) ∩ E)

L(A(x))

∣∣∣∣dx,

where A(x) = Q0 ∩ B(x, a) \ B(x, a/2).

Proof Denote the center of Q by x0. Let x ∈ Q. Then we have

|x − x0| ≤
√

n

2
l(Q) ≤ a

√
π

2n+5
√

n
. (4)

123
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Fig. 1 Difference of two shifted annuli

Our first step is to show that (4) implies
∣∣∣∣L(A(x) ∩ E)

L(A(x))
− L(A(x0) ∩ E)

L(A(x0))

∣∣∣∣ ≤ 1

4
. (5)

Denote by σn the n-dimensional Lebesgue measure of the unit ball in n dimensions. Then
∣∣L(A(x) ∩ E) − L(A(x0) ∩ E)

∣∣ = ∣∣L(A(x) ∩ E \ A(x0)) − L(A(x0) ∩ E \ A(x))
∣∣

≤ max
{L(A(x0) \ A(x)),L(A(x) \ A(x0))

}
≤ (an−1σn−1 + (a/2)n−1σn−1)|x − x0|
= (1 + 2−n+1)an−1σn−1|x − x0|,

where the second inequality follows from the fact that we can estimate the difference of
shifted annuli by two differences of shifted balls as illustrated in Fig.1. This implies

∣∣L(A(x) ∩ E)L(A(x0)) − L(A(x0) ∩ E)L(A(x))
∣∣

≤ ∣∣L(A(x) ∩ E)L(A(x0)) − L(A(x0) ∩ E)L(A(x0))
∣∣

+ ∣∣L(A(x0) ∩ E)L(A(x0)) − L(A(x0) ∩ E)L(A(x))
∣∣

= ∣∣L(A(x) ∩ E) − L(A(x0) ∩ E)
∣∣L(A(x0))

+ ∣∣L(A(x0)) − L(A(x))
∣∣L(A(x0) ∩ E)

≤ 2(1 + 2−n+1)an−1σn−1|x − x0|L(A(x0)).

(6)

By the formula σn = π
n
2 /
( n

2 + 1) and [25], we have

σn−1

σn
≤

√
n + 1

2π
.

123
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The inequality

(1 + 2−n+1)
√

n + 1

(1 − 2−n)
√

n
≤ 4

√
2

clearly holds for n = 1, and thus for all n ∈ N, as the left-hand side is decreasing in n.
Combining the two previous inequalities with (4) and

L(A(x)) ≥ 1 − 2−n

2n
σnan, (7)

we obtain

(1 + 2−n+1)an−1σn−1|x − x0| ≤ 1

8
L(A(x)).

Thus, (6) implies

∣∣L(A(x) ∩ E)L(A(x0)) − L(A(x0) ∩ E)L(A(x))
∣∣ ≤ 1

4
L(A(x))L(A(x0)).

Dividing the previous inequality by L(A(x))L(A(x0)), we conclude (5).
If

L(A(x0) ∩ E)

L(A(x0))
≥ 1

2
,

then it holds that

L(A(x) ∩ E)

L(A(x))
≥ L(A(x0) ∩ E)

L(A(x0))
−

∣∣∣∣L(A(x) ∩ E)

L(A(x))
− L(A(x0) ∩ E)

L(A(x0))

∣∣∣∣ ≥ 1

2
− 1

4
= 1

4
.

On the other hand, if

L(A(x0) ∩ E)

L(A(x0))
<

1

2
,

then ∣∣∣∣1 − L(A(x) ∩ E)

L(A(x))

∣∣∣∣ ≥ 1 − L(A(x0) ∩ E)

L(A(x0))
−

∣∣∣∣L(A(x) ∩ E)

L(A(x))
− L(A(x0) ∩ E)

L(A(x0))

∣∣∣∣
≥ 1 − 1

2
− 1

4
= 1

4
.

As a consequence there is i ∈ {0, 1} such that∣∣∣∣i − L(A(x) ∩ E)

L(A(x))

∣∣∣∣ ≥ 1

4

for every x ∈ Q. Denote F = E if i = 1 and F = R
n\E if i = 0. By the assumption, we

have

L(Q ∩ F) ≥ εL(Q).

Then we can conclude that

L(Q) ≤ 1

ε

ˆ
Q∩F

1dx ≤ 4

ε

ˆ
Q∩F

∣∣∣∣i − L(A(x) ∩ E)

L(A(x))

∣∣∣∣dx ≤ 4

ε

ˆ
Q

∣∣∣∣1E (x) − L(A(x) ∩ E)

L(A(x))

∣∣∣∣dx .

The proof is complete. 
�
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The next lemma is a decomposition of a set near its boundary into cubes.

Lemma 3.2 Let Q0 ⊂ R
n be a cube and E ⊂ R

n a measurable set such that

1

2n+1 ≤ L(Q0 ∩ E)

L(Q0)
≤ 1

2
.

Let k ∈ N0. Then there exist a dimensional constant C and pairwise disjoint cubes
Q1, . . . , QN ⊂ Q0 such that l(Qi ) = 2−k l(Q0) and

1

2n+2 ≤ L(Qi ∩ E)

L(Qi )
≤ 3

4

for every i = 1, . . . , N and

2−kL(Q0) ≤ C
N∑

i=1

L(Qi ).

Proof Recall that Dk(Q0) is the set of dyadic subcubes of Q0 of generation k. In particular,
Dk(Q0) consists of 2nk many pairwise disjoint cubes with side length 2−k l(Q0) which
decompose Q0. Denote by Q the collection of those dyadic subcubes Q ∈ Dk(Q0) with

L(Q ∩ E) ≥ 1

2n+2L(Q)

and let A = ⋃
Q∈Q Q. We have

L(Q0 ∩ E \ A) =
∑

Q∈Dk (Q0)\Q
L(Q ∩ E) ≤ 1

2n+2

∑
Q∈Dk (Q0)\Q

L(Q) ≤ 1

2n+2L(Q0),

and thus

L(A) ≥ L(A ∩ E) = L(Q0 ∩ E) − L(Q0 ∩ E \ A ∩ E)

≥ 1

2n+1L(Q0) − 1

2n+2L(Q0) = 1

2n+1L(Q0).
(8)

Denote

A = {
Q ∈ Q : Hn−1(Q̊0 ∩ ∂∗ A ∩ ∂ Q) ≥ l(Q)n−1},

where Q̊0 is the interior of Q0, soA is the set of those cubes inQ that have at least one of their
faces contained in Q̊0∩∂∗ A. Note that Q̊0∩∂∗ A ⊂ ⋃

Q∈A ∂ Q. For every cube Q ∈ A, there
exists a neighbouring dyadic cube P ∈ Dk(Q0)\Q. Thus, the cube Q̃λ = (1 − λ)Q + λP
with side length 2−k l(Q0) is contained in Q ∪ P for every 0 ≤ λ ≤ 1. By the definition of
Q and Dk(Q0) \ Q, there exists 0 ≤ λ ≤ 1 such that

L(Q̃λ ∩ E) = 1

2n+2L(Q̃λ).

We denote Q̃ = Q̃λ for this λ. The collection {Q̃ : Q ∈ A} is not necessarily disjoint.
Observe that every cube in Dk has 2n faces and thus at most 2n neighbouring cubes in
Dk . Hence, for every x ∈ Q0 there are at most 2n many cubes Q̃ with x ∈ Q̃. Let |A|
denote the number of cubes in A. Thus, we may extract a maximal disjoint subcollection
Ã ⊂ {Q̃ : Q ∈ A} such that |A| ≤ 2n|Ã|.

123
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If L(A) ≤ 3
4L(Q0), then by (8) and Lemma 2.2, we have

(L(Q0)

2n+1

) n−1
n = min

{L(Q0)

2n+1 ,
L(Q0)

4

} n−1
n

≤ min
{L(Q0 ∩ A),L(Q0 \ A)

} n−1
n

≤ C1Hn−1(Q0 ∩ ∂∗ A) ≤ C1

∑
Q∈A

Hn−1(∂ Q)

= C1|A|2−k(n−1)Hn−1(∂ Q0)

≤ C14n2|Ã|2−k(n−1) l(Q0)
n−1

= C14n22k

l(Q0)

∑
Q∈Ã

L(Q),

where C1 is the constant in Lemma 2.2. Thus, it holds that

2−kL(Q0) ≤ C
∑
Q∈Ã

L(Q),

where C = 2n+2n2C1. Hence, the cubes {Q1, . . . , QN } = Ã satisfy the conclusion of the
lemma.

It remains to consider the case L(A) > 3
4L(Q0). We define

{Q1, . . . , QN }=
{

Q ∈ Q : L(Q ∩ E)≤ 3

4
L(Q)

}
=

{
Q ∈ Dk : 1

2n+2 ≤ L(Q ∩ E)

L(Q)
≤ 3

4

}
.

Then we have
∑

Q∈Q\{Q1,...,QN }
L(Q) ≤ 4

3

∑
Q∈Q\{Q1,...,QN }

L(Q ∩ E) ≤ 4

3
L(Q0 ∩ E) ≤ 2

3
L(Q0).

We conclude that

2−kL(Q0) ≤ L(Q0) = 12

(
3

4
− 2

3

)
L(Q0)

≤ 12
∑
Q∈Q

L(Q) − 12
∑

Q∈Q\{Q1,...,QN }
L(Q)

= 12
N∑

i=1

L(Qi ).

This completes the proof. 
�
We are ready to prove the following rougher version of the isoperimetric inequality.

Observe that the difference compared to the relative isoperimetric inequality (Lemma 2.2) is
that the right-hand side in Lemma 3.3 measures the area around the boundary by annuli of
certain size.

Lemma 3.3 Let Q ⊂ R
n be a cube, E ⊂ R

n a measurable set, k ∈ N and s ≥ 0 such that

1

2(k+s)n
≤ L(Q ∩ E)

L(Q)
≤ 1

2
.

123
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Then there exists a dimensional constant C such that

(L(Q ∩ E)

L(Q)

) n−1
n ≤ C2k+s

 
Q

 
Q∩B(x,2−k l(Q))\B(x,2−k−1 l(Q))

|1E (x) − 1E (y)|dydx .

Proof Both sides of the claim are invariant under the dilation of Q and E by the same factor.
Hence, it suffices to consider the case l(Q) = 1.

By the assumption of the lemma, we may apply Lemma 2.1 for E on Q at level 1
2 . Thus,

we obtain a collection {Qi }i of Calderón–Zygmund cubes such that Q ∩ E ⊂ ⋃
i Qi up to

a set of Lebesgue measure zero and

1

2n+1 <
L(Qi ∩ E)

L(Qi )
≤ 1

2

for every i ∈ N. Note that l(Qi ) = 2−Mi for some Mi ∈ N0. Denote by K ∈ N the smallest

integer with 2K ≥ 2n+4n√
π

. We apply Lemma 3.2 with max{k + K − Mi , 0} for E on each Qi .

Then for every i ∈ N we obtain a collection {Qi,1, . . . , Qi,Ni } of pairwise disjoint subcubes
with

l(Qi, j ) = 2−max{k+K−Mi ,0} l(Qi ) = min{2−k−K , l(Qi )}
such that

1

2n+2 ≤ L(Qi, j ∩ E)

L(Qi, j )
≤ 3

4

for every j = 1, . . . , Ni and

min
{
2−k−KL(Qi )

n−1
n ,L(Qi )

} = 2−max{k+K−Mi ,0}L(Qi ) ≤ C1

Ni∑
j=1

L(Qi, j ),

where C1 is the constant in Lemma 3.2. By the properties of Qi , the assumption 2−k−c ≤
L(Q ∩ E)

1
n and the previous inequality, we get

L(Q ∩ E)
n−1

n ≤ L(Q ∩ E)−
1
n

∑
i

L(Qi )

= min
{L(Q ∩ E)−

1
n , 2k+s} ∑

i

L(Qi )

≤
∑

i

min
{L(Qi ∩ E)−

1
n , 2k+s}L(Qi )

≤
∑

i

min
{
21+

1
n L(Qi )

− 1
n , 2k+s}L(Qi )

= 2k+K
∑

i

min
{
21+

1
n −k−KL(Qi )

n−1
n , 2s−KL(Qi )

}

≤ 2k+s+K+1+ 1
n

∑
i

min
{
2−k−KL(Qi )

n−1
n ,L(Qi )

}

≤ 2k+s+K+1+ 1
n C1

∑
i, j

L(Qi, j ).
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Fig. 2 For a very regular set the
inner integral in Lemma 3.3
behaves approximately like the
characteristic function of a
neighborhood of the boundary

Using Lemma 3.1 with ε = 1/2n+2, we obtain

L(Qi, j ) ≤ 2n+4
ˆ

Qi, j

∣∣∣∣1E (x) − L(A(x) ∩ E)

L(A(x))

∣∣∣∣dx

for every i, j ∈ N, where A(x) = Q ∩ B(x, 2−k)\B(x, 2−k−1). Thus, we may estimate

∑
i, j

L(Qi, j ) ≤ 2n+4
∑
i, j

ˆ
Qi, j

∣∣∣∣1E (x) − L(A(x) ∩ E)

L(A(x))

∣∣∣∣dx

= 2n+4
∑
i, j

ˆ
Qi, j

∣∣∣∣1E (x) −
 

A(x)

1E (y)dy

∣∣∣∣dx

≤ 2n+4
∑
i, j

ˆ
Qi, j

 
A(x)

|1E (x) − 1E (y)|dydx

≤ 2n+4
ˆ

Q

 
A(x)

|1E (x) − 1E (y)|dydx .

Combining the obtained estimates, we conclude that

L(Q ∩ E)
n−1

n ≤ C2k+s
ˆ

Q

 
Q∩B(x,2−k )\B(x,2−k−1)

|1E (x) − 1E (y)|dydx,

where C = n√
π
22n+11C1. This completes the proof. 
�

Remark 3.4 As mentioned in the introduction, the fractional Poincaré inequality (2) is an
improvement of the classical Poincaré inequality (1) in the sense that the fractional integral
of f on right hand side of (2) can be bounded by the integral of the gradient on the right hand
side of (1). Likewise, Lemma 3.3 is an improvement of the relative isoperimetric inequality
(Lemma 2.2), as

2k
 

Q

 
Q∩B(x,2−k l(Q))\B(x,2−k−1 l(Q))

|1E (x) − 1E (y)|dydx ≤ C
Hn−1(Q ∩ ∂∗E)

L(Q)
n−1

n

(9)

for some dimensional constant C . Here we do not need to assume any bound on L(Q ∩
E)/L(Q). Note that Lemma 3.3 still holds if we integrate over Q ∩ B(x, 2−k l(Q)) instead
of Q ∩ B(x, 2−k l(Q))\B(x, 2−k−1 l(Q)), and so does (9).
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Define the following averaged out version of the inner integral by

f (z) = 1

L(B(0, 2−k l(Q)))

ˆ
Q∩B(z,2−k l(Q))

 
Q∩B(x,2−k l(Q))\B(x,2−k−1 l(Q))

|1E (x) − 1E (y)|dydx .

Then ˆ
Rn

f (z)dz =
ˆ

Q

 
Q∩B(x,2−k l(Q))\B(x,2−k−1 l(Q))

|1E (x) − 1E (y)|dydx .

If the boundary of E is very regular then f behaves roughly like the characteristic function
of the 2−k l(Q)-neighborhood of Q ∩ ∂∗E as shown in Fig. 2, and its integral evaluates to
approximately 2−k l(Q)Hn−1(Q ∩ ∂∗E). This means the two sides in (9) are comparable
and Lemma 3.3 becomes the classical relative isoperimetric inequality. If the boundary of
E is rougher then f instead resembles the characteristic function of the neighborhood of a
straightened out boundary of E . Morally this means that (9) represents the removal of small
wiggles in the boundary of E and Lemma 3.3 holds by the relative isoperimetric inequality
since we can replace E on the left hand side by a straightened out set with similar volume.

For a formal proof of (9) define

Ei = {z ∈ R
n : f (z) ≥ 2−i } \

⋃
z∈E1∪...∪Ei−1

B(z, 2−k+2 l(Q))

recursively for all i ∈ N. By the Vitali covering theorem, for each i there exists a collection
Bi of pairwise disjoint balls B(z, 2−k+1 l(Q)) with z ∈ Ei such that⋃

z∈Ei

B(z, 2−k+2 l(Q)) ⊂
⋃

B∈Bi

8B.

Furthermore, by the definition of E j for any j > i the balls in B j do not intersect the balls
in Bi . For any z ∈ Ei we have

2−i ≤ f (z) ≤ 2n+1

L(B(0, 2−k l(Q)))2

ˆ
Q∩B(z,2−k+1 l(Q))

ˆ
Q∩B(z,2−k+1 l(Q))

|1E (x) − 1E (y)|dydx

= 2n+2

L(B(0, 2−k l(Q)))2
L(Q ∩ B(z, 2−k+1 l(Q)) ∩ E)L(Q ∩ B(z, 2−k+1 l(Q)) \ E)

≤ 23n+2 min
{L(Q ∩ B(z, 2−k+1 l(Q)) ∩ E),L(Q ∩ B(z, 2−k+1 l(Q)) \ E)

}
L(B(0, 2−k+1 l(Q)))

,

and thus by the relative isoperimetric inequality (Lemma 2.2) for Q ∩ B(z, 2−k l(Q)) there
exists a constant C1 such that

2−iL(B(z, 2−k+1 l(Q)))

≤ 23n+2 min
{L(Q ∩ B(z, 2−k+1 l(Q)) ∩ E),L(Q ∩ B(z, 2−k+1 l(Q)) \ E)

}
≤ 23n+3σ

1
n

n 2−k l(Q)min
{L(Q ∩ B(z, 2−k+1 l(Q)) ∩ E),L(Q ∩ B(z, 2−k+1 l(Q)) \ E)

} n−1
n

≤ 23n+3σ
1
n

n C12
−k l(Q)Hn−1(Q ∩ B(z, 2−k+1 l(Q)) ∩ ∂∗ E).

We can conclude that
ˆ
Rn

f (z)dz ≤
∞∑

i=1

2−i+1L
( ⋃

z∈Ei

B(z, 2−k+2 l(Q))

)
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≤ 8n
∞∑

i=1

2−i+1
∑
B∈Bi

L(B)

≤ 26n+4σ
1
n

n C12
−k l(Q)

∞∑
i=1

∑
B∈Bi

Hn−1(Q ∩ B(z, 2−k+1 l(Q)) ∩ ∂∗E)

≤ 26n+4σ
1
n

n C12
−k l(Q)Hn−1(Q ∩ ∂∗E),

finishing the proof of (9).

4 Weighted fractional (q, 1)-Poincaré inequality

In this section, we prove our main result Theorem 4.1, the weighted fractional Poincaré
inequality in the case p = 1. This improves Theorem 2.10 in [15]. Observe that by choosing
μ = L, we obtain the non-weighted fractional Poincaré inequality. Recall that Md

α,Qμ is
the local fractional dyadic maximal function. Since it is pointwise bounded by the fractional
maximal function, Theorem 4.1 also holds with Mαμ in place of Md

α,Qμ.

Theorem 4.1 Let 0 ≤ δ < 1, 1 ≤ q ≤ n
n−δ

, α = n − q(n − δ), f ∈ L1
loc(R

n) and let μ be a
Radon measure with μ � L. Then there exists a dimensional constant C such that

(ˆ
Q
| f − fQ |qdμ

) 1
q ≤ C(1 − δ)

ˆ
Q

ˆ
Q

| f (x) − f (y)|
|x − y|n+δ

dy (Md
α,Qμ(x))

1
q dx

for every cube Q ⊂ R
n.

Alternatively, we can assume that μ is a general Radon measure and the claim holds for
any continuous function f .

Note that the conditions on the parameters in Theorem 4.1 can also be written as 0 ≤ α ≤
δ < 1, q = n−α

n−δ
.

Remark 4.2 The proof of the theorem given next is for the Lorentz norm, namely the Lq

norm in the left of the claim of the theorem can be replaced by the ‖ · ‖Lq,1(μ) norm, namely

|| f − fQ ||Lq,1(μ) = q
ˆ ∞

0
μ(�λ)

1
q dλ,

where �λ = {x ∈ Q : | f − fQ | > λ}.

Proof of Theorem 4.1 Fix Q ⊂ R
n and denote �λ = {x ∈ Q : | f − fQ | > λ}. It holds that

λq−1μ(�λ)
q−1

q ≤
(ˆ λ

0
μ(�t )

1
q dt

)q−1

,

123
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since �λ ⊂ �t for 0 < t ≤ λ. By Cavalieri’s principle, this implies

(ˆ
Q
| f − fQ |qdμ

) 1
q =

(
q
ˆ ∞

0
λq−1μ(Q ∩ {| f − fQ | > λ})dλ

) 1
q

=
(

q
ˆ ∞

0
λq−1μ(�λ)

q−1
q μ(�λ)

1
q dλ

) 1
q

≤
(

q
ˆ ∞

0

(ˆ λ

0
μ(�t )

1
q dt

)q−1

μ(�λ)
1
q dλ

) 1
q

≤ q
1
q

(ˆ ∞

0
μ(�t )

1
q dt

) q−1
q

(ˆ ∞

0
μ(�λ)

1
q dλ

) 1
q

≤ 2
ˆ ∞

0
μ(�λ)

1
q dλ

= 2
ˆ fQ

−∞
μ(Q ∩ { f < λ}) 1

q dλ + 2
ˆ ∞

fQ

μ(Q ∩ { f > λ}) 1
q dλ.

(10)

The previous two terms swap when replacing f by − f . Thus it suffices to bound the second
term. We split it into two parts

ˆ ∞

fQ

μ(Q ∩ { f > λ}) 1
q dλ =

ˆ max{m f , fQ }

fQ

μ(Q ∩ { f > λ}) 1
q dλ

+
ˆ ∞

max{m f , fQ }
μ(Q ∩ { f > λ}) 1

q dλ.

(11)

We abbreviate the maximal median of f over Q by m f = m f (Q).
For the first term in (11) it suffices to consider fQ < m f . Recall that L(Q ∩ { f > λ}) ≥

L(Q)/2 for λ < m f . By the definition of fQ , it holds that

ˆ ∞

fQ

L(Q ∩ { f > λ})dλ =
ˆ fQ

−∞
L(Q ∩ { f < λ})dλ.

Using these facts, we get

ˆ max{m f , fQ }

fQ

μ(Q ∩ { f > λ}) 1
q dλ ≤ (m f − fQ)μ(Q)

1
q

≤ 2
μ(Q)

1
q

L(Q)

ˆ m f

fQ

L(Q ∩ { f > λ})dλ

≤ 2
μ(Q)

1
q

L(Q)

ˆ ∞

fQ

L(Q ∩ { f > λ})dλ

= 2
μ(Q)

1
q

L(Q)

ˆ fQ

−∞
L(Q ∩ { f < λ})dλ

≤ 2
n−δ

n
μ(Q)

1
q

L(Q)
n−δ

n

ˆ m f

−∞
L(Q ∩ { f < λ}) n−δ

n dλ,
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where in the last inequality we used L(Q ∩ { f < λ}) ≤ L(Q)/2 for λ < m f . Denote

Ak(x) = Q ∩ B(x, 2−k l(Q)) \ B(x, 2−k−1 l(Q))

for k ∈ N and

Kλ =
⌈
log2

(
l(Q)/L(Q ∩ { f < λ}) 1

n
)⌉

for λ < m f . Then we have

1

2kn
≤ L(Q ∩ { f < λ})

L(Q)
≤ 1

2

for every k ≥ Kλ, λ < m f . Thus for each k ≥ Kλ, λ < m f , we may apply Lemma 3.3 with
s = 0 for E = { f < λ} on Q to obtain

L(Q ∩ { f < λ}) n−1
n ≤ C1

2k

l(Q)

ˆ
Q

 
Ak (x)

|1{ f <λ}(x) − 1{ f <λ}(y)|dydx .

We multiply both sides of the previous estimate by 2−k(1−δ) and sum over k ≥ Kλ to get

∞∑
k=Kλ

2−k(1−δ)L(Q ∩ { f < λ}) n−1
n ≤ C1

∞∑
k=Kλ

2kδ

l(Q)

ˆ
Q

 
Ak (x)

|1{ f <λ}(x) − 1{ f <λ}(y)|dydx .

Furthermore,

∞∑
k=Kλ

2−k(1−δ) = 2−Kλ(1−δ)

1 − 2−(1−δ)
≥ 2−(1−δ)

1 − 2δ−1

L(Q ∩ { f < λ}) 1−δ
n

l(Q)1−δ
≥ 1

2

1

1 − δ

L(Q ∩ { f < λ}) 1−δ
n

l(Q)1−δ
.

By combining the two previous estimates with (7), we conclude that

L(Q ∩ { f < λ}) n−δ
n ≤ C2(1 − δ)

∑
k∈N

2k(n+δ)

l(Q)n+δ

ˆ
Q

ˆ
Ak (x)

|1{ f <λ}(x) − 1{ f <λ}(y)|dydx,
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where C2 = 2n+2C1/σn . It follows that
ˆ max{m f , fQ }

fQ

μ(Q ∩ { f > λ}) 1
q dλ

≤ 2
n−δ

n
μ(Q)

1
q

L(Q)
n−δ

n

ˆ m f

−∞
L(Q ∩ { f < λ}) n−δ

n dλ

≤ 2C2(1 − δ)
μ(Q)

1
q

L(Q)
n−δ

n

ˆ m f

−∞

∑
k∈N

2k(n+δ)

l(Q)n+δ

ˆ
Q

ˆ
Ak (x)

|1{ f <λ}(x) − 1{ f <λ}(y)|dydxdλ

= 2C2(1 − δ)
μ(Q)

1
q

L(Q)
n−δ

n

∑
k∈N

2k(n+δ)

l(Q)n+δ

ˆ
Q

ˆ
Ak (x)

ˆ m f

−∞
|1{ f <λ}(x) − 1{ f <λ}(y)|dλdydx

≤ 2C2(1 − δ)
μ(Q)

1
q

L(Q)
n−δ

n

∑
k∈N

2k(n+δ)

l(Q)n+δ

ˆ
Q

ˆ
Ak (x)

| f (x) − f (y)|dydx

≤ 2C2(1 − δ)
μ(Q)

1
q

L(Q)
n−δ

n

∑
k∈N

ˆ
Q

ˆ
Ak (x)

| f (x) − f (y)|
|x − y|n+δ

dydx

≤ 2C2(1 − δ)
μ(Q)

1
q

L(Q)
n−δ

n

ˆ
Q

ˆ
Q∩B(x,l(Q)/2)

| f (x) − f (y)|
|x − y|n+δ

dydx

≤ 2C2(1 − δ)

ˆ
Q

ˆ
Q

| f (x) − f (y)|
|x − y|n+δ

dy (Md
α,Qμ)

1
q dx,

(12)

where in the last inequality we used

μ(Q)

L(Q)
n−δ

n q
≤ Md

α,Qμ(x)

for every x ∈ Q.
It is left to estimate the second term in (11). In that case, we have L(Q ∩ { f > λ}) ≤

L(Q)/2 since λ > m f . We apply Lemma 2.1 for E = { f > λ} on Q at level 1
2 to obtain

a collection {Qi }i of Calderón–Zygmund cubes with l(Qi ) = 2−Ni l(Q) for some Ni ∈ N0

such that Q ∩ { f > λ} ⊂ ⋃
i Qi up to a set of Lebesgue measure zero and

1

2n+1 <
L(Qi ∩ { f > λ})

L(Qi )
≤ 1

2
.

Fix i ∈ N and let k ≥ Ni + 1. We apply Lemma 3.3 with k − Ni instead of k and s = 1 for
E = { f > λ} on Qi . Observe that 2−(k−Ni ) l(Qi ) = 2−k l(Q). For every k ≥ Ni + 1 we
obtain

L(Qi )
n−1

n ≤ 2(n+1) n−1
n L(Qi ∩ { f > λ}) n−1

n

≤ 2nC1
2k

l(Q)

ˆ
Qi

 
Qi ∩Ak (x)

|1{ f >λ}(x) − 1{ f >λ}(y)|dydx,

where Ak(x) = Q ∩ B(x, 2−k l(Q))\B(x, 2−k−1 l(Q)) as above. Multiplying both sides by
2−k(1−δ) and summing over k ≥ Ni + 1, we get

∑
k≥Ni +1

2−k(1−δ)L(Qi )
n−1

n ≤ 2nC1

∑
k≥Ni +1

2kδ

l(Q)

ˆ
Qi

 
Qi ∩Ak (x)

|1{ f >λ}(x) − 1{ f >λ}(y)|dydx .
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We note that

∑
k≥Ni +1

2−k(1−δ) = 2−(Ni +1)(1−δ)

1 − 2−(1−δ)
= 2−(1−δ)

1 − 2−(1−δ)

l(Qi )
1−δ

l(Q)1−δ
≥ 1

2(1 − δ)

l(Qi )
1−δ

l(Q)1−δ
.

By combining the two previous estimates with (7), we conclude that

L(Qi )
n−δ

n ≤ C3(1 − δ)
∑
k∈N

2k(n+δ)

l(Q)n+δ

ˆ
Qi

ˆ
Ak (x)

|1{ f >λ}(x) − 1{ f >λ}(y)|dydx,

where C3 = 22n+2C1/σn . Since

μ(Q ∩ { f > λ}) ≤ μ
(⋃

i

Qi

)

by Lemma 2.1 and

μ(Qi )

L(Qi )
n−δ

n q
≤ Md

α,Qμ(x)

for every x ∈ Qi , it follows that

μ(Q ∩ { f > λ}) 1
q ≤

∑
i

μ(Qi )
1
q

≤ C3(1 − δ)
∑

i

μ(Qi )
1
q

L(Qi )
n−δ

n

∑
k∈N

2k(n+δ)

l(Q)n+δ

ˆ
Qi

ˆ
Ak (x)

|1{ f >λ}(x) − 1{ f >λ}(y)|dydx

≤ C3(1 − δ)
∑
k∈N

2k(n+δ)

l(Q)n+δ

∑
i

ˆ
Qi

ˆ
Ak (x)

|1{ f >λ}(x) − 1{ f >λ}(y)|dy (Md
α,Qμ(x))

1
q dx

≤ C3(1 − δ)
∑
k∈N

2k(n+δ)

l(Q)n+δ

ˆ
Q

ˆ
Ak (x)

|1{ f >λ}(x) − 1{ f >λ}(y)|dy (Md
α,Qμ(x))

1
q dx .

Integrating both sides in λ, we obtain

ˆ ∞

max{m f , fQ }
μ(Q ∩ { f > λ}) 1

q dλ

≤ C3(1 − δ)
∑
k∈N

2k(n+δ)

l(Q)n+δ

ˆ
Q

ˆ
Ak (x)

ˆ ∞

m f

|1{ f >λ}(x) − 1{ f >λ}(y)|dλdy (Md
α,Qμ(x))

1
q dx

≤ C3(1 − δ)
∑
k∈N

2k(n+δ)

l(Q)n+δ

ˆ
Q

ˆ
Ak (x)

| f (x) − f (y)|dy (Md
α,Qμ(x))

1
q dx

≤ C3(1 − δ)
∑
k∈N

ˆ
Q

ˆ
Ak (x)

| f (x) − f (y)|
|x − y|n+δ

dy (Md
α,Qμ(x))

1
q dx

≤ C3(1 − δ)

ˆ
Q

ˆ
Q∩B(x,l(Q)/2)

| f (x) − f (y)|
|x − y|n+δ

dy (Md
α,Qμ(x))

1
q dx

≤ C3(1 − δ)

ˆ
Q

ˆ
Q

| f (x) − f (y)|
|x − y|n+δ

dy (Md
α,Qμ(x))

1
q dx .

(13)
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By combining the obtained estimates (10) to (13), we conclude that

(ˆ
Q
| f − fQ |qdμ

) 1
q ≤ C(1 − δ)

ˆ
Q

ˆ
Q

| f (x) − f (y)|
|x − y|n+δ

dy (Md
α,Qμ(x))

1
q dx,

where C = 4(2C2 + C3) = (22n+4 + 2n+5)C1/σn . 
�
For a Radon measure satisfying a polynomial growth condition, the following fractional

Poincaré inequality holds.

Corollary 4.3 Let 0 ≤ δ < 1, 1 ≤ q ≤ n
n−δ

, α = n − q(n − δ), f ∈ L1
loc(R

n) and μ be a
Radon measure. Assume that there exists a constant Cμ such that

μ(Q) ≤ Cμ l(Q)n−α

for every cube Q ⊂ R
n. Then there exists a dimensional constant C such that

(ˆ
Q
| f − fQ |qdμ

) 1
q ≤ C

1
q
μ C(1 − δ)

ˆ
Q

ˆ
Q

| f (x) − f (y)|
|x − y|n+δ

dydx

for every cube Q ⊂ R
n.

Remark 4.4 We remark that this result combined with Theorem 6.2 with p = 1 yields the
classical Meyers–Ziemer theorem [21].

Proof of Corollary 4.3 Fix a cube Q ⊂ R
n . By the assumption, we have

Md
α,Qμ(x) = sup

Q′�x,
Q′∈D(Q)

l(Q′)α μ(Q′)
L(Q′)

≤ Cμ

for every x ∈ Q. Thus, by Theorem 4.1, the claim follows. 
�

5 From fractional (1, 1)-Poincaré inequality to fractional
(q,p)-Poincaré inequality with Ap weights

In this section, we show that the fractional (1, 1)-Poincaré inequality implies the fractional
(q, p)-Poincaré inequality. Moreover, we are able to obtain the result with Ap weights as
conjectured in [15].

We recall briefly some concepts about the classes of Muckenhoupt weights. A weight is
a function w ∈ L1

loc(R
n) satisfying w(x) > 0 for almost every point x ∈ R

n .

Definition 5.1 Let w be a weight.

(i) We say that w ∈ A1 if there is a constant C such that

Mw(x) ≤ Cw(x)

for almost every x ∈ R
n . The A1 constant [w]A1 is defined as the smallest C for which

the condition above holds.
(ii) For 1 < p < ∞ we say that w ∈ Ap if

[w]Ap = sup
Q

 
Q

wdx

( 
Q

w1−p′
dx

)p−1

< ∞.
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(iii) The A∞ class is defined as the union of all the Ap classes, that is,

A∞ =
⋃

1≤p<∞
Ap,

and the A∞ constant is defined as

[w]A∞ = sup
Q

1

w(Q)

ˆ
Q
M(1Qw)dx .

Recall that for 1 ≤ r ≤ p < ∞ we have

c[w]A∞ ≤ [w]Ap ≤ [w]Ar ≤ [w]A1 (14)

for some c > 0 depending only on the dimension.

We observe that the fractional (1, 1)-Poincaré inequality implies the fractional (1, p)-
Poincaré inequality with Ap weights on the right-hand side. However, note the extra factor

δ
1
p −1 that appears in front.

Corollary 5.2 Let 0 < δ < 1, 1 ≤ p < ∞, f ∈ L1
loc(R

n) and w ∈ Ap. Then there exists a
dimensional constant C such that
 

Q
| f − fQ |dx ≤ C[w]

1
p
Ap

(1 − δ)
1
p

δ
1− 1

p

l(Q)δ
(

1

w(Q)

ˆ
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dy w(x)dx

) 1
p

for every cube Q ⊂ R
n.

Proof Let 0 ≤ ε ≤ δ. By Theorem 4.1 with μ = L, there exists a constant C1 such that 
Q
| f − fQ |dx ≤ C1(1 − δ + ε) l(Q)δ−ε

 
Q

ˆ
Q

| f (x) − f (y)|
|x − y|n+δ−ε

dydx . (15)

If p = 1, the claim of the corollary follows from (15)with ε = 0 combinedwith the definition
of A1 weights. It remains to consider p > 1. Assume 0 < ε ≤ δ and fix x ∈ Q. Then by
Hölder’s inequality we have

ˆ
Q

| f (x) − f (y)|
|x − y|n+δ−ε

dy ≤
(ˆ

Q

1

|x − y|n−εp′ dy

) 1
p′ (ˆ

Q

| f (x) − f (y)|p

|x − y|n+δ p
dy

) 1
p

≤ (n
3
2 σn)

1
p′ l(Q)ε

ε
1
p′

(ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dy

) 1
p

.

We plug this into (15) and apply Hölder’s inequality once more with the definition of Ap

weights to get

 
Q
| f − fQ |dx ≤ C2 l(Q)δ

1 − δ + ε

ε
1
p′

 
Q

(ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dy

) 1
p w(x)

1
p

w(x)
1
p

dx

≤ C2 l(Q)δ
1 − δ + ε

ε
1
p′

( 
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dy w(x)dx

) 1
p
( 

Q
w(x)1−p′

dx

) p−1
p

≤ C2 l(Q)δ
1 − δ + ε

ε
1
p′

[w]
1
p
Ap

(
1

w(Q)

ˆ
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dy w(x)dx

) 1
p

with C2 = C1 max{1, n
3
2 σn} ≤ 92C1. Setting ε = min{δ, 1 − δ} finishes the proof. 
�
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We recall the definitions of the weighted Dp(w) and SDs
p(w) conditions.

Definition 5.3 Let 0 < p < ∞, 0 < s < ∞, w be a weight and a : Q → [0,∞) be a
general functional defined over the collection of all cubes in R

n .

(i) The functional a belongs to Dp(w) if there is a constant c such that

(∑
i

a(Qi )
p w(Qi )

w(Q)

) 1
p

≤ Ca(Q)

for any family of disjoint dyadic subcubes {Qi }i of any given cube Q ⊂ R
n . The

smallest constant C above is denoted by ‖a‖Dp(w).
(ii) The functional a belongs to SDs

p(w) if there is a constant C such that

(∑
i

a(Qi )
p w(Qi )

w(Q)

) 1
p

≤ C

(L(
⋃

i Qi )

L(Q)

) 1
s

a(Q)

for any family of disjoint dyadic subcubes {Qi }i of any given cube Q ⊂ R
n . The

smallest constant C above is denoted by ‖a‖SDs
p(w).

The following self-improving property from [6, Theorem 1.6] is relevant for us.

Theorem 5.4 Let 1 < p < ∞, w ∈ A∞ and a ∈ Dp(w). Assume that f ∈ L1
loc(R

n) such
that  

Q
| f − fQ |dx ≤ a(Q)

for every cube Q ⊂ R
n. Then there exists a dimensional constant C such that

‖ f − fQ‖L p,∞(Q, wdx
w(Q)

) ≤ Cp[w]A∞‖a‖Dp(w)a(Q).

for every cube Q ⊂ R
n.

For the stronger SDs
p(w) condition, we have a better self-improvement, see [18, Theo-

rem 5.3].

Theorem 5.5 Let 1 ≤ p < ∞, 1 < s < ∞, w be a weight and a ∈ SDs
p(w). Assume that

f ∈ L1
loc(R

n) such that
 

Q
| f − fQ |dx ≤ a(Q)

for every cube Q ⊂ R
n. Then there exists a dimensional constant C such that

‖ f − fQ‖L p(Q, wdx
w(Q)

) ≤ Cs‖a‖SDs
p(w)a(Q)

for every cube Q ⊂ R
n.

Another important tool that we need is the following fractional truncation method which
can be shown by adapting the proof of [10, Theorem 4.1].

Theorem 5.6 Let 0 < δ < 1, 1 ≤ p ≤ q < ∞, f ∈ L1
loc(R

n) and w be a weight. Then the
following conditions are equivalent.
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(i) There is a constant C1 such that

inf
c∈R‖ f − c‖Lq,∞(Q, wdx

w(Q)
) ≤ C1

(
1

w(Q)

ˆ
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dy w(x)dx

) 1
p

for every cube Q ⊂ R
n.

(ii) There is a constant C2 such that

inf
c∈R ‖ f − c‖Lq (Q, wdx

w(Q)
) ≤ C2

(
1

w(Q)

ˆ
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dy w(x)dx

) 1
p

for every cube Q ⊂ R
n.

Moreover, in the implication from (i) to (ii) the constant C2 is of the form CC1, where C only
depends on the dimension, and in the implication from (ii) to (i) we have C1 = C2.

We are ready to state and prove the main results of this section, which are the fractional
(q, p)-Poincaré inequalities with Ap weights. These results extend Theorems 2.1 and 2.3 in

[15]. We emphasize that the factor (1 − δ)
1
p remains despite the singularity introduced by

the weight.

Theorem 5.7 Let 0 < δ < 1, 1 ≤ r ≤ p < n
δ

, f ∈ L1
loc(R

n) and w ∈ Ar . Let q be defined
by

1

p
− 1

q
= δ

nr
.

Then there exists a dimensional constant C such that

inf
c∈R

(
1

w(Q)

ˆ
Q

| f − c|q wdx

) 1
q

≤ Cq[w]
1
p
Ap

[w]
δ

nr
Ar

[w]A∞
(1 − δ)

1
p

δ
1− 1

p

l(Q)δ
(

1

w(Q)

ˆ
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dy w(x)dx

) 1
p

for every cube Q ⊂ R
n.

Remark 5.8 We remark thatwe could replace [w]
1
p
Ap

[w]
δ

nr
Ar

[w]A∞ by amultiple of [w]
1
p + δ

nr +1

Ar
.

Proof of Theorem 5.7 Denote

a f (Q) = C1[w]
1
p
Ap

(1 − δ)
1
p

δ
1− 1

p

l(Q)δ
(

1

w(Q)

ˆ
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dy w(x)dx

) 1
p

,

where C1 is the dimensional constant in Corollary 5.2. By Corollary 5.2, it holds that 
Q

| f − fQ |dx ≤ a f (Q).

In addition, by [7, Lemma 3.3] (which also holds for M = 1 corresponding to our case), we
have a f ∈ Dq(w) such that

‖a f ‖Dq (w) ≤ [w]
δ

nr
Ar

,
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uniformly in f . Hence, we may apply Theorem 5.4 to obtain

‖ f − fQ‖Lq,∞(Q, wdx
w(Q)

) ≤ C2q[w]A∞[w]
δ

nr
Ar

a f (Q)

= Cq[w]A∞[w]
δ

nr
Ar

[w]
1
p
Ap

(1 − δ)
1
p

δ
1− 1

p 1
l(Q)δ

(
1

w(Q)

ˆ
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dy w(x)dx

) 1
p

,

where C2 is the constant in Theorem 5.4 and C = C1C2. An application of Theorem 5.6
finishes the proof. 
�

A better dependency on the Ap constants in front can be attained at the expense of having
a smaller borderline exponent.

Theorem 5.9 Let 0 < δ < 1, 1 ≤ r ≤ p < n
δ

, f ∈ L1
loc(R

n) and w ∈ Ar . Let q be defined
by

1

p
− 1

q
= δ

n

1

r + log[w]Ar

.

Then there exists a dimensional constant C such that

inf
c∈R

(
1

w(Q)

ˆ
Q

| f − c|q wdx

) 1
q

≤ C
npr

nr − δ p
[w]

1
p
Ap

[w]A∞
(1 − δ)

1
p

δ
1− 1

p

l(Q)δ
(

1

w(Q)

ˆ
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dy w(x)dx

) 1
p

for every cube Q ⊂ R
n.

Proof Denote

a f (Q) = C1[w]
1
p
Ap

(1 − δ)
1
p

δ
1− 1

p

l(Q)δ
(

1

w(Q)

ˆ
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dy w(x)dx

) 1
p

,

where C1 is the constant in Corollary 5.2. By Corollary 5.2, it holds that 
Q

| f − fQ |dx ≤ a f (Q).

Wedistinguish between the cases [w]Ar > e
1
δ and the opposite.Assumefirst that [w]Ar > e

1
δ .

By [7, Lemma 6.2], we have a ∈ SDs
q(w) with M = 1+ 1

r log[w]Ar and s = nM ′
δ

> 1, such
that

‖a f ‖SDs
q (w) ≤ [w]

δ
nr M
Ar

,

uniformly in f . Hence, applying Theorem 5.5 with q , we obtain

‖ f − fQ‖Lq (Q, wdx
w(Q)

) ≤ C2
nM ′

δ
[w]

δ
nr M
Ar

a f (Q) ≤ C2
nM ′

δ
[w]

1
r+log[w]Ar
Ar

a f (Q)

≤ C2
n

δ

r + log[w]Ar

log[w]Ar

e1a f (Q),

where C2 is the constant in Theorem 5.5. By the assumption [w]Ar > e
1
δ , we have

‖ f − fQ‖Lq (Q, wdx
w(Q)

) ≤ C(r + log[w]Ar )a f (Q) ≤ Cr [w]Ar a f (Q),
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where C = C1C2ne1. This gives the claim when [w]Ar > e
1
δ .

Assume now that [w]Ar ≤ e
1
δ . By [7, Lemma 6.2], we have a f ∈ Dm(w) such that

‖a f ‖Dm (w) ≤ [w]
δ

nr
Ar

≤ e
1

nr ,

where the exponent m is defined by 1
p − 1

m = δ
nr . Applying Theorem 5.4, we get

‖ f − fQ‖Lm,∞(Q, wdx
w(Q)

) ≤ C3m[w]A∞e
1

nr a f (Q) ≤ Cm[w]Ar a f (Q),

where C3 is the constant in Theorem 5.4, C4 is the constant in (14) and C = C3C4e1. Since
q ≤ m, Jensen’s inequality implies

‖ f − fQ‖Lq,∞(Q, wdx
w(Q)

) ≤ ‖ f − fQ‖Lm,∞(Q, wdx
w(Q)

) ≤ Cm[w]Ar a f (Q).

An application of Theorem 5.6 finishes the proof. 
�

6 Fromweighted fractional to weighted classical Poincaré inequality

This section shows that Theorem 4.1 implies the corresponding weighted classical Poincaré
inequality Corollary 6.5. For any 0 < α ≤ n the Riesz potential Iα of a Radon measure μ is

Iαμ(x) =
ˆ
Rn

dμ(y)

|x − y|n−α

for every x ∈ R
n . The following lemma is an improved version of the well-known result that

the Riesz potential is bounded by the maximal function.

Lemma 6.1 Let Q ⊂ R
n be a cube, μ be a Radon measure and 0 < α < n. Then

Iα(1Qμ)(x) ≤ 2n−αn

α
μ(Q)

α
n (Mμ(x))1−

α
n

for every x ∈ Q.

Proof Let Q ⊂ R
n be a fixed cube and x ∈ Q. For t > 0 let Qx,t be the cube with center at

x and side lenght 2t−
1

n−α . Then using Cavalieri’s principle, we obtain
ˆ

Q

dμ(y)

|x − y|n−α
=
ˆ ∞

0
μ

({
y ∈ Q : 1

|x − y|n−α
> t

})
dt

=
ˆ ∞

0
μ

({
y ∈ Q : |x − y| < t−

1
n−α

})
dt

≤
ˆ ∞

0
min

{
μ(Q),

μ(Qx,t )

L(Qx,t )
L(Qx,t )

}
dt .

≤
ˆ ∞

0
min

{
μ(Q),Mμ(x)2nt−

n
n−α

}
dt

=
ˆ 2n−α(Mμ(x)/μ(Q))

n−α
n

0
μ(Q)dt + 2n

ˆ ∞

2n−α(Mμ(x)/μ(Q))
n−α

n
Mμ(x)t−

n
n−α dt

= 2n−αn

α
μ(Q)

α
n (Mμ(x))

n−α
n .

Thus, the claim holds. 
�
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The next theorem states that the weighted fractional term can be bounded by the weighted
gradient term, but we have the maximal function of the measure on the right hand side. We
are mainly interested in the case p = 1. This theorem improves Theorems 2.1 from [16].

Theorem 6.2 Let 1 ≤ p < ∞, p−1
p < δ < 1, f ∈ W 1,p

loc (Rn) and μ � L be a Radon
measure. Then

ˆ
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dydμ(x) ≤ 2n−(1−δ)pn

(1 − δ)p

μ(Q)
(1−δ)p

n

1 − (1 − δ)p

ˆ
Q

|∇ f |p (M(1Qμ))1−
(1−δ)p

n dx

for every cube Q ⊂ R
n. As a direct consequence,

ˆ
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dydμ(x) ≤ 2n−(1−δ)pn

(1 − δ)p

l(Q)(1−δ)p

1 − (1 − δ)p

ˆ
Q

|∇ f |p M(1Qμ)dx .

Alternatively, we can assume that μ is a general Radon measure and the claim holds for
any continuous function f ∈ W 1,p

loc (Rn).

Proof The second inequality follows from the first inequality due to the fact that
μ(Q)/ l(Q)n ≤ Mμ(x) for any x ∈ Q. It remains to prove the first inequality. If f is
continuously differentiable then by the Fundamental Theorem of Calculus we have

f (y) − f (x) =
ˆ 1

0
∇ f (x + t(y − x)) · (y − x)dt

for every (x, y) ∈ Q × Q. If f is a Sobolev function then the previous equality still holds
for almost every (x, y) ∈ Q × Q. Then by Hölder’s inequality, it holds that

| f (x) − f (y)|p ≤
ˆ 1

0
|∇ f (x + t(y − x))|p|x − y|pdt .

Applying this with Fubini’s theorem and doing the change of variables y �→ z = x +t(y−x),
we get

ˆ
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dydμ(x)

≤
ˆ

Q

ˆ 1

0

ˆ
Q

|∇ f (x + t(y − x))|p

|x − y|n−(1−δ)p
dydtdμ(x)

=
ˆ

Q

ˆ 1

0

ˆ
(1−t)x+t Q

|∇ f (z)|p

|x − z|n−(1−δ)p

tn−(1−δ)p

tn
dzdtdμ(x)

≤
ˆ

Q

ˆ
Q

|∇ f (z)|p

|x − z|n−(1−δ)p

ˆ 1

0

1

t (1−δ)p
dtdzdμ(x)

= 1

1 − (1 − δ)p

ˆ
Q

|∇ f (z)|p
ˆ

Q

μ(x)

|x − z|n−(1−δ)p
dxdz.

Here we used (1 − t)x + t Q ⊂ Q for x ∈ Q and (1 − δ)p < 1. By applying Lemma 6.1,
we obtain
ˆ

Q

1

|x − z|n−(1−δ)p
dμ(x) = I(1−δ)p(1Qμ)(z) ≤ 2n−(1−δ)pn

(1 − δ)p
μ(Q)

(1−δ)p
n (Mμ(z))1−

(1−δ)p
n
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for every z ∈ Q. Hence, we conclude that

ˆ
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dydμ(x) ≤ 2n−(1−δ)pn

(1 − δ)p

μ(Q)
(1−δ)p

n

1 − (1 − δ)p

ˆ
Q

|∇ f (z)|p (Mμ(z))1−
(1−δ)p

n dz.

This completes the proof. 
�
For A1 weights, we can replace the maximal function in Theorem 6.2 by the weight itself.

Corollary 6.3 Let p−1
p < δ < 1, f ∈ W 1,1

loc (Rn) and w ∈ A1. Then

ˆ
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dy w(x)dx ≤ 2n−(1−δ)pn

(1 − δ)p

w(Q)
(1−δ)p

n

1 − (1 − δ)p
[w]1−

(1−δ)p
n

A1

ˆ
Q

|∇ f |p w1− (1−δ)p
n dx

for every cube Q ⊂ R
n. As a direct consequence,

ˆ
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dy w(x)dx ≤ 2n−(1−δ)pn

(1 − δ)p

l(Q)(1−δ)p

1 − (1 − δ)p
[w]A1

ˆ
Q

|∇ f |p wdx .

Proof The second inequality follows from the first inequality due to the fact that
w(Q)/L(Q) ≤ [w]A1w(x) for any x ∈ Q. It remains to prove the first inequality. By
Theorem 6.2 and the definition of A1 weights, we get

ˆ
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dy w(x)dx ≤ 2n−(1−δ)pn

(1 − δ)p

w(Q)
(1−δ)p

n

1 − (1 − δ)p

ˆ
Q

|∇ f |p (Mw)1−
(1−δ)p

n dx

≤ 2n−(1−δ)pn

(1 − δ)p

w(Q)
(1−δ)p

n

1 − (1 − δ)p
[w]1−

(1−δ)p
n

A1

ˆ
Q

|∇ f |p w1− (1−δ)p
n dx .


�
The next lemma is the coarea formula for Sobolev functions [24, Proposition 3.2].

Lemma 6.4 Let f ∈ W 1,1
loc (Rn) and let g : R

n → R+ be a measurable function. Then
ˆ

E
|∇ f (x)| g(x)dx =

ˆ ∞

−∞

ˆ
E∩∂∗{ f >λ}

g(x)dHn−1(x)dλ

for every Lebesgue measurable set E ⊂ R
n.

Combining Theorem 4.1 with Corollary 6.3 we obtain the corresponding weighted clas-
sical Poincaré inequality. For thoroughness, we also give another, direct proof for Corollary
6.5 by applying the coarea formula and the relative isoperimetric inequality (Lemma 2.2)
instead of Lemma 3.3.

Corollary 6.5 Let 1 ≤ q ≤ n
n−1 , α = n − q(n − 1), f ∈ W 1,1

loc (Rn) and let μ be a Radon
measure with μ � L. There exists a dimensional constant C such that

(ˆ
Q
| f − fQ |qdμ

) 1
q ≤ C

ˆ
Q

|∇ f | (Md
α,Qμ)

1
q dx

for every cube Q ⊂ R
n.

Alternatively, we can assume that μ is a general Radon measure and the claim holds for
any continuous function f ∈ W 1,1(Rn).
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Proof 1 We prove the claim first for 1 < q ≤ n
n−1 , which means 0 ≤ α < 1. For any

α < δ < 1 let qδ = n−α
n−δ

. Note that qδ → q for δ → 1. The function (Md
α,Qμ)

1
qδ is an A1

weight with

[
(Md

α,Qμ)
1

qδ

]
A1

= [
(Md

α,Qμ)
n

n−α
− δ

n−α
]

A1
≤ 15n4n

δ

by for example [15, Lemma 3.6], and we may apply Corollary 6.3 with p = 1 to get
ˆ

Q

ˆ
Q

| f (x) − f (y)|
|x − y|n+δ

dy (Md
α,Qμ(x))

1
qδ dx ≤ 30nn221+δ

δ2(1 − δ)
l(Q)1−δ

ˆ
Q

|∇ f | (Md
α,Qμ)

1
qδ dx .

Then Theorem 4.1 further implies that there exists a constant C1 such that

(ˆ
Q
| f − fQ |qδdμ

) 1
qδ ≤ C1(1 − δ)

ˆ
Q

ˆ
Q

| f (x) − f (y)|
|x − y|n+δ

dy (Md
α,Qμ(x))

1
qδ dx

≤ C

δ2
l(Q)1−δ

ˆ
Q

|∇ f | (Md
α,Qμ)

1
qδ dx,

where C = 30n4n2C1. For any function g : R
n → R the restriction gqδ1g≤1 is bounded

by 1, and gqδ1g>1 is pointwise increasing in δ. Thus, by the monotone and the dominated
convergence theorem both sides of the previous display converge for δ → 1 to the desired
limit, concluding the proof for q > 1.

In order to prove the claim for q = 1 we have to differentiate between the two alternatives
in the assumptions of the corollary. We first consider the case that f is a Sobolev function
and μ is absolutely continuous. Then μ has a density function v ∈ L1

loc(R
n) by the Radon–

Nikodym theorem. Let k ∈ N and denote by μk the truncated measure that has the bounded

density min{v, k}. Then (Md
α,Qμk(x))

1
q is uniformly bounded in α, q and x and converges

pointwise to Md
1,Qμk(x) for q → 1. Thus by Fatou’s lemma and the dominated convergence

theorem we have
ˆ

Q
| f − fQ |dμk ≤ lim inf

q→1

(ˆ
Q
| f − fQ |qdμk

) 1
q

≤ C lim inf
q→1

ˆ
Q

|∇ f | (Md
α,Qμk)

1
q dx

= C
ˆ

Q
|∇ f |Md

1,Qμkdx .

(16)

Because μk converges to μ and Md
1,Qμk converges to Md

1,Qμ pointwise monotonously from
below we can use the monotone convergence theorem to conclude from the previous display
that ˆ

Q
| f − fQ |dμ = lim

k→∞

ˆ
Q
| f − fQ |dμk

≤ C lim
k→∞

ˆ
Q

|∇ f |Md
1,Qμkdx

= C
ˆ

Q
|∇ f |Md

1,Qμdx,

(17)

finishing the proof for q = 1 in the case that f ∈ W 1,1
loc (Rn) and μ � L.
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In the case that f is continuous andμ is a general Radonmeasure the proof goes the same,
except we let μk not be a truncation, but instead the measure that averages μ over dyadic
cubes of scale 2−k l(Q), i.e.

μk(E) =
∑

P∈Dk (Q)

L(E ∩ P)
μ(P)

L(P)
.

Then (Md
α,Qμk(x))

1
q is uniformly bounded in α, q and x and converges pointwise to

Md
1,Qμk(x) for q → 1, which means we can conclude (16) also in this case. Also Md

1,Qμk

converges to Md
1,Qμ pointwise monotonously from below. Furthermore, μk converges to μ

weakly, see [12, Theorem 1.40]. Thus, we can conclude (17) also in this case, finishing the
proof for q = 1 also in the case that f ∈ W 1,1

loc (Rn) is continuous and μ is a general Radon
measure. 
�
Proof 2 Fix Q ⊂ R

n and denote �λ = {x ∈ Q : | f − fQ | > λ}. As in the proof of Theorem
4.1, we reduce the problem to bounding the sum

ˆ max{m f , fQ }

fQ

μ(Q ∩ { f > λ}) 1
q dλ +

ˆ ∞

max{m f , fQ }
μ(Q ∩ { f > λ}) 1

q dλ, (18)

and estimate the first summand by

2
n−1

n
μ(Q)

1
q

L(Q)
n−1

n

ˆ fQ

−∞
L(Q ∩ { f < λ}) n−1

n dλ ≤ 2C1
μ(Q)

1
q

L(Q)
n−1

n

ˆ fQ

−∞
Hn−1(Q ∩ ∂∗{ f < λ})dλ

≤ 2C1
μ(Q)

1
q

L(Q)
n−1

n

ˆ
Q

|∇ f |dx

≤ 2C1

ˆ
Q

|∇ f | (Md
α,Qμ)

1
q dx,

where we used L(Q ∩ { f < λ}) ≤ L(Q)/2, Lemmas 2.2, 6.4 and

μ(Q)
1
q

L(Q)
n−1

n

≤ (Md
α,Qμ(x))

1
q

for every x ∈ Q.
It is left to estimate the second term in (18). In that case, we have L(Q ∩ { f > λ}) ≤

L(Q)/2 since λ > m f . We apply Lemma 2.1 for E = { f > λ} on Q at level 1
2 to obtain a

collection {Qi }i of Calderón–Zygmund cubes such that Q ∩ { f > λ} ⊂ ⋃
i Qi up to a set

of Lebesgue measure zero and

1

2n+1 <
L(Qi ∩ { f > λ})

L(Qi )
≤ 1

2
.

By Lemma 2.2, we have

L(Qi )
n−1

n ≤ 2(n+1) n−1
n L(Qi ∩ { f > λ}) n−1

n ≤ C2Hn−1(Qi ∩ ∂∗{ f > λ}),
where C2 = 2nC1. Since

μ(Q ∩ { f > λ}) ≤ μ
(⋃

i

Qi

)
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by Lemma 2.1 and

μ(Qi )

L(Qi )
n−1

n q
≤ Md

α,Qμ(x)

for every x ∈ Qi , it follows that

μ(Q ∩ { f > λ}) 1
q ≤

∑
i

μ(Qi )
1
q

≤ C2

∑
i

μ(Qi )
1
q

L(Qi )
n−1

n

Hn−1(Qi ∩ ∂∗{ f > λ})

≤ C2

∑
i

ˆ
Qi ∩∂∗{ f >λ}

(Md
α,Qμ)

1
q dHn−1

≤ C2

ˆ
Q∩∂∗{ f >λ}

(Md
α,Qμ)

1
q dHn−1.

Integrating both sides in λ and applying Lemma 6.4, we obtainˆ ∞

max{m f , fQ }
μ(Q ∩ { f > λ}) 1

q dλ ≤ C2

ˆ ∞

max{m f , fQ }

ˆ
Q∩∂∗{ f >λ}

(Md
α,Qμ)

1
q dHn−1dλ

≤ C2

ˆ
Q

|∇ f | (Md
α,Qμ)

1
q dx .

We have bounded both summands in (18) which means we can conclude that

(ˆ
Q
| f − fQ |qdμ

) 1
q ≤ C

ˆ
Q

|∇ f | (Md
α,Qμ)

1
q dx,

where C = 8(1 + 2n−1)C1. 
�

7 Examples against weighted (q,p)-Poincaré inequalities for p > 1 and
against a larger fractional parameter

In this section, we prove that the corresponding L p-versions of the weighted fractional and
classical Poincaré inequalities Theorem 4.1 and Corollary 6.5 do not hold. This is motivated
by [15, Theorems 2.4 & 2.9] where sub-optimal results were obtained.

More precisely we show that for every cube Q ⊂ R
n , 1 < p < n, p ≤ q ≤ np

n−p ,

α = n − q
p (n − p), and C > 0 there is a Radon measure μ � L and a Lipschitz function f

with
(ˆ

Q
| f − fQ |qdμ

) 1
q

> C

(ˆ
Q

|∇ f |p (Mαμ)
p
q dx

) 1
p

, (19)

and that for any 0 < δ < 1, 1 < p < min
{ n

δ
, 1
1−δ

}
, p ≤ q ≤ np

n−δ p , α = n − q
p (n − δ p),

and C > 0 there is a Radon measure μ � L and a Lipschitz function f with

(ˆ
Q
| f − fQ |qdμ

) 1
q

> C(1 − δ)
1
p

(ˆ
Q

ˆ
Q

| f (x) − f (y)|p

|x − y|n+δ p
dy (Mαμ(x))

p
q dx

) 1
p

.

(20)
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We do not know if the condition p < 1
1−δ

is necessary.
Moreover,we show that givenq ≥ 1 (and δ), the valueα = n−q(n−1) (orα = n−q(n−δ)

respectively) for the fractional parameter is the best possible for which Theorem 4.1 and
Corollary 6.5 hold in the following sense. For any ε ≥ 0 we have the pointwise inequality
Md

α,Qμ(x) ≤ l(Q)εMd
α−ε,Qμ(x) for x ∈ Q. Hence, Theorem 4.1 and Corollary 6.5 also hold

with l(Q)εMd
α−ε,Qμ(x) instead of Md

α,Qμ(x). This argument clearly only works for ε ≥ 0.

And indeed, we show that Theorem 4.1 and Corollary 6.5 fail when we replaceMd
α,Qμ(x) by

l(Q)−εMd
α+ε,Qμ(x) with any ε > 0. We show this even for the fractional maximal function

Mαμ which is larger than Md
α,Qμ up to a constant. More precisely, we show that for any

1 ≤ q ≤ n
n−1 , α = n − q(n − 1), ε > 0 and C > 0 there is a Radon measure μ � L and a

Lipschitz function f

(ˆ
Q
| f − fQ |qdμ

) 1
q

> C
1

l(Q)
ε
q

ˆ
Q

|∇ f | (Mα+εμ)
1
q dx, (21)

and that for any 0 < δ < 1, 1 ≤ q ≤ n
n−δ

, α = n − q(n − δ), ε > 0 and C > 0 there is a
Radon measure μ � L and a Lipschitz function f with

(ˆ
Q
| f − fQ |qdμ

) 1
q

> C
1 − δ

l(Q)
ε
q

ˆ
Q

ˆ
Q

| f (x) − f (y)|
|x − y|n+δ

dy (Mα+εμ(x))
1
q dx . (22)

We proceed with the proof of (19) to (22). Let Q0 ⊂ B(0, 1) be the cube with center 0 and
sidelength 1/

√
n. By translation and dilation it suffices to find a function f and a measure μ

which satisfy (19) to (22) on Q0. Consider the sequence of absolutely continuous measures
and Lipschitz functions

μk(A) = L(B(0, e−k) ∩ A)

L(B(0, e−k))
and fk(x) = min{− log |x |, k}

with k ∈ N. Denote
ˆ

Q0

| fk |dx ≤
ˆ

Q0

∣∣log |x |∣∣dx = c < ∞.

It holds that fk(x) = k for |x | ≤ e−k . Thus, for k ≥ c we have

(ˆ
Q0

| fk − ( fk)Q0 |qdμk

) 1
q ≥ k − c (23)

for any q ≥ 1. Furthermore for any 0 ≤ α ≤ n we have

Mαμk(x) ≤ C1

(|x | + e−k)n−α
≤ C1

|x |n−α

for some dimensional constant C1 and

|∇ fk(x)| = 1

|x |1{|·|≥e−k }(x).
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Let p > 1, q and α be as specified for (19). Then
ˆ

Q0

|∇ fk |p (Mαμk)
p
q dx ≤

ˆ
B(0,1)

|∇ fk |p (Mαμk)
p
q dx

≤ nσnC
p
q
1

ˆ 1

0

1

r p
1{r≥e−k }r

(α−n)
p
q rn−1dr

= C2

ˆ 1

e−k
r−p+(α−n)

p
q +n−1dr

= C2

ˆ 1

e−k
r−p−(n−p)+n−1dr

= C2

ˆ 1

e−k

1

r
dr

= C2(log(1) − log(e−k))

= C2k,

(24)

where C2 = nσnC
p
q
1 . Choosing k ∈ N large enough, for example

k > (CC
1
p
2 + c)

p
p−1 ,

we use (23) and (24) to conclude (19) for p > 1.
We use the same sequence of functions and measures to satisfy the remaining inequalities

(20) to (22). In order to find k such that μk, fk satisfies (21), let p, α, q and ε > 0 be as
specified there. Then we have

1

l(Q0)
ε
q

ˆ
Q0

|∇ fk | (Mα+εμk)
1
q dx ≤ n

ε
2q

ˆ
B(0,1)

|∇ fk | (Mα+εμk)
1
q dx

≤ n1+ ε
2q σnC

1
q
1

ˆ 1

0

1

r
1{r≥e−k }r

(α+ε−n) 1q rn−1dr

= C3

ˆ 1

e−k
r (α+ε−n) 1q +n−2dr

= C3

ˆ 1

e−k
r

ε
q −1dr

= C3q

ε
(1 − e− ε

q k
),

(25)

where C3 = n1+ ε
2q σnC

1
q
1 . Choosing k ∈ N large enough, for example

k >
2

ε
q CC3q

ε
+ c,

we use (23) and (25) to conclude (21) for ε > 0.
In order to find k such that μk, fk satisfies (20) and (22), we first note that by for example

[15, Lemma 3.6], both (Mαμ)
p
q and (Mα+εμ)

1
q are A1-weights with

[
(Mαμ)

p
q
]

A1
≤ 15n4n

pδ
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[
(Mα+εμ)

1
q
]

A1
≤ 15n4n

δ + (n−δ)
n−α

ε
.

Since by assumption we have δ > 0 or δ >
p−1

p respectively, we can apply Corollary 6.3

with w = (Mαμ)
p
q and w = (Mα+εμ)

1
q , and we conclude (20) and (22) from (19) and (21)

respectively.
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