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Abstract
Let 0 < α < d and 1 ≤ p < d/α. We present a proof that for all f ∈ W 1,p(Rd) both the
centered and the uncentered Hardy–Littlewood fractional maximal operatorMα f are weakly
differentiable and ‖∇Mα f ‖p∗ ≤ Cd,α,p‖∇ f ‖p,where p∗ = (p−1−α/d)−1. In particular it
covers the endpoint case p = 1 for 0 < α < 1where the boundwas previously unknown. For
p = 1 we can replace W 1,1(Rd) by BV(Rd). The ingredients used are a pointwise estimate
for the gradient of the fractional maximal function, the layer cake formula, a Vitali type
argument, a reduction from balls to dyadic cubes, the coarea formula, a relative isoperimetric
inequality and an earlier established result for α = 0 in the dyadic setting. We use that for
α > 0 the fractional maximal function does not use certain small balls. For α = 0 the proof
collapses.
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1 Introduction

For f ∈ L1
loc(R

d) and a ball or cube B, we denote

fB = 1

L(B)

∫
B

| f |.
The centered Hardy–Littlewood maximal function is defined by

Mc f (x) = sup
r>0

fB(x,r),

and the uncentered Hardy–Littlewood maximal function is defined by

M̃ f (x) = sup
B�x

fB
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where the supremum is taken over all balls that contain x . The regularity of a maximal
operator was first studied by Kinnunen in 1997. He proved in [18] that for each p > 1 and
f ∈ W 1,p(Rd) the bound

‖∇M f ‖p ≤ Cd,p‖∇ f ‖p (1.1)

holds for M = Mc. Formula (1.1) also holds for M = M̃. This implies that both Hardy–
Littlewood maximal operators are bounded on Sobolev spaces with p > 1. His proof does
not apply for p = 1. Note that unless f = 0 also ‖M f ‖1 ≤ Cd,1‖ f ‖1 fails since M f
is not in L1(Rd). In [16] Hajłasz and Onninen asked whether formula (1.1) also holds for
p = 1 for the centered Hardy–Littlewood maximal operator. This question has become a
well known problem for various maximal operators and there has been lots of research on
this topic. So far it has mostly remained unanswered, but there has been some progress.
For the uncentered maximal function and d = 1 it has been proved in [28] by Tanaka and
later in [22] by Kurka for the centered Hardy–Littlewood maximal function. The proof for
the centered maximal function turned out to be much more complicated. Aldaz and Pérez
Lázaro obtained in [3] the sharp improvement ‖∇M̃ f ‖L1(R) ≤ ‖∇ f ‖L1(R) of Tanaka’s result.
For the uncentered Hardy–Littlewood maximal function Hajłasz’s and Onninen’s question
already also has a positive answer for all dimensions d in several special cases. For radial
functions Luiro proved it in [24], for block decreasing functions Aldaz and Pérez Lázaro
proved it in [2] and for characteristic functions the author proved it in [30]. As a first step
towards weak differentiability, Hajłasz and Malý proved in [15] that for f ∈ L1(Rd) the
centered Hardy–Littlewood maximal function is approximately differentiable. In [1] Aldaz
et al. proved bounds on the modulus of continuity for all dimensions.

A related question is whether the maximal operator is a continuous operator. Luiro proved
in [23] that for p > 1 the uncentered maximal operator is continuous on W 1,p(Rd). There
is ongoing research for the endpoint case p = 1. For example Carneiro et al. proved in
[11] that f �→ ∇M̃ f is continuous W 1,1(R) → L1(R) and in [14] González-Riquelme and
Kosz recently improved this to continuity on BV. Carneiro et al. proved in [8] that for radial
functions f , the operator f �→ ∇M̃ f is continuous as a map W 1,1(Rd) → L1(Rd).

The regularity of maximal operators has also been studied for other maximal operators
and on other spaces. We focus on the endpoint p = 1. In [12] Carneiro and Svaiter and in
[7] Carneiro and González-Riquelme investigated maximal convolution operators M asso-
ciated to certain partial differential equations. Analogous to the Hardy–Littlewood maximal
operator they proved ‖∇M f ‖L1(Rd ) ≤ Cd‖∇ f ‖L1(Rd ) for d = 1, and for d > 1 if f is
radial. In [9] Carneiro and Hughes proved ‖∇M f ‖l1(Zd ) ≤ Cd‖ f ‖l1(Zd ) for centered and
uncentered discrete maximal operators. This bound does not hold on R

d , but because in
the discrete setting we have ‖∇ f ‖l1(Zd ) ≤ Cd‖ f ‖l1(Zd ), it is weaker than the still open
‖∇M f ‖l1(Zd ) ≤ Cd‖∇ f ‖l1(Zd ). In [21] Kinnunen and Tuominen proved the boundedness
of a discrete maximal operator in the metric Hajłasz Sobolev space M1,1. In [27] Pérez
et al. proved the boundedness of certain convolution maximal operators on Hardy-Sobolev
spaces Ḣ1,p for a sharp range of exponents, including p = 1. In [29] the author proved
var Md f ≤ Cd var f for the dyadic maximal operator for all dimensions d .

For 0 ≤ α ≤ d the centered fractional Hardy–Littlewood maximal function is defined by

Mc
α f (x) = sup

r>0
rα fB(x,r).
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For a ball B we denote the radius of B by r(B). The uncentered fractional Hardy–Littlewood
maximal function is defined by

M̃α f (x) = sup
B�x

r(B)α fB

where the supremum is taken over all balls that contain x . Note that Mα does not make much
sense for α > d . For α = 0 it is the Hardy–Littlewood maximal function. The following is
the fractional version of formula (1.1).

Theorem 1.1 Let 1 ≤ p < ∞ and 0 < α < d/p and Mα ∈ {Mc
α, M̃α}. Then for all

f ∈ W 1,p(Rd) we have thatMα f is weakly differentiable with

‖∇Mα f ‖(p−1−α/d)−1 ≤ Cd,α,p‖∇ f ‖p (1.2)

where the constant Cd,α,p depends only on d, α and p. In the endpoint p = 1 we can replace
f ∈ W 1,1(Rd) by f ∈ BV(Rd). The endpoint result for p = d/α holds true as well.

We prove Theorem 1.1 in Sect. 2.1. The study of the regularity of the fractional maximal
operator was initiated by Kinnunen and Saksman. They proved in [20,Theorem 2.1] that for-
mula (1.2) holds for 0 ≤ α < d/p and 1 < p < ∞. They showed |∇Mc

α f (x)| ≤ Mα|∇ f |(x)
for almost every x ∈ R

d , and then concluded formula (1.2) from the L(p−1−α/d)−1
-

boundedness of Mα , which fails for p = 1. Another result by Kinnunen and Saksman
in [20] is that for all α ≥ 1 we have |∇Mc

α f (x)| ≤ (d − α)Mα−1 f (x) for almost every
x ∈ R

d . In [10] Carneiro and Madrid used this, the Ld/(d−α)-boundedness of Mα−1, and
Sobolev embedding to concluded formula (1.2). All of this also works for the uncentered
fractional maximal function M̃α . The strategy fails for α < 1.

Our main result is the extension of formula (1.2) to the endpoint p = 1 for 0 < α < 1
which has been an open problem. Our proof of Theorem 1.1 also works for 1 ≤ α ≤ d ,
and further extends to 1 ≤ p < ∞, 0 < α ≤ d/p. We present the proof for this range
of parameters here, since it also smoothens out the blowup of the constants for p → 1
which occurs in the previous proof for p > 1. Note that interpolation is not immediately
available for results on the gradient level. Our approach fails for α = 0. The corner point
α = 0, p = 1 is the earlier mentioned question by Hajłasz and Onninen and remains open.
Similarly toCarneiro andMadrid,webegin the proofwith a pointwise estimate |∇Mα f (x)| ≤
(d − α)Mα,−1 f (x) which holds for all 0 < α < d for bounded functions. We estimate
Mα,−1 f in Theorem 1.2 and from that conclude Theorem 1.1.

For the centered fractional maximal function define

Bc
α(x) = {B(x, r)}

where r is the largest radius such that Mc
α f (x) = rα fB(x,r) and for the uncentered fractional

maximal function define

B̃α(x) = {
B : x ∈ B, r(B)α fB = M̃α f (x), ∀A � B r(A)α f A < M̃α f (x)

}
.

Then for almost every x ∈ R
d the setsBc

α(x) and B̃α(x) are nonempty, i.e. the supremum in the
definition of the maximal function is attained in a largest ball B with x ∈ B, see Lemma 2.2.
For Bα ∈ {Bc

α, B̃α} denote Bα = ⋃
x∈Rd Bα(x). For β ∈ R with −1 ≤ α +β < d this allows

us to define the following maximal functions

Mc
α,β f (x) = sup

B∈Bc
α :x∈B

r(B)α+β fB ,
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M̃α,β f (x) = sup
B∈B̃α :x∈B

r(B)α+β fB

for almost every x ∈ R
d . Note that also for the centered version the supremum is all balls

B ∈ Bc
α whose closure contains x , not only over those centered in x .

Theorem 1.2 Let 1 ≤ p < ∞ and 0 < α < d and β ∈ R with 0 ≤ α + β + 1 < d/p and
Mα,β ∈ {Mc

α,β, M̃α,β}. Then for all f ∈ W 1,p(Rd) we have

‖Mα,β f ‖(p−1−(1+α+β)/d)−1 ≤ Cd,α,β,p‖∇ f ‖p

where the constant Cd,α,β,p depends only on d, α, β and p. In the endpoint p = 1 we can
replace f ∈ W 1,1(Rd) by f ∈ BV(Rd). The endpoint result for p = d/(1 + α + β) holds
true as well.

We prove Theorem 1.2 in Sect. 4. There had also been progress on 0 < α ≤ 1 similarly as
for the Hardy–Littlewood maximal operator. For the uncentered fractional maximal function
Carneiro and Madrid proved Theorem 1.1 for d = 1 in [10], and Luiro proved Theorem 1.1
for radial functions in [25]. Beltran and Madrid transferred Luiros result to the centered
fractional maximal function in [5]. In [6] Beltran et al. proved Theorem 1.1 for d ≥ 2
and a centered maximal operator that only uses balls with lacunary radius and for maximal
operators with respect to smooth kernels. The next step after boundedness is continuity of
the gradient of the fractional maximal operator, as it implies boundedness, but doesn’t follow
from it. In [4, 26] Beltran andMadrid already proved it for the uncentered fractional maximal
operator in the cases where the boundedness is known.

For a dyadic cube Qwedenote by l(Q) the sidelength of Q. The fractional dyadicmaximal
function is defined by

Md
α f (x) = sup

Q:Q�x
l(Q)α fQ,

where the supremum is taken over all dyadic cubes that contain x . The dyadic maximal
operator has enjoyed a bit less attention than its continuous counterparts, such as the centered
and the uncentered Hardy–Littlewood maximal operator. The dyadic maximal operator is
different in the sense that formula (1.2) only holds for α = 0, p = 1 and only in the variation
sense, for which formula (1.2) has been proved in [29]. But for any other α and p formula
(1.2) fails because ∇Md

α f is not a Sobolev function. We can however prove Theorem 1.4,
the dyadic analog of Theorem 1.2. For α ≥ 0 and a function f ∈ L1(Rd) define Qα to be
the set of all cubes Q such that for all dyadic cubes P � Q we have l(P)α fP < l(Q)α fQ .

Remark 1.3 In the uncentered setting one could also define Bα in a similar way as Qα .

For β ∈ R with −1 ≤ α + β < d also define in the dyadic setting

Md
α,β f (x) = sup

Q∈Qα :x∈Q
l(Q)α+β fQ .

Then

Theorem 1.4 Let 1 ≤ p < ∞ and 0 < α < d and β ∈ R with 0 ≤ α + β + 1 < d/p. Then
for all f ∈ W 1,p(Rd) we have

‖Md
α,β f ‖(p−1−(1+α+β)/d)−1 ≤ Cd,α,β,p‖∇ f ‖p

where the constant Cd,α,β,p depends only on d, α, β and p. In the endpoint p = 1 we can
replace f ∈ W 1,1(Rd) by f ∈ BV(Rd). The endpoint result for p = d/(1 + α + β) holds
true as well.
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Our main result in the dyadic setting is the following.

Theorem 1.5 Let 1 ≤ p < ∞ and 0 < α < d. Then for all f ∈ W 1,p(Rd) we have

( ∑
Q∈Qα

(l(Q)
d
p −1 fQ)p

) 1
p

≤ Cd,α,p‖∇ f ‖p

where the constant Cd,α,p depends only on d, α and p. In the endpoint p = 1 we can replace
f ∈ W 1,1(Rd) by f ∈ BV(Rd). The endpoint result for p = ∞ holds true as well.

Remark 1.6 Note that in Theorem 1.5 we restrict 0 < α < d and not 0 < α < d/p.

In Sect. 2.2 we conclude Theorem 1.4 from Theorem 1.5, and in Sect. 3 we prove Theo-
rem 1.5.

Remark 1.7 Theorem 1.5 fails for α = 0. However for α = 0 and p = 1, a version with fQ
by replaced by fQ − λQ holds for certain λQ , see [29,Proposition 2.5].

Remark 1.8 For centered, uncentered maximal operator and dyadic maximal operator, The-
orems 1.2, 1.4 and 1.5 admit localized versions of the following form. For D ⊂ R

d we
set Bα(D) = ⋃

x∈D Bα(x) and E = ⋃{cB : B ∈ Bα(D)} with some large c > 1. Then
Theorem 1.2 also holds in the form

‖∇Mα,−1 f ‖L(p−1−α/d)−1
(D)

≤ Cd,α,p‖∇ f ‖L p(E).

Theorem 1.4 holds with the dyadic version of E and Theorem 1.5 where the sum on the left
hand side is over any subset Q ⊂ Qα and the integral on the right is over

⋃{cQ : Q ∈ Q}.
These localized results directly follow from the same proof as the global results, if one keeps
track of the balls and cubes which are being dealt with. The respective localized version of
Theorem 1.1 can be proven if one has Lemma 2.4 without the differentiability assumption.
Then in the reduction of Theorem 1.1 to Theorem 1.2 one could apply Theorem 1.2 to the
same function f andQα for which one is showing Theorem 1.1, bypassing the approximation
step and therefore preserving the locality of Theorem 1.2. This is in contrast to the actual
local fractional maximal operator, for whom Theorem 1.1 fails by [17,Example 4.2], which
works for α > 0. However if α = 0 and p > 1 then the local fractional maximal operator is
again bounded due to [19], and by [30] for α = 0 and p = 1 and characteristic functions.

Dyadic cubes are much easier to deal with than balls, but the dyadic version still serves
as a model case for the continuous versions since both versions share many properties. This
can be observed in [30], where we proved var M01E ≤ Cd var 1E for the dyadic maximal
operator and the uncentered Hardy–Littlewood maximal operator. The proof for the dyadic
maximal operator is much shorter, but the same proof idea also works for the uncentered
maximal operator. Also in this paper a part of the proof of Theorem1.4 for the dyadicmaximal
operator is used also in the proof of Theorem 1.2 for the Hardy–Littlewoodmaximal operator.

The plan for the proof of Theorem 1.1 is the following. For simplicity we write it down
for p = 1.∫

|∇Mα f | d
d−α ≤ (d − α)

d
d−α

∫
(Mα,−1 f )

d
d−α

= d(d − α)
α

d−α

∫ ∞

0
λ

α
d−α L({Mα,−1 f > λ}) dλ
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= d(d − α)
α

d−α

∫ ∞

0
λ

α
d−α L

(⋃
{B : B ∈ Bα, r(B)α−1 fB > λ}

)
dλ

�α

∫ ∞

0
λ

α
d−α

∑
B∈B̃α,cr(B)α−1 fB>λ

L(B) dλ

=
∑
B∈B̃α

∫ cr(B)α−1 fB

0
λ

α
d−α dλ

= (1 − α/d)c
d

d−α

(dσd)
d

d−α

∑
B∈B̃α

( fBHd−1(∂B))
d

d−α

≤ (1 − α/d)c
d

d−α

(dσd)
d

d−α

( ∑
B∈B̃α

fBHd−1(∂B)

) d
d−α

�α

( ∑
Q∈Q̃α

fQHd−1(∂Q)

) d
d−α

≤ Cd,α(var f )
d

d−α ,

where σd is the volume of the d-dimensional unit ball. In the second step we apply the layer
cake formula, in the forth step we pass from a union of arbitrary balls to very disjoint balls
B̃α with a Vitali covering argument, in the eighth step we pass from those balls to comparable
dyadic cubes and as the last step use a result from the dyadic setting.

We use α > 0 as follows. Let A be a ball and B(x, r) be a smaller ball that inter-
sects A. Then by A ⊂ B(x, 3r(A)) we have 3α−dr(A)α f A ≤ (3r(A))α fB(x,3r(A)). Thus
if rα fB(x,r) ≤ 3α−dr(A)α f A then B(x, r) is not used by the fractional maximal operator.
Hence it suffices to consider balls B with 3d−α(r(B)/r(A))α fB > f A. From that we can
conclude fB > 2 f A or r(B) �α r(A). Thus for any two balls B, A used by the fractional
maximal operator, one of the following alternatives applies.

(1) The balls B and A are disjoint.
(2) The intervals ( fB/2, fB) and ( f A/2, f A) are disjoint.
(3) The radii r(B) and r(A) are comparable.

We use this in the forth step of the proof strategy above. We use a dyadic version of these
alternatives in last step. Note that for α = 0 optimal balls B of arbitrarily different sizes with
similar values fB can intersect.

Remark 1.9 There is a proof of Theorem 1.1 which has a structure parallel to the one pre-

sented above, but three steps are replaced. The estimate |∇Mα f | d
d−α ≤ (d − α)

d
d−α Mα,−1 f

is replaced by |∇Mα f | d
d−α ≤ (d − α)

α
d−α |∇Mα f |(Mα,−1 f )

α
d−α , the layer cake formula

is replaced by the coarea formula [13,Theorem 3.11] and the Vitali covering argument is
replaced by [30,Lemma 4.1] which deals with the boundary of balls instead of their volume.
Otherwise it is identical to the proof presented in this paper.∫

|∇Mα f | d
d−α ≤ (d − α)

α
d−α

∫
|∇Mα f |(Mα,−1 f )

α
d−α

= (d − α)
α

d−α

∫ ∞

0

∫
∂∗{Mα f >λ}

(Mα,−1 f )
α

d−α dλ
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= (d − α)
α

d−α

∫ ∞

0

∫
∂∗

⋃{B:B∈Bα,r(B)α fB>λ}
(r(Bx )

α−1 fBx )
α

d−α dHd−1(x) dλ

�α

∫ ∞

0

∑
B∈B̃α,r(B)α fB>λ

Hd−1(∂B)(r(B)α−1 fB)
α

d−α dλ

�α

∑
B∈B̃α

( fBHd−1(∂B))
d

d−α

and from there on arrive exactly as before at the bound by (var f )
d

d−α . Thismotivates a similar
replacement in the dyadic setting. Instead of proving the boundedness of ‖Mα,−1 f ‖d/(d−α),
Theorem 1.4, one might bound

∫ ∞

0

∫
∂∗{Mα f >λ}

(Mα,−1 f )
α

d−α dλ.

Note that formally
∫

|∇Mα f (x)|(Mα,−1 f (x))
α

d−α dx

is not well defined because Mα,−1 f jumps where ∇Mα f is supported.

Remark 1.10 In the proof of Theorems 1.1, 1.2, 1.5 and 1.4 we do not a priori need f ∈
L p(Rd), it suffices to have f ∈ Lq(Rd) for some 1 ≤ q ≤ p. However from ‖∇ f ‖p < ∞
we can then anyways conclude f ∈ L p(Rd) by Sobolev embedding.

2 Reformulation

In order to avoid writing absolute values, we consider only nonnegative functions f for the
rest of the paper. We can still conclude Theorems 1.1, 1.2, 1.4 and 1.5 for signed functions
because | f |B = fB and

∣∣∇| f |(x)∣∣ ≤ |∇ f (x)|. Recall the set of dyadic cubes
⋃
n∈Z

{
[x1, x1 + 2n) × · · · × [xd , xd + 2n) : ∀i ∈ {1, . . . , n} xi ∈ 2nZ

}
.

For a set B of balls or dyadic cubes we denote

⋃
B =

⋃
B∈B

B

as is commonly used in set theory. By a �γ1,...,γn b we mean that there exists a constant
Cd,γ1,...,γn that depends only on the values of γ1, . . . , γn and the dimension d and such that
a ≤ Cd,γ1,...,γn b.

We work in the setting of functions of bounded variation, as in Evans–Gariepy
[13,Section 5]. For an open set � ⊂ R

d a function u ∈ L1
loc(�) is said to have locally

bounded variation if for each open and compactly supported V ⊂ � we have

sup
{∫

V
u divϕ : ϕ ∈ C1

c (V ; R
d), |ϕ| ≤ 1

}
< ∞.
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Such a function comes with a measure μ and a function ν : � → R
d that has |ν| = 1 μ-a.e.

such that for all ϕ ∈ C1
c (�; R

d) we have∫
u divϕ =

∫
ϕν dμ.

We denote ∇u = −νμ and define the variation of u by

var� u = μ(�) = ‖∇u‖L1(�).

If ∇u is a locally integrable function we call u weakly differentiable.

Lemma 2.1 Let 1 < p ≤ ∞ and (un)n be a sequence of locally integrable functions with

sup
n

‖∇un‖p < ∞

which converge to u in L1
loc(R

d). Then u is weakly differentiable and

‖∇u‖p ≤ lim sup
n

‖∇un‖p.

Proof By the weak compactness of L p(Rd) there is a subsequence, for simplicity also
denoted by (un)n , and a v ∈ L p(Rd)d such that ∇un → v weakly in L p(Rd) and
‖v‖p ≤ lim supn ‖∇un‖p . Let ϕ ∈ C∞

c (Rd) and i ∈ {1, . . . , d}. Then∫
u∂iϕ = lim

n→∞

∫
un∂iϕ = − lim

n→∞

∫
∂i unϕ = −

∫
viϕ

which means ∇u = v. ��

2.1 Hardy–Littlewoodmaximal operator

In this section we reduce Theorem 1.1 to Theorem 1.2. Let 1 ≤ p < d/α and f ∈ L p(Rd).
For x ∈ R

d consider for the uncentered maximal operator the set of balls B with x ∈ B and
Mα f (x) = r(B)α fB , and for the centered maximal operator such balls B which are centered
in x . Recall that we denote by Bα(x) the subset of those balls that have the largest radius.

Lemma 2.2 Let Mα ∈ {Mc
α, M̃α} and 1 ≤ p < d/α. Let f ∈ L p(Rd) and x ∈ R

d be a
Lebesgue point of f . Then Bα(x) is nonempty.

Proof We formulate one proof that works both for the centered and uncentered fractional
maximal operator. Let (Bn)n a sequence of balls with x ∈ Bn and

Mα f (x) = lim
n→∞ r(Bn)

α fBn .

Assume there is a subsequence (nk)k with r(Bnk ) → 0. Then fBnk → f (x) and thus

lim sup
k→∞

r(Bnk )
α fBnk ≤ f (x) lim sup

n→∞
r(Bnk )

α = 0,

a contradiction. Assume there is a subsequence (nk)k with r(Bnk ) → ∞. Then

lim sup
k→∞

r(Bnk )
α fBnk ≤ lim sup

k→∞
r(Bnk )

αL(Bnk )
−1L(Bnk )

1− 1
p

(∫
Bnk

f p
) 1

p

= lim sup
k→∞

σ
− 1

p
d r(Bnk )

α− d
p

(∫
Bnk

f p
) 1

p
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≤ σ
− 1

p
d lim sup

k→∞
r(Bnk )

α− d
p ‖ f ‖p = 0

since ‖ f ‖p < ∞, a contradiction. Hence there is a subsequence (nk)k such that r(Bnk )

converges to some value r ∈ (0,∞). We can conclude that there is a ball B with x ∈ B and
r(B) = r and

∫
Bnk

f → ∫
B f . So we have

Mα f (x) = lim
k→∞ r(Bnk )

α fBnk = r(B)α fB .

A similar argument shows that there exist a largest ball B for which supB�x r(B)α fB is
attained. ��
Lemma 2.3 Let Mα ∈ {Mc

α, M̃α}. and f ∈ L∞(Rd) have bounded variation. Then Mα f is
locally Lipschitz.

Proof If f = 0 then the statement is obvious, so consider f �= 0. Let B be a ball. Then there
is a ball A ⊃ B with f A > 0. Define

r0 = 2r(A)
( f A
2d‖ f ‖∞

)1/α

and let x ∈ B. Then A ⊂ B(x, 2r(A) so that for r < r0 we have

rα fB(x,r) < (2r(A))α
f A

2d‖ f ‖∞
‖ f ‖∞ ≤ (2r(A))α fB(x,2r(A)).

That means that on B the maximal function Mα f is the supremum over all functions
σ−1
d rα−d f ∗ 1B(z,r) with r ≥ r0 and z such that 0 ∈ B(z, r) for the uncentered opera-

tor and z = 0 for the centered. Those convolutions are weakly differentiable with

∇(rα−d f ∗ 1B(z,r)) = rα−d(∇ f ) ∗ 1B(z,r)

so that

|∇(rα−d f ∗ 1B(z,r))| ≤ rα−d var f ≤ rα−d
0 var f .

Thus on B the maximal function Mα f is a supremum of functions with Lipschitz constant
σ−1
d rα−d

0 var f and hence itself Lipschitz with the same constant. ��
The following has essentially already been observed in [17, 20, 23, 25].

Lemma 2.4 Let Mα ∈ {Mc
α, M̃α} and let Mα f be differentiable in x. Then for every B ∈

Bα(x) we have

|∇Mα f (x)| ≤ (d − α)r(B)α−1 fB .

In the uncentered case if x ∈ B we have ∇M̃α f (x) = 0.

Proof Let B(z, r) ∈ Bα(x) and let e be a unit vector. Note that for the centered maximal
operator we have z = x . Then for all h > 0 we have x + he ∈ B(z, r + h). Thus

|∇Mα f (x)| = sup
e

lim
h→0

Mα f (x) − Mα f (x + he)

h

≤ 1

σd
lim
h→0

1

h
(rα−d

∫
B(z,r)

f − (r + h)α−d
∫
B(z+eh,r+h)

f )
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≤ 1

σd
lim
h→0

1

h
(rα−d

∫
B(z,r)

f − (r + h)α−d
∫
B(z,r)

f )

= 1

σd
lim
h→0

1

h
(rα−d − (r + h)α−d)

∫
B(z,r)

f

= 1

σd
(d − α)rα−d−1

∫
B(z,r)

f .

If x ∈ B(z, r) then since for all y ∈ B(z, r)wehaveMα f (y) ≥ Mα f (x)weget∇Mα f (x) =
0. ��

Now we reduce Theorem 1.1 to Theorem 1.2. We prove Theorem 1.2 in Sect. 4.

Proof of Theorem 1.1 For each n ∈ N define a cutoff function ϕn by

ϕn(x) =

⎧⎪⎨
⎪⎩
1, 0 ≤ |x | ≤ 2n,

2 − 2−n |x |, 2n ≤ |x | ≤ 2n+1,

0, 2n+1 ≤ |x | < ∞.

Then |∇ϕn(x)| = 2−n12n≤|x |≤2n+1 and thus

‖ f ∇ϕn‖p = 2−n‖ f ‖L p(B(0,2n+1)\B(0,2n)) → 0 (2.1)

for n → ∞. Denote fn(x) = min{ f (x), n} · ϕn(x). Then by formula (2.1) we have

lim
n→∞ ‖∇ fn‖p = lim

n→∞ ‖∇ fn − min{ f , n}∇ϕn‖p = lim
n→∞ ‖ϕn∇ min{ f , n}‖p = ‖∇ f ‖p.

(2.2)

Since 1 ≤ p < d/α and f ∈ L p(Rd) we have Mα f ∈ L(p−1−α/d)−1,∞(Rd) ⊂ L1
loc(R

d).
Then since Mα fn → Mα f pointwise from below, Mα fn converges to Mα f in L1

loc(R
d). So

from Lemma 2.1 it follows that

‖∇Mα f ‖(p−1−α/d)−1 ≤ lim sup
n→∞

‖∇Mα fn‖(p−1−α/d)−1 .

By Lemma 2.3 we have that Mα fn is weakly differentiable and differentiable almost every-
where, so that by Lemmas 2.2, 2.4 and Theorem 1.2 we have∫

|∇Mα fn |(p−1−α/d)−1 ≤ (d − α)‖Mα fn/r(Bx )‖(p−1−α/d)−1

≤ (d − α)‖Mα,−1 fn‖(p−1−α/d)−1

�α ‖∇ fn‖p,

which by formula (2.2) converges to ‖∇ f ‖p. for n → ∞. For the endpoint p = d/α the
proof works the same. ��

2.2 Dyadic maximal operator

In this section we reduce Theorem 1.4 to Theorem 1.5. Let 1 ≤ p < d/α and f ∈ L p(Rd).
Recall that we denote by Qα the set of all dyadic cubes Q such that for every dyadic cube
ball P � Q we have l(P)α fP < l(Q)α fQ . For x ∈ R

d , we denote by Qα(x) the set of
dyadic cubes Q with x ∈ Q and

Md
α f (x) = l(Q)α fQ .
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Lemma 2.5 Let 1 ≤ p < d/α and f ∈ L p(Rd) and x ∈ R
d be a Lebesgue point of f . Then

Qα(x) contains a dyadic cube Qx with

l(Qx ) = sup
Q∈Qα(x)

l(Q)

and that cube also belongs to Qα .

Proof Let (Qn)n be a sequence of cubes with l(Qn) → ∞. Then

lim sup
n→∞

l(Qn)
α fQn ≤ lim sup

n→∞
l(Qn)

α−dL(Qn)
1− 1

p

(∫
Qn

f p
) 1

p

= lim sup
n→∞

l(Qn)
α−d+d− d

p

(∫
Qn

f p
) 1

p

= lim sup
n→∞

l(Qn)
α− d

p

(∫
Qn

f p
) 1

p

≤ lim sup
n→∞

l(Qn)
α− d

p ‖ f ‖p = 0.

Let (Qn)n be a sequence of cubeswith l(Qn) → 0.Then since fQn → f (x) and l(Qn)
α → 0,

we have l(Qn)
α fQ → 0. Thus since for each k there are at most 2d many cubes Q with

l(Q) = 2k and whose closure contains x , the supremum has to be attained for a finite set of
cubes from which we can select the largest. ��

Now we reduce Theorem 1.4 to Theorem 1.5. We prove Theorem 1.5 in Sect. 3.

Proof of Theorem 1.4 By Lemma 2.5, Md
α,β f is defined almost everywhere. We have

∫
(Md

α,β f (x))(p
−1−(1+α+β)/d)−1

dx ≤
∫ ∑

Q∈Qα

1Q(x)(l(Q)α+β fQ)(p
−1−(1+α+β)/d)−1

dx

=
∑
Q∈Qα

L(Q)(l(Q)α+β fQ)(p
−1−(1+α+β)/d)−1

=
∑
Q∈Qα

(l(Q)d/p−1 fQ)(p
−1−(1+α+β)/d)−1

≤
( ∑
Q∈Qα

(
l(Q)d/p−1 fQ

)p)(1−p(1+α+β)/d)−1

�α ‖∇ f ‖(p−1−(1+α+β)/d)−1

p ,

where the last step follows from Theorem 1.5. In the endpoint case we have by Theorem 1.5

‖Md
α,β f ‖∞ = sup

Q∈Qα

l(Q)α+β fQ

= sup
Q∈Qα

l(Q)
d
p −1 fQ ≤

( ∑
Q∈Qα

(l(Q)
d
p −1 fQ)p

) 1
p

�p ‖∇ f ‖p.

��
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3 Dyadic maximal operator

In this section we prove Theorem 1.5. For a measurable set E ⊂ R
d we define the measure

theoretic boundary by

∂∗E =
{
x : lim sup

r→0

L(B(x, r)\E)

rd
> 0, lim sup

r→0

L(B(x, r) ∩ E)

rd
> 0

}
.

Wedenote the topological boundary by ∂E . As in [29, 30], our approach to the variation is the
coarea formula rather then the definition of the variation, see for example [13,Theorem 5.9].

Lemma 3.1 Let f ∈ L1
loc(R

d) with locally bounded variation and U ⊂ R
d . Then

varU f =
∫

R

Hd−1(∂∗{ f > λ} ∩U ) dλ.

Lemma 3.2 Let f ∈ L1
loc(R

d) be weakly differentiable and U ⊂ R
d and λ0 < λ1. Then

∫
{x∈U :λ0< f (x)<λ1}

|∇ f | =
∫ λ1

λ0

Hd−1(∂∗{ f > λ} ∩U ) dλ.

Recall also the relative isoperimetric inequality for cubes.

Lemma 3.3 Let Q be a cube and E be a measurable set. Then

min{L(Q ∩ E),L(Q\E)}d−1 � Hd−1(∂∗E ∩ Q)d .

We will use a result from the case α = 0. For a subset Q ⊂ Q0 and Q ∈ Q0, we denote

λ
Q
Q = min

{
max

{
inf{λ : L({ f > λ} ∩ Q) < 2−d−2L(Q)}, sup{ fP : P ∈ Q, P � Q}

}
, fQ

}
.

Proposition 3.4 Let 1 ≤ p < ∞ and f ∈ L1
loc(R

d) and |∇ f | ∈ L p(Rd). Then for every set
Q ⊂ Q0 we have ∑

Q∈Q
(l(Q)

d
p −1

( fQ − λQ
Q ))p �p ‖∇ f ‖p

p.

For p = 1 it also holds with ‖∇ f ‖1 replaced by var f .

Remark 3.5 We have that α < β implies Qβ ⊂ Qα . This is because for l(Q) < l(P),
l(Q)α fQ > l(P)α fP becomes a stronger estimate the larger α becomes.

By Remark 3.5 we can apply Proposition 3.4 to Q = Qα . For p = 1 Proposition 3.4 is
Proposition 2.5 in [29]. For the proof for all p ≥ 1 we follow the strategy in [29]. In particular
we use the following result. For Q ∈ Q0 we denote

λ̄Q = min

{
max

{
inf{λ : L({ f > λ} ∩ Q) < L(Q)/2}, sup{ fP : P ∈ Q0, P � Q}

}
, fQ

}
.

Lemma 3.6 (Corollary 3.3 in [29]) Let f ∈ L1
loc(R

d). Then for every Q ∈ Q0 we have

L(Q)( fQ − λ∅
Q) ≤ 2d+2

∑
P∈Q0,P�Q

∫ fP

λ̄P

L(P ∩ { f > λ}) dλ.
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Note that fP > λ̄P implies P ∈ Q0.

Proof of Proposition 3.4 By Lemmas 3.3, 3.2 we have for each P ∈ Q0 and P � Q that
∫ fP

λ̄P

L({ f > λ} ∩ P) dλ ≤ l(P)

∫ fP

λ̄P

L({ f > λ} ∩ P)1−
1
d dλ

� l(P)

∫ fP

λ̄P

Hd−1(∂∗{ f > λ} ∩ P) dλ

= l(P)

∫
x∈P:λ̄P< f (x)< fP

|∇ f |

= l(P)

∫
Q

|∇ f |1P×(λ̄P , fP )(x, f (x)) dx .

We note that for any Q ∈ Qwe have λQ
Q ≥ λ∅

Q and use Lemma 3.6. Then we apply the above

calculation, Hölder’s inequality and use that (λ̄P , fP ) and (λ̄Q, fQ) are disjoint for P � Q,

∑
Q∈Q

(
l(Q)

d
p −1

( fQ − λ
Q
Q )

)p

≤ 2d+2
∑
Q∈Q

(
l(Q)

d
p −1−d ∑

P∈Q0,P�Q

∫ fP

λ̄P

L({ f > λ} ∩ P) dλ

)p

�
∑
Q∈Q

(
l(Q)

d
p −1−d

∫
Q

|∇ f |
∑

P∈Q0,P�Q

l(P)1P×(λ̄P , fP )(x, f (x)) dx

)p

≤
∑
Q∈Q

(
l(Q)

d
p −1−d+d(1− 1

p )
[∫

Q
|∇ f |p

( ∑
P∈Q0,P�Q

l(P)1P×(λ̄P , fP )(x, f (x))

)p
dx

] 1
p
)p

=
∑
Q∈Q

(
l(Q)−1

[ ∑
P∈Q0,P�Q

l(P)p
∫
(x, f (x))∈P×(λ̄P , fP )

|∇ f |p
] 1

p
)p

=
∑
Q∈Q

l(Q)−p
∑

P∈Q0,P�Q

l(P)p
∫
(x, f (x))∈P×(λ̄P , fP )

|∇ f |p

=
∑
P∈Q0

l(P)p
∫
x∈P: f (x)∈(λ̄P , fP )

|∇ f |p
∑

Q∈Q,Q�P

l(Q)−p

≤ 1

2p − 1

∑
P∈Q0

∫
x∈P: f (x)∈(λ̄P , fP )

|∇ f |p

≤ 1

2p − 1

∫
|∇ f |p.

For p = 1 with var f instead of ‖∇ f ‖1 we do not use Lemma 3.2 or Hölder’s inequality,
but interchange the order of summation first and then apply Lemma 3.1. ��

For a dyadic cube Q denote by prt(Q) the dyadic parent cube of Q.

Lemma 3.7 Let 1 ≤ p < d/α and f ∈ L p(Rd) and let ε > 0. Then there is a subset Q̃α of
Qα such that for each Q ∈ Qα with l(Q)α fQ > ε there is a P ∈ Q̃α with Q ⊂ prt(P) and
fQ ≤ 2d fP . Furthermore for any two Q, P ∈ Q̃α one of the following holds.
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(1) prt(Q) = prt(P).

(2) prt(Q) and prt(P) don’t intersect.
(3) fQ/ fP /∈ (2−d , 2d).

Proof Set Q̃0
α to be the set of maximal cubes Q with l(Q)α fQ > ε. For any dyadic cube Q

with l(Q)α fQ > ε we have

ε < l(Q)α−d
∫
Q

f ≤ l(Q)
α−d+d− d

p

(∫
Q

f p
) 1

p ≤ l(Q)
α− d

p ‖ f ‖p

which implies

l(Q) < (‖ f ‖p/ε)
(p−1−α/d)−1

. (3.1)

Hence ⋃
Q̃0

α =
⋃

{Q ∈ Qα : l(Q)α fQ > ε}.
Assume we have already defined Q̃n

α . Then define Q̃n+1
α to be the set of maximal cubes

Q ∈ Qα with

fQ > 2d sup
P∈Q̃n

α :Q⊂prt(P)

fP . (3.2)

Set Q̃α = Q̃0
α ∪ Q̃1

α ∪ . . . .

Assume there is a cube Q with l(Q)α fQ > ε such that for all P ∈ Q̃α with Q ⊂ prt(P)

we have fQ > 2d fP . Then by formula (3.1) there is a maximal such cube Q. Furthermore
there is a smallest P ∈ Q̃α with Q ⊂ prt(P) and an n with P ∈ Q̃n

α . But then Q is a maximal
cube that satisfies formula (3.2), which implies Q ∈ Q̃n+1

α , a contradiction.
If for Q, P ∈ Q̃α neither (1) nor (2) holds, then after renaming we have prt(Q) � prt(P).

Then P has been added to Q̃α before Q, and since Q ⊂ prt(P) this means fQ > 2d fP . ��
Lemma 3.8 Let 1 ≤ p < ∞ and f ∈ W 1,p(Rd) and let ε > 0. Let Q ⊂ Q0 be a set of
dyadic cubes such that

(1) for each Q ∈ Q there is an ancestor cube p(Q) � Q with l(p(Q)) ≤ l(Q)/ε and
fQ > 2ε f p(Q),

(2) and for any two distinct Q, P ∈ Q such that p(Q) and p(P) intersect we have fQ/ fP /∈
(2−ε, 2ε).

Then
( ∑
Q∈Q

(l(Q)
d
p −1 fQ)p

) 1
p

�ε ‖∇ f ‖p.

The endpoint p = ∞ holds as well.

Proof We divide into two types of cubes and deal with them separately. Denote

Q− = {Q ∈ Q : L({ f > 2−ε/3 fQ} ∩ Q) < 2−d−2L(Q)},
Q+ = {Q ∈ Q : L({ f > 2−ε/3 fQ} ∩ Q) ≥ 2−d−2L(Q)}.

Let Q ∈ Q− and recall λQ
Q from Proposition 3.4. Then since

sup{λ : L({ f > λ} ∩ Q) < 2−d−2L(Q)} ≤ 2−ε/3 fQ,
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sup{ fP : P ∈ Q, P � Q} ≤ 2−ε fQ

we have

fQ − λQ
Q ≥ (1 − 2−ε/3) fQ .

Since Q ⊂ Q0 we conclude from Proposition 3.4

∑
Q∈Q−

(
l(Q)

d
p −1 fQ

)p ≤ (1 − 2−ε/3)−p
∑

Q∈Q−

(
l(Q)

d
p −1

( fQ − λQ
Q )

)p
�ε,p ‖∇ f ‖p

p.

Let Q ∈ Q+ and λ > 2−2ε/3 fQ . Since by (1) we have 2ε/3 f p(Q) < 2−2ε/3 fQ , we obtain
from Chebyshev’s inequality

L(p(Q) ∩ { f > λ}) ≤ 2−ε/3L(p(Q)). (3.3)

Since Q ∈ Q+, for λ < 2−ε/3 fQ we have

2−d−2εdL(p(Q)) ≤ 2−d−2L(Q) ≤ L(Q ∩ { f > λ}) ≤ L(p(Q) ∩ { f > λ}). (3.4)

So for all 2−2ε/3 fQ ≤ λ ≤ 2−ε/3 fQ we can conclude by the isoperimetric inequality
Lemma 3.3 and formulas (3.3) and (3.4) that

Hd−1(∂∗{ f > λ} ∩ p(Q))d � min{L(p(Q) ∩ { f > λ}),L(p(Q)\{ f > λ})}d−1

≥ (L(p(Q))min{εd2−d−2, 1 − 2−ε/3})d−1

�ε L(p(Q))d−1.

Thus for each Q ∈ Q+ by Lemma 3.2 and Hölder’s inequality we have

∫ 2−ε/3 fQ

2−2ε/3 fQ
l(p(Q))d−1 dλ �ε

∫ 2−ε/3 fQ

2−2ε/3 fQ
Hd−1(∂∗{ f > λ} ∩ p(Q)) dλ

=
∫
x∈p(Q): f (x)∈(2−2ε/3,2−ε/3) fQ

|∇ f |

≤ l(p(Q))
d− d

p

(∫
x∈p(Q): f (x)∈(2−2ε/3,2−ε/3) fQ

|∇ f |p
) 1

p

.

Now we use (2) and conclude
∑

Q∈Q+

(
l(Q)

d
p −1 fQ

)p
�ε,p

∑
Q∈Q+

(
l(p(Q))

d
p −1 f p(Q)

)p

�ε,p

∑
Q∈Q+

(
l(p(Q))

d
p −d

∫ 2−ε/3 fQ

2−2ε/3 fQ
l(p(Q))d−1 dλ

)p

�ε,p

∑
Q∈Q+

∫
x∈p(Q): f (x)∈(2−2ε/3,2−ε/3) fQ

|∇ f |p

≤
∫

|∇ f |p.

For p = 1 with var f instead of ‖∇ f ‖1 we use Lemma 3.1 instead of Lemma 3.2 and
Hölder’s inequality. For p = ∞ let Q ∈ Q. Then by the Sobolev-Poincaré inequality we
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have

‖∇ f ‖∞ ≥ ‖∇ f ‖L∞(p(Q)) � l(p(Q))−d−1
∫
p(Q)

| f − f p(Q)|

≥ l(Q)−d−1εd+1
∫
Q

| f − f p(Q)|

≥ l(Q)−d−1εd+1
∫
Q

f − f p(Q)

= l(Q)−1εd+1( fQ − f p(Q))

≥ l(Q)−1εd+1(1 − 2−ε) fQ .

��
Proof of Theorem 1.5 Let ε > 0 and Q̃α be the set of cubes from Lemma 3.7. Let Q ∈ Qα .
Then there is a P ∈ Q̃α with Q ⊂ prt(P) and fQ ≤ 2d fP . Then fQ ≤ 4d fprt(P). Thus since
l(Q)α fQ > l(prt(P))α fprt(P) we have l(Q) > 4−d/α l(prt(P)). Thus for each P there are at
most cα many Q ∈ Qα with Q ⊂ prt(P) and fQ ≤ 2d fP . We conclude

∑
Q∈Qα,l(Q)α fQ>ε

(
l(Q)

d
p −1 fQ

)p ≤
∑
P∈Q̃α

∑
Q∈Qα, Q⊂prt(P), fQ≤2d fP

(
l(Q)

d
p −1 fQ

)p

�α,p cα

∑
P∈Q̃α

(
l(P)

d
p −1 fP

)p
.

For each dyadic cube P ∈ {prt(Q) : Q ∈ Q̃α} pick a Q ∈ Q̃α with P = prt(Q) such
that for all Q′ ∈ Q̃α with P = prt(Q′) we have fQ′ ≤ fQ . Denote by Q̂α the set of all such
dyadic cubes Q. Then

∑
Q∈Q̃α

(
l(Q)

d
p −1 fQ

)p ≤
∑

P∈{prt(Q):Q∈Q̃α}

∑
Q∈Q̃α :P=prt(Q)

(
l(Q)

d
p −1 fQ

)p

≤
∑

P∈{prt(Q):Q∈Q̃α}
2d

∑
Q∈Q̂α :P=prt(Q)

(
l(Q)

d
p −1 fQ

)p

= 2d
∑
Q∈Q̂α

(
l(Q)

d
p −1 fQ

)p
.

We want to show that Lemma 3.8 applies to Q̂α with p(Q) = prt(Q). Since Q̂α ⊂ Qα we
have Q̂α ⊂ Q0 by Remark 3.5, and (1) follows from fQ > 2α fprt(Q). For (2) let Q, P ∈ Q̂α

be distinct such that prt(Q) and prt(P) intersect. Sincewe have prt(Q) �= prt(P), Lemma 3.7
implies fQ/ fP /∈ (2−d , 2d). Thus by Lemma 3.8 we have

2d
∑
Q∈Q̂α

(
l(Q)

d
p −1 fQ

)p
�α,p ‖∇ f ‖p

p.

We have proven for every ε > 0 that
∑

Q∈Qα,l(Q)α fQ>ε

(
l(Q)

d
p −1 fQ

)p
�α,p ‖∇ f ‖p

p

with constant independent of ε. So we can let ε go to zero and conclude Theorem 1.5.
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For the endpoint p = ∞ let Q ∈ Qα . Then we use fprt(Q) ≤ 2−α fQ and copy the proof
of the endpoint in Lemma 3.8 with p(Q) = prt(Q) and ε = 1/2. ��

4 Hardy–Littlewoodmaximal operator

In this section we prove Theorem 1.2.

4.1 Making the balls disjoint

Lemma 4.1 Let Mα ∈ {Mc
α, M̃α} and 1 ≤ p < d/(1 + α + β) and f ∈ L p(Rd) and let

ε > 0. Then for any c1 ≥ 2, c2 ≥ 1 there is a set of balls B̃ ⊂ Bα such that for two balls
B, A ∈ B̃ we have c1B ∩ c1A = ∅ or fA/ fB /∈ (c−1

2 , c2), and furthermore
∫ ∞

ε

λ(p−1−(1+α+β)/d)−1−1L
(⋃{

B ∈ Bα : r(B)α+β fB > λ
})

dλ

�α,β,p,c1,c2

(∑
B∈B̃

(
r(B)

d
p −1 fB

)p
)(1−p(1+α+β)/d)−1

.

Proof Let B ∈ Bα with r(B)α+β fB > ε. Then

ε < r(B)α+β fB ≤ r(B)α+βL(B)−1L(B)1−1/p
(∫

B
f p

)1/p ≤ σ
−1/p
d r(B)α+β−d/p‖ f ‖p,

which means that r(B) is bounded by

K = (σ
−1/p
d ‖ f ‖p/ε)

1/(d/p−α−β).

Define B0 = {B ∈ Bα : r(B) ∈ [1/2, 1]K }. Then for all B ∈ B0 we have that r(B)α fB
is uniformly bounded. Inductively define a sequence of balls as follows. For B0, . . . , Bk−1

already defined choose a ball Bk ∈ B0 such that c1Bk is disjoint from c1B0, . . . , c1Bk−1 and
which attains at least half of

sup{ fB : B ∈ B0, c1B ∩ (c1B0 ∪ . . . ∪ c1Bk−1) = ∅}
if one exists. Set B̃0 = {B0, B1, . . .}. Then for all B ∈ B0 we have that c1B intersects⋃{c1B : B ∈ B̃0}. Define

B0 = {B(x, r) ∈ Bα : ∃A ∈ B̃0 A ⊂ B(x, 5c1r(A)), fB(x,r) ≤ c2 f A}.
Then B0 ⊂ B0. We proceed by induction. For each n ∈ N define

Bn = {
B ∈ Bα\(B0 ∪ . . . ∪ Bn−1) : r(B) ∈ [1/2, 1]2−nK

}
,

as above greedily select a sequence B̃n of balls B ∈ Bn with almost maximal fB such that
for every already selected A ∈ B̃n we have c1B ∩ c1A = ∅, and define

Bn = {
B(x, r) ∈ Bα : ∃A ∈ B̃n A ⊂ B(x, 5c1r(A)), fB(x,r) ≤ c2 f A

}
.

Note that we have Bn ⊂ Bn . Finally set B̃ = B̃0 ∪ B̃1 ∪ . . .. For A ∈ B̃, we denote
UA,λ = {

B(x, r) ∈ Bα : A ⊂ B(x, 5c1r(A)), fB(x,r) ≤ c2 f A, rα+β fB(x,r) > λ
}
.
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Let λ > ε and B ∈ Bα with r(B)α+β fB > λ. Then there is an n with B ∈ Bn , and hence a
A ∈ B̃n with B ∈ UA,λ. Let A ∈ B̃ and B(x, r) ∈ UA,λ. Then A ⊂ B(x, 5c1r(A)). Since
r ∈ Rα f (x) we have

rα fB(x,r) ≥ (5c1r(A))α fB(x,5c1r(A)) ≥ (5c1r(A))α(5c1)
−d fA

which implies

r ≥ (5c1)
1−d/αr(A)( f A/ fB(x,r))

1/α ≥ (5c1)
1−d/αc1/α2 r(A).

Since r ≤ 5c1r(A) it follows that

rβ ≤ r(A)β

{
(5c1)β, β ≥ 0,

(5c1)β−dβ/αcβ/α
2 , β < 0.

Together with

rα fB(x,r) ≤ (5c1r(A))αc2 f A

we obtain

rα+β fB(x,r) ≤ c3r(A)α+β f A,

where

c3 =
{

(5c1)α+βc2, β ≥ 0,

(5c1)α+β−dβ/αc1+β/α
2 , β < 0.

Thus UA,λ is only nonempty if

λ < c3r(A)α+β f A.

We can conclude∫ ∞
ε

λ(p−1−(1+α+β)/d)−1−1L
(⋃

{B ∈ Bα : r(B)α+β fB > λ}
)
dλ

=
∫ ∞
ε

λ(p−1−(1+α+β)/d)−1−1L
( ⋃
A∈B̃

⋃
UA,λ

)
dλ

≤
∑
A∈B̃

∫ ∞
ε

λ(p−1−(1+α+β)/d)−1−1L
(⋃

UA,λ

)
dλ

=
∑
A∈B̃

∫ c3r(A)α+β f A

ε
λ(p−1−(1+α+β)/d)−1−1L

(⋃
UA,λ

)
dλ

≤
∑
A∈B̃

(5c1)
dL(A)

∫ c3r(A)α+β f A

ε
λ(p−1−(1+α+β)/d)−1−1 dλ

≤ (1/p − (1 + α + β)/d)
∑
A∈B̃

(5c1)
dL(A)

(
c3r(A)α+β f A

)(p−1−(1+α+β)/d)−1

= (1/p − (1 + α + β)/d)(5c1)
dc(p

−1−(1+α+β)/d)−1

3 σd
∑
A∈B̃

(
r(A)

d
p −1

f A
)(p−1−(1+α+β)/d)−1

≤ (1/p − (1 + α + β)/d)(5c1)
dc(p

−1−(1+α+β)/d)−1

3 σd

( ∑
A∈B̃

(
r(A)

d
p −1

f A
)p

)(1−p(1+α+β)/d)−1

.

��
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4.2 Transfer to dyadic cubes

In this subsection we pass from disjoint balls to dyadic cubes and then conclude Theorem 1.2
using a result from the dyadic setting.

Remark 4.2 There are 3d dyadic grids D1, . . . ,D3d such that each ball B is contained in a
dyadic cube QB ∈ D = D1 ∪ · · · ∪ D3d with l(Q) � r(B).

Lemma 4.3 Let Mα ∈ {Mc
α, M̃α} and f ∈ L1

loc(R
d). Then for each B ∈ Bα we have

fQB ∼ fB and l(QB) ∼ r(B).

Proof Let x be the center of B, and QB be the cube from Remark 4.2, and A =
B(x,

√
d l(Q)). Then r(B) ∼ l(QB) ∼ r(A) and fB � fQB � f A. Since B ∈ Bα we

also have r(A)α f A < r(B)α fB and therefore conclude fQB � f A � fB . ��
Lemma 4.4 Let Mα ∈ {Mc

α, M̃α} and f ∈ L1
loc(R

d). For each α > 0 and B ∈ Bα and cube
P ⊃ QB we have l(P)α fP �α l(QB))α fQB .

Proof For x the center of B define A = B(x,
√
d l(P)). Then from fP � f A and

r(A)α f A < r(B)α fB and fB � fQB we obtain l(P)α fP � sα fB(x,s) < rα fB(x,r) �α

l(QB(x,r))
α fQB(x,r) . ��

Proof of Theorem 1.2 For B ∈ Bα denote by PB the largest cube that attains maxP⊃QB fP .
Then PB ∈ Q0 and by Lemmas 4.3 and 4.4 we have l(PB) ∼α r(B) and fPB ∼α fB . By
Lemma 4.4 there further exists a cube p(PB) ⊃ PB with f p(PB ) ≤ fPB /2 and l(p(PB)) �α

l(PB).
Let ε > 0 and let B̃ be the set of balls from Lemma 4.1. By Lemmas 4.3 and 4.4 there are

c1, c2 such that for any two distinct B, A ∈ B̃ we have that p(PB) and p(PA) are disjoint or
fPB / fPA /∈ (1/2, 2). DefineQ = {PB : B ∈ B̃}. By the layer cake formula and Lemmas 4.1,
and 4.3 we have∫

(Mα,β f )(p
−1−(1+α+β)/d)−1

= (p−1 − (1 + α + β)/d)−1
∫ ∞
0

λ(p−1−(1+α+β)/d)−1−1L({Mα,β f > λ}) dλ

= (p−1 − (1 + α + β)/d)−1 lim
ε→0

∫ ∞
ε

λ(p−1−(1+α+β)/d)−1−1L
(⋃

{B ∈ Bα : r(B)α+β fB > λ}
)
dλ

�α,β,p lim
ε→0

( ∑
B∈B̃

(
r(B)

d
p −1

fB
)p

)(1−p(1+α+β)/d)−1

∼α,β,p lim
ε→0

( ∑
Q∈Q

(
l(Q)

d
p −1

fQ
)p

)(1−p(1+α+β)/d)−1

.

For each i = 1, . . . , 3d we apply Lemma 3.8 to Q ∩ Di and obtain

∑
Q∈Q

(
l(Q)

d
p −1 fQ

)p =
3d∑
i=1

∑
Q∈Q∩Di

(
l(Q)

d
p −1 fQ

)p
�α,β,p ‖∇ f ‖p

p.

For the endpoint p = d/(1 + α + β) we use ‖Mα,β f ‖∞ = supB∈Bα
r(B)α+β fB . Let

B ∈ Bα . Then f2B ≤ 2−α fB and we have by the Sobolev-Poincaré inequality

‖∇ f ‖d/(1+α+β) ≥
(∫

2B
|∇ f |d/(1+α+β)

)(1+α+β)/d

� r(2B)α+β−d
∫
2B

| f − f2B |
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≥ 2α+β−dr(B)α+β−d
∫
B

| f − f2B |

≥ 2α+β−dr(B)α+β−d
∫
B
( f − f2B)

= σd2
α+β−dr(B)α+β( fB − f2B)

≥ σd2
α+β−dr(B)α+β(1 − 2−α) fB .
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