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Abstract

LetO0 <a <dand 1 < p < d/a. We present a proof that for all f € W7 (R?) both the
centered and the uncentered Hardy—Littlewood fractional maximal operator M, f are weakly
differentiable and || VM f || p+ < Ca,a,pllV fll p, where p* = (p_1 —oz/a,’)_l . In particular it
covers the endpoint case p = 1 for0 < o < 1 where the bound was previously unknown. For
p = 1 we can replace W!1(R?) by BV(R?). The ingredients used are a pointwise estimate
for the gradient of the fractional maximal function, the layer cake formula, a Vitali type
argument, a reduction from balls to dyadic cubes, the coarea formula, a relative isoperimetric
inequality and an earlier established result for « = 0 in the dyadic setting. We use that for
a > 0 the fractional maximal function does not use certain small balls. For & = 0 the proof
collapses.
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1 Introduction

For f € Llloc(Rd) and a ball or cube B, we denote

1
fgzﬁme.

The centered Hardy—Littlewood maximal function is defined by
M®f(x) = sup fpx,r)s
r>0

and the uncentered Hardy—Littlewood maximal function is defined by

Mf(x) = sup f

B>x
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where the supremum is taken over all balls that contain x. The regularity of a maximal
operator was first studied by Kinnunen in 1997. He proved in [18] that for each p > 1 and
f e Whr(R?) the bound

IVMfllp = CapllVfllp (1.1)

holds for M = MC. Formula (1.1) also holds for M = M. This implies that both Hardy—
Littlewood maximal operators are bounded on Sobolev spaces with p > 1. His proof does
not apply for p = 1. Note that unless f = 0 also |[Mf|l1 < Cq1llf|1 fails since M f
is not in L'(RY). In [16] Hajtasz and Onninen asked whether formula (1.1) also holds for
p = 1 for the centered Hardy-Littlewood maximal operator. This question has become a
well known problem for various maximal operators and there has been lots of research on
this topic. So far it has mostly remained unanswered, but there has been some progress.
For the uncentered maximal function and d = 1 it has been proved in [28] by Tanaka and
later in [22] by Kurka for the centered Hardy—Littlewood maximal function. The proof for
the centered maximal function turned out to be much more complicated. Aldaz and Pérez
Lazaro obtained in [3] the sharp improvement || vM Fllierwy < IV Fllp1 gy of Tanaka’s result.
For the uncentered Hardy—Littlewood maximal function Hajtasz’s and Onninen’s question
already also has a positive answer for all dimensions d in several special cases. For radial
functions Luiro proved it in [24], for block decreasing functions Aldaz and Pérez Lazaro
proved it in [2] and for characteristic functions the author proved it in [30]. As a first step
towards weak differentiability, Hajtasz and Maly proved in [15] that for f € L'(RY) the
centered Hardy—Littlewood maximal function is approximately differentiable. In [1] Aldaz
et al. proved bounds on the modulus of continuity for all dimensions.

A related question is whether the maximal operator is a continuous operator. Luiro proved
in [23] that for p > 1 the uncentered maximal operator is continuous on W17 (R?). There
is ongoing research for the endpoint case p = 1. For example Carneiro et al. proved in
[11] that f — VM f is continuous W (R) — L'(R) and in [14] Gonzilez-Riquelme and
Kosz recently improved this to continuity on BV. Carneiro et al. proved in [8] that for radial
functions f, the operator f vM f is continuous as a map Wh1(R?) — L1(R?).

The regularity of maximal operators has also been studied for other maximal operators
and on other spaces. We focus on the endpoint p = 1. In [12] Carneiro and Svaiter and in
[7] Carneiro and Gonzdlez-Riquelme investigated maximal convolution operators M asso-
ciated to certain partial differential equations. Analogous to the Hardy-Littlewood maximal
operator they proved [[VMfll 1qrey < CallV fllpiray for d = 1, and for d > 1if f is
radial. In [9] Carneiro and Hughes proved [VMf [|;1zay < Call fll;1(ze) for centered and
uncentered discrete maximal operators. This bound does not hold on RY, but because in
the discrete setting we have ||V fll;1za) < Callfllj1(z4), it is weaker than the still open
IVM fllj1zay < CallV fllj1zay- In [21] Kinnunen and Tuominen proved the boundedness
of a discrete maximal operator in the metric Hajtasz Sobolev space M"!. In [27] Pérez
et al. proved the boundedness of certain convolution maximal operators on Hardy-Sobolev
spaces H':P for a sharp range of exponents, including p = 1. In [29] the author proved
var MY f < Cy var f for the dyadic maximal operator for all dimensions d.

For 0 < @ < d the centered fractional Hardy-Littlewood maximal function is defined by

Mg, f(x) = supr?® fpex.r)-
r>0
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Endpoint Sobolev bounds for fractional Hardy-Littlewood. ..

For aball B we denote the radius of B by r(B). The uncentered fractional Hardy—Littlewood
maximal function is defined by

M f(x) = sup r(B)* f3
B>x
where the supremum is taken over all balls that contain x. Note that M, does not make much
sense for « > d. For « = 0 it is the Hardy—Littlewood maximal function. The following is
the fractional version of formula (1.1).

Theorem1.1 Let 1 < p < ocoand 0 < o < d/p and My € {fo,Ma}. Then for all
f e WhP(R) we have that My, f is weakly differentiable with

VMo fll (p-1—a/ay-1 = CaapllVflp (1.2)

where the constant Cy g, , depends only on d, o and p. In the endpoint p = 1 we can replace
f e WL RY) by £ € BV(RY). The endpoint result for p = d /o holds true as well.

We prove Theorem 1.1 in Sect. 2.1. The study of the regularity of the fractional maximal
operator was initiated by Kinnunen and Saksman. They proved in [20,Theorem 2.1] that for-
mula(1.2)holdsfor0 < o < d/pand1 < p < oco.They showed |[VMS, f(x)| < M|V f|(x)
for almost every x € R4, and then concluded formula (1.2) from the L /™t
boundedness of My, which fails for p = 1. Another result by Kinnunen and Saksman
in [20] is that for all « > 1 we have |[VMg, f(x)| < (d — a)My_1 f(x) for almost every
x € R?. In [10] Carneiro and Madrid used this, the L%/@=®) _poundedness of M,_;, and
Sobolev embedding to concluded formula (1.2). All of this also works for the uncentered
fractional maximal function M. The strategy fails for o < 1.

Our main result is the extension of formula (1.2) to the endpoint p = 1 for0 < o < 1
which has been an open problem. Our proof of Theorem 1.1 also works for 1 < o < d,
and further extends to 1 < p < 00,0 < o < d/p. We present the proof for this range
of parameters here, since it also smoothens out the blowup of the constants for p — 1
which occurs in the previous proof for p > 1. Note that interpolation is not immediately
available for results on the gradient level. Our approach fails for « = 0. The corner point
a =0, p = 1is the earlier mentioned question by Hajtasz and Onninen and remains open.
Similarly to Carneiro and Madrid, we begin the proof with a pointwise estimate |[VM,, f (x)| <
(d — a)Mgy,—1 f (x) which holds for all 0 < o < d for bounded functions. We estimate
My, —1 f in Theorem 1.2 and from that conclude Theorem 1.1.

For the centered fractional maximal function define

BS(x) = {B(x, 1)

where r is the largest radius such that MS, f (x) = r* fp(x.») and for the uncentered fractional
maximal function define

Bu(x) ={B:x € B, r(B)"fpg =My f(x), VA 2 Br(A)*fa <My f(x)}.

Then for almostevery x € R the sets B (x) and Ea (x) are nonempty, i.e. the supremum in the
definition of the maximal function is attained in a largest ball B with x € B, see Lemma 2.2.
For B, € {Bg, Ea} denote By = |, cpe Ba(x). For B € Rwith —1 < o+ B < d this allows
us to define the following maximal functions

Mg s f(x) = sup  r(B)**P fp,
BeBS:xeB
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Mogf(x)= sup r(B)*Pfp
BeBy:xeB

for almost every x € R¥. Note that also for the centered version the supremum is all balls
B € B, whose closure contains x, not only over those centered in x.

Theorem 1.2 Letl <p<ooand0 <a <dand B € Rwith0 <a+p+1 <d/pand
My, € {M, 4, My g). Then for all f € W'P(R?) we have

Mo fll(p1 1 4ot pyjayt < CaapplV Ny

where the constant Cq o g, p depends only on d, a, B and p. In the endpoint p = 1 we can
replace f € WHI(RY) by f € BV(RY). The endpoint result for p = d /(1 + a + B) holds
true as well.

We prove Theorem 1.2 in Sect. 4. There had also been progress on 0 < @ < 1 similarly as
for the Hardy-Littlewood maximal operator. For the uncentered fractional maximal function
Carneiro and Madrid proved Theorem 1.1 for d = 1 in [10], and Luiro proved Theorem 1.1
for radial functions in [25]. Beltran and Madrid transferred Luiros result to the centered
fractional maximal function in [5]. In [6] Beltran et al. proved Theorem 1.1 for d > 2
and a centered maximal operator that only uses balls with lacunary radius and for maximal
operators with respect to smooth kernels. The next step after boundedness is continuity of
the gradient of the fractional maximal operator, as it implies boundedness, but doesn’t follow
fromit. In [4, 26] Beltran and Madrid already proved it for the uncentered fractional maximal
operator in the cases where the boundedness is known.

For a dyadic cube Q we denote by 1(Q) the sidelength of Q. The fractional dyadic maximal
function is defined by

Mdf(x) = sup 1(Q)*fo.
Q:0>5x

where the supremum is taken over all dyadic cubes that contain x. The dyadic maximal
operator has enjoyed a bit less attention than its continuous counterparts, such as the centered
and the uncentered Hardy-Littlewood maximal operator. The dyadic maximal operator is
different in the sense that formula (1.2) only holds for @« = 0, p = 1 and only in the variation
sense, for which formula (1.2) has been proved in [29]. But for any other « and p formula
(1.2) fails because VMg f is not a Sobolev function. We can however prove Theorem 1.4,
the dyadic analog of Theorem 1.2. For > 0 and a function f € L'(R?) define Q, to be
the set of all cubes Q such that for all dyadic cubes P 2 Q we have 1(P)% fp < 1(Q)“ fo.

Remark 1.3 In the uncentered setting one could also define B3, in a similar way as Q.

For B € R with —1 < o + B < d also define in the dyadic setting

My sf) = sup 1@ fo.
0e€Qy:xeQ
Then
Theorem 1.4 Let1 < p <ocoand0 <a <dand B € RwithO <o+ B+ 1 <d/p. Then
forall f € Wh-P(RY) we have
IMG 6 -t —irapysart = CawpplVFIp

where the constant Cq o g, p depends only on d, o, B and p. In the endpoint p = 1 we can
replace f € WHLRY) by f € BV(RY). The endpoint result for p = d/(1 + « + B) holds
true as well.
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Our main result in the dyadic setting is the following.

Theorem 1.5 Let 1 < p < 00 and 0 < « < d. Then for all f € WP (R?) we have

< > <1(Q>%*1fg>")” < CaaplV LI,
0€Qq

where the constant Cq o, depends only ond, o and p. In the endpoint p = 1 we can replace
f e WhLRY) by f € BV(RY). The endpoint result for p = oo holds true as well.

Remark 1.6 Note that in Theorem 1.5 we restrict 0 < o < d andnot0 < @ < d/p.

In Sect. 2.2 we conclude Theorem 1.4 from Theorem 1.5, and in Sect. 3 we prove Theo-
rem 1.5.

Remark 1.7 Theorem 1.5 fails for o = 0. However for @« = 0 and p = 1, a version with fj
by replaced by fp — A holds for certain A, see [29,Proposition 2.5].

Remark 1.8 For centered, uncentered maximal operator and dyadic maximal operator, The-
orems 1.2, 1.4 and 1.5 admit localized versions of the following form. For D C R we
set By(D) = Uyep Ba(x) and E = J{c¢B : B € By(D)} with some large ¢ > 1. Then
Theorem 1.2 also holds in the form

IVMe, 1 £l 1 ajar (y = Caap IV Flloce):

Theorem 1.4 holds with the dyadic version of E and Theorem 1.5 where the sum on the left
hand side is over any subset Q C Q,, and the integral on the right is over [ J{cQ : Q € Q}.
These localized results directly follow from the same proof as the global results, if one keeps
track of the balls and cubes which are being dealt with. The respective localized version of
Theorem 1.1 can be proven if one has Lemma 2.4 without the differentiability assumption.
Then in the reduction of Theorem 1.1 to Theorem 1.2 one could apply Theorem 1.2 to the
same function f and Q, for which one is showing Theorem 1.1, bypassing the approximation
step and therefore preserving the locality of Theorem 1.2. This is in contrast to the actual
local fractional maximal operator, for whom Theorem 1.1 fails by [17,Example 4.2], which
works for @ > 0. However if « = 0 and p > 1 then the local fractional maximal operator is
again bounded due to [19], and by [30] for « = 0 and p = 1 and characteristic functions.

Dyadic cubes are much easier to deal with than balls, but the dyadic version still serves
as a model case for the continuous versions since both versions share many properties. This
can be observed in [30], where we proved var Mgl g < C, var 1 for the dyadic maximal
operator and the uncentered Hardy—Littlewood maximal operator. The proof for the dyadic
maximal operator is much shorter, but the same proof idea also works for the uncentered
maximal operator. Also in this paper a part of the proof of Theorem 1.4 for the dyadic maximal
operator is used also in the proof of Theorem 1.2 for the Hardy-Littlewood maximal operator.

The plan for the proof of Theorem 1.1 is the following. For simplicity we write it down
for p = 1.

f|VMaf|ﬁ - (d—a)ﬁ/(Ma,_mﬁ

=d(d—a)ia /mxﬁc({Mm,lf > A} dA
0

@ Springer



J. Weigt

—d(d — )T fooxﬁz (U{E: B e By, r(B)? \ fp > A}) i
0

o0
< Y= £(B)dx
. / 3

BeBy.cr(B)*! fp>1

By,
=y A7-a dA
BeBy 0
d
(1 —a/d)cd—« _ d
_ LoD 5 (pptd-1 o By s
(do'd)d—o( Bééu
d d
(1 —a/d)cd—« _ d—a
=< %(Z fBHd 1(33))
(dog)T=  \p 5

< ( ) fQHd—‘(aQ>)d7“

0eQy
d
< Cgal(var f)d—e,

where oy is the volume of the d-dimensional unit ball. In the second step we apply the layer
cake formula, in the forth step we pass from a union of arbitrary balls to very disjoint balls
B, with a Vitali covering argument, in the eighth step we pass from those balls to comparable
dyadic cubes and as the last step use a result from the dyadic setting.

We use ¢ > 0 as follows. Let A be a ball and B(x, r) be a smaller ball that inter-
sects A. Then by A C B(x,3r(A)) we have 394p (A fy < (Br(A))® fB(x,3r(A)). Thus
if r% fpx, ) < 3e=dp(A)® fa then B(x, r) is not used by the fractional maximal operator.
Hence it suffices to consider balls B with 39— (r(B)/r(A))* fp > fa.From that we can
conclude fp > 2f4 or r(B) 24 r(A). Thus for any two balls B, A used by the fractional
maximal operator, one of the following alternatives applies.

(1) The balls B and A are disjoint.
(2) The intervals (fp/2, fp) and (fa/2, fa) are disjoint.
(3) The radii r(B) and r(A) are comparable.

We use this in the forth step of the proof strategy above. We use a dyadic version of these
alternatives in last step. Note that for « = 0 optimal balls B of arbitrarily different sizes with
similar values fp can intersect.

Remark 1.9 There is a proof of Theorem 1.1 which has a structure parallel to the one pre-

sented above, but three steps are replaced. The estimate |[VM,, f| 7% <(d-w) ddfaMa,_l f
d

is replaced by |[VM, f|7e < (d — oz)dafa IVMafI(Ma,_lf)ﬁ, the layer cake formula
is replaced by the coarea formula [13,Theorem 3.11] and the Vitali covering argument is
replaced by [30,Lemma 4.1] which deals with the boundary of balls instead of their volume.
Otherwise it is identical to the proof presented in this paper.

/WMmﬁ < (d—a)ﬁ/WMaﬂ(Ma,_lf)ﬁ

o0
=<d—a>ﬁ/ / (My._1 /)7 b
0 05 {Mg f>1}
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o0
— (-t / f (r(By)*~ f5) 7% A1 () A
0 U{B:BEBy,r(B) fp>1) ’
o0
Se > HTNOB) (B fp) 7w dA
BeBy,r(B)? fg>i
d
Sa Y (f5HTN@B))T=

BeBy

and from there on arrive exactly as before at the bound by (var f) 7% . This motivates a similar
replacement in the dyadic setting. Instead of proving the boundedness of My, —1 flla/@—a)-
Theorem 1.4, one might bound

o0 o
/ f My 1 /)75 di.
0 04 {Mg f>1}

Note that formally

[ 1M 0 M1 £ 05 ax
is not well defined because My, —1 f jumps where VM, f is supported.

Remark 1.10 In the proof of Theorems 1.1, 1.2, 1.5 and 1.4 we do not a priori need f €
LP(RY), it suffices to have f € L4 (R?) for some 1 < g < p. However from ||V f]|, < 0o
we can then anyways conclude f € L?(R?) by Sobolev embedding.

2 Reformulation

In order to avoid writing absolute values, we consider only nonnegative functions f for the
rest of the paper. We can still conclude Theorems 1.1, 1.2, 1.4 and 1.5 for signed functions
because | f|p = fp and ’V|f|(x)’ < |V f(x)|. Recall the set of dyadic cubes

U“MJH@%XMXHmm+ﬂ%W€ﬂwqﬂm6%4.

nez
For a set B of balls or dyadic cubes we denote

Us=5B

BeB

as is commonly used in set theory. By a <y, b we mean that there exists a constant
Ca ...y, that depends only on the values of yy, ..., y, and the dimension d and such that

yaeny

We work in the setting of functions of bounded variation, as in Evans—Gariepy
[13,Section 5]. For an open set Q2 C R? a function u € LIIOC(Q) is said to have locally
bounded variation if for each open and compactly supported V C Q2 we have

sup[/ udivep : ¢ € Cg(V;]Rd), lp| < 1} < 00.
14
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Such a function comes with a measure x and a function v : € — R? that has |v| = 1 u-a.e.
such that for all ¢ € Cg (22; RY) we have

fudivgo:/govdu.

We denote Vi = —vu and define the variation of u by
varg u = 1(2) = [[Vull 1 (q)-
If Vu is a locally integrable function we call u weakly differentiable.
Lemma 2.1 Let 1 < p < oo and (u,), be a sequence of locally integrable functions with

sup [Vuyllp, < 00
n

which converge to u in LlloC (RY). Then u is weakly differentiable and

IVullp < limsup [[Vuy| p.
n

Proof By the weak compactness of L”(IRY) there is a subsequence, for simplicity also
denoted by (u,),, and a v € LP(R?)? such that Vu, — v weakly in L”(R?) and
[vll, < limsup, [|Vuy,|l,. Letp € C(RY) and i € {1, ..., d}. Then

fu8i<p=nlggo/un8i<p= —nli)n;o/Biun<p=—/vi<p

which means Vu = v. O

2.1 Hardy-Littlewood maximal operator

In this section we reduce Theorem 1.1 to Theorem 1.2. Let 1 < p < d/a and f € LP(R?).
For x € R? consider for the uncentered maximal operator the set of balls B with x € B and
M, f(x) = r(B)* fp, and for the centered maximal operator such balls B which are centered
in x. Recall that we denote by B, (x) the subset of those balls that have the largest radius.

Lemma22 Let M, € {Mg,f/la} and 1 < p < dja. Let f € LP(R?) and x € R? be a
Lebesgue point of f. Then By (x) is nonempty.

Proof We formulate one proof that works both for the centered and uncentered fractional
maximal operator. Let (B,), a sequence of balls with x € B,, and

Mg f(x) = lim r(Bn)" fB,-
n—oo
Assume there is a subsequence (ny); with ¥(B,,) — 0. Then ank — f(x) and thus

lim supr(Bnk)“ank < f(x)limsupr(B,)* =0,

k—o00 n—o00

a contradiction. Assume there is a subsequence (1) with r(B,,) — oo. Then

1

1 >

lim sup r (B, )% f5, 5limsupr(Bnk)o‘L(Bnk)_lﬁ(Bnk)l_F(/ f”)’
k k— o0 B,

k—o00 e

_1 d 1
= limsupo, "r(B,)* " * (/ fl’) ’
B

k—o00 e
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_1 d
<o, "limsupr(B,)* 7l fll, =0
k—00
since || fll, < oo, a contradiction. Hence there is a subsequence (ng)x such that r(By,)
converges to some value r € (0, c0). We can conclude that there is a ball B with x € B and
r(By=rand [, f— [pf.Sowehave
nk

Mo f(x) = lim r(By,)* fs,, =r(B)" 5.

A similar argument shows that there exist a largest ball B for which supz_ r(B)* fp is
attained. O

Lemma2.3 Let M, € (M, Ma}. and f € L®(R?) have bounded variation. Then My f is
locally Lipschitz.

Proof If f = 0 then the statement is obvious, so consider f 7 0. Let B be a ball. Then there
isaball A D B with f4 > 0. Define

1/
ro = 2r(A) (57— /2 )"
290 flloo
and let x € B. Then A C B(x, 2r(A) so that for r < ry we have
fa

r® fBery < 2r(A)“ Il flloo < @r(A)® fB(x,2r(A))-

24]| flloo

That means that on B the maximal function M, f is the supremum over all functions
a(;lr“_df * 1p(,r) With r > rp and z such that 0 € B(z, r) for the uncentered opera-
tor and z = O for the centered. Those convolutions are weakly differentiable with

Ve fx1pen) =r* NV ) * 1pen
so that
IV~ f s gl < r*Dvar f <8 var f.

Thus on B the maximal function M, f is a supremum of functions with Lipschitz constant
o, lrg ~ var f and hence itself Lipschitz with the same constant. O

The following has essentially already been observed in [17, 20, 23, 25].

Lemma24 Let M, € {Mg, I\N/Ia} and let My, f be differentiable in x. Then for every B €
By (x) we have

[VM, f ()| < (d —a)r(B)* ' f.
In the uncentered case if x € B we have v1\7[a f(x)=0.

Proof Let B(z,r) € By(x) and let e be a unit vector. Note that for the centered maximal
operator we have z = x. Then for all # > 0 we have x + he € B(z, r + h). Thus

Mo f(x) =My f(x + he)
h

1 1
< — lim f(r“_d/ f= +h)“‘d/ )
o4 h—0 h B(z,r) B(z+eh,r+h)

@ Springer
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1 1
< — lim —(*™¢ / f=G+n / f
04 h—0 h B(z.r) B(z.r)

1 1
= —lim —(* ™ — (r + h)*™)
og h—0 h B(z,r) f

1
—(d —oyr* 47! / f
od B(z,r)

Ifx € B(z, r)thensinceforall y € B(z, r) wehave My f(y) > My f(x) we get VM, f (x) =
0. O

Now we reduce Theorem 1.1 to Theorem 1.2. We prove Theorem 1.2 in Sect. 4.

Proof of Theorem 1.1 For each n € N define a cutoff function ¢, by

1, 0<|x| <27,
On(x) =12 —2""x], 2" <|x| <2t
0, 27+ < x| < o0.

Then |V(pn (x)| = 2_n12”§\x|§2"+1 and thus

Vel = 2_n||f||Lp(1_!3(0,2'1+1)\1_!3(0,2")) -0 (2.1)
for n — oo. Denote f,(x) = min{f(x), n} - ¢,(x). Then by formula (2.1) we have
lim |V full, = lim [V f, —min{f, n}Ve,llp = lim [,V min{f,n}l, = IV flp.
n—o0 n—00 n—0o0
(2.2)

1

Since 1 < p < d/a and f € LP(RY) we have M, f € L~ —¢/d)"oo(Rd) L} (RY).
Then since My, f;, — M, f pointwise from below, My, f;, converges to M,, f in LllOC (R?). So
from Lemma 2.1 it follows that

VM f gyt a1 < 1im sup [IVMa full gyt a1
n—oo

By Lemma 2.3 we have that M, f, is weakly differentiable and differentiable almost every-
where, so that by Lemmas 2.2, 2.4 and Theorem 1.2 we have

—1_ —1
/ |VMq f| 7 ~4D™ < (d = o) M fu /T (B (-1 —arjay-1
< (d =) IMe,—1 full(p-1—aja)-!
Sa IV full .

which by formula (2.2) converges to ||V f|,. for n — oo. For the endpoint p = d/a the
proof works the same. O

2.2 Dyadic maximal operator

In this section we reduce Theorem 1.4 to Theorem 1.5. Let 1 < p < d/a and f € LP(RY).
Recall that we denote by Q,, the set of all dyadic cubes Q such that for every dyadic cube
ball P O O we have 1(P)* fp < 1(Q)% fo. For x € R4, we denote by Qg (x) the set of
dyadic cubes Q with x € Q and

M £(x) = 1(0)* fo.
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Lemma2.5 Let1 < p <d/aand f € LP(RY) and x € R? be a Lebesgue point of f. Then
Qg (x) contains a dyadic cube Q. with

1(Qx) = sup 1(Q)
0€Qqy(x)

and that cube also belongs to Q.

Proof Let (Q,), be a sequence of cubes with 1(Q,) — oo. Then

lim sup1(0,)* fo, < limsupl(Q,)* 4 L(Q,)' "7 ( /Q ff’)ﬁ

n—o00 n—o00

1
— limsup1(Q,)* 4T~ (/ fp) v
QVl

n—oo

= lim supl(Qn)o‘f%(/Q fl’)%

n—oo

_d
< limsup1(Q,)* 7| fll, = 0.
n—oo

Let (Q,)n beasequence of cubes with1(Q,) — 0. Thensince fp, — f(x)and1(Q,)* — 0,
we have 1(Q,)* fo — 0. Thus since for each k there are at most 2d many cubes O with
1(Q) = 2k and whose closure contains x, the supremum has to be attained for a finite set of
cubes from which we can select the largest. O

Now we reduce Theorem 1.4 to Theorem 1.5. We prove Theorem 1.5 in Sect. 3.

Proof of Theorem 1.4 By Lemma 2.5, ng pJf is defined almost everywhere. We have

/(Mg’ﬁf(x))(Pfl—(1+a+ﬁ)/d)71 dx < / Z 1Q(x)(l(Q)01+ﬁfQ)(Pfl—(1+a+ﬂ)/d)71 dx

0€Qqy
= Y L@UQ)*H fo)r ~UrekB/D
0€Qq
— Z (1(Q)d/P*1fQ)(P7]*(1+a+ﬂ)/d)7'
0€Qq
(I—p(I+a+p)/d)~"
< ( > (l(Q)d/”_lfQ)p)

0e€Qy
“—(ta+p)/d)!
e IV || T AHetRD

’

where the last step follows from Theorem 1.5. In the endpoint case we have by Theorem 1.5

IMS 5 flloo = sup 1(Q)** fo
0e€Qqy
1

= sup Q)7 fp = ( » (I(Q)%_lfQ)p>p <o IVFlpe
0e€Qqy 0€Q,

[}
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3 Dyadic maximal operator

In this section we prove Theorem 1.5. For a measurable set E C R we define the measure
theoretic boundary by

L(B E L(B NE
0 E = {x : limsup% >0, limsup% > 0}.
r—0 r r—0 r

We denote the topological boundary by 9 E. As in [29, 30], our approach to the variation is the
coarea formula rather then the definition of the variation, see for example [13,Theorem 5.9].

Lemma3.1 Let f € LlloC (R?) with locally bounded variation and U C R?. Then
vary f = / HIT @ {f > A} NU)da.
R
Lemma3.2 Let f € LlloC (R?) be weakly differentiable and U C R9 and Ay < A1. Then

Al
/ IV fl =/ HIT @ f > A} NU)da.
(xeUng<f(x)<i1) %o

Recall also the relative isoperimetric inequality for cubes.
Lemma 3.3 Let Q be a cube and E be a measurable set. Then
min{£(Q N E), LQ\E)*~ S HT ' (0.EN Q).
We will use a result from the case « = 0. For a subset Q C Qq and Q € Qy, we denote

}‘8 = min{max[inf{k LA >ANQ0) < Z_d_ZL(Q)}, sup{fp: PeQ, P2 Q}], fQ}.

Proposition3.4 Let1 < p <ooand f € Llloc(Rd) and |V f| € LP(R?). Then for every set
Q C Qo we have

S W@ (fo ~ 9P Sy IV LI
0e€Q

For p = 1 it also holds with ||V f |1 replaced by var f.

Remark 3.5 We have that « < B implies Qg C Q. This is because for I(Q) < I(P),
1(Q)* fo > 1(P)¥ fp becomes a stronger estimate the larger oo becomes.

By Remark 3.5 we can apply Proposition 3.4 to Q = Q. For p = 1 Proposition 3.4 is
Proposition 2.5 in [29]. For the proof for all p > 1 we follow the strategy in [29]. In particular
we use the following result. For Q € Qg we denote

i = min{max[inf{A LLAf > 21N Q) < £(0)/2), sup(fe : P € Qo, P2 0O}, fQ}.
Lemma3.6 (Corollary 3.3in [29]) Let f € L} .(RY). Then for every Q € Qo we have

fp
LQ(fo—rp) =277 3 /A LPO{f > A} dA.
P

PeQo,PCQO
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Note that fp > *p implies P € Qp.
Proof of Proposition 3.4 By Lemmas 3.3, 3.2 we have for each P € Qp and P C Q that
ﬁ LAf > A NP)di < l(P)/ LAf > AN P)=7 dx
Ap
fp
SKP) | HITN@Lf > AN P)da

Ap

=1(P) i IVl
xePxp<f(x)<fp

=1(P)/ IV F 1L pGp. oy @ f () o,

We note that for any Q € Q we have kQ > )‘MQ and use Lemma 3.6. Then we apply the above
calculation, Holder’s inequality and use that (Ap, fp) and (XQ, fo) are disjoint for P C Q,

> (107 o -19)"

0eQ

< 0d+2 ) (KQ)%flfd

0eQ PeQ),PCQ

P
S Z(l(Q)f’ - df vy 1<P>1PX(;,,,,-,,)<x,f(x))dx)
0eQ PeQy,PCQO

/ LAf >A}ﬂP)dA)

1

d_1_ _1 14 \P
=< Z(l(Q)” Imdrad p)[/Q|Vf|P( Z I(P)IPX(XPsfP)(x’f(x))> dX:|p>

0eQ PeQy.PCO

1
>\ P
=3 1<Q)*1[ S 1(P)Pf ) IVfI”]p>
( (x,f(x))ePx(rp,fp)

0eQ PeQo.PCO

=Y Y l(P)"’/ i IV £IP

0eQ PeQy,PCQ (x, f(x)ePx(Ap,fp)

> ey | v Y o

vt xeP:f(x)e(hp, fp) 0e€Q.0DP
1

S —_— -
2P — 1 Pedy ,/xeP:f(x)e()»P»fP)

1
<—— [ |VfIr.
<5 [ 1901

For p = 1 with var f instead of ||V f||; we do not use Lemma 3.2 or Holder’s inequality,
but interchange the order of summation first and then apply Lemma 3.1. O

IVfIP

For a dyadic cube Q denote by prt(Q) the dyadic parent cube of Q.

Lemma3.7 Let1 < p <d/aand f € L?(R?) and let ¢ > 0. Then there is a subset Qg of
Qq such that for each Q € Qu with1(Q)* fo > ¢ thereisa P € Q, with Q C prt(P) and
fo =< 24 fp. Furthermore for any two Q, P € Qq, one of the following holds.
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(1) prt(Q) = prt(P).
(2) prt(Q) and prt(P) don’t intersect.
() folfr ¢ 279,29,

Proof Set Qg to be the set of maximal cubes Q with I(Q)% fp > ¢. For any dyadic cube Q
with 1(Q)% fo > & we have

1
e <10 [ 1 =10 ([ ) <10 sy
Q Qo
which implies

10) < (I 1, /e)P —/D™", 3.1)

Hence
o =UJtQ e Q10 ro > &)

Assume we have already defined Q. Then define O"*! to be the set of maximal cubes
0 € Qy with

fo =24 sup fp. (3.2)
PeQl:QCprt(P)
Set Oy =Q0UQLU....

Assume there is a cube Q with I(Q)% fp > ¢ such that for all P € 9O, with Q C prt(P)
we have fp > 2¢ fp. Then by formula (3.1) there is a maximal such cube Q. Furthermore
there is a smallest P € O, with Q C prt(P) and ann with P € Qg But then Q is a maximal
cube that satisfies formula (3.2), which implies Q € QZH, a contradiction.

Iffor Q, P € Oy neither (1) nor (2) holds, then after renaming we have prt(Q) C prt(P).
Then P has been added to O, before Q, and since Q C prt(P) this means fp > 29 fp. 0O

Lemma3.8 Let1l < p <ocoand f € WIVP(R”’) and let ¢ > 0. Let Q C Qo be a set of
dyadic cubes such that

(1) for each Q € Q there is an ancestor cube p(Q) 2 Q with 1(p(Q)) < 1(Q)/e and

fo > 2" fr)»
(2) and for any two distinct Q, P € Q such that p(Q) and p(P) intersect we have fo/ fp ¢
(27¢,2%).

Then

1

(Z(I(Q)%_lfg)”)p S IVl
0eQ

The endpoint p = 0o holds as well.

Proof We divide into two types of cubes and deal with them separately. Denote
Q- ={0eQ:Ldf>2""fo)N Q) <272L(Q)),
Qi ={0eQ:LUf >2" fo)N Q) =27"2L(Q)}.

Let Q € Q_ and recall Ag from Proposition 3.4. Then since

sup{A s L({f > A} N Q) <27972L(Q)} < 2773 fo,
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Endpoint Sobolev bounds for fractional Hardy-Littlewood. ..

sup{fp: P€Q, P2 Q}<27°fp
we have
fo—2x3=0=2"P)fp.

Since Q C Qp we conclude from Proposition 3.4

> (0@ o) sa -2 Y (1@ (o - 2D) Sep 191
0eQ_ QeQ_

Let Q € O and A > 2_25/3fQ. Since by (1) we have 28/3fp(Q) < 2_28/3fQ, we obtain
from Chebyshev’s inequality
L(PQ)N{f > 1) <27PL(p(Q)). (3.3)
Since Q € 9, for A < 2’5/3fQ we have
272l (p(0) =27972L(Q) = LQN{f > 4D = L@ N{f > 4D, (34
So for all 272¢/3 fo < & < 27¢ 3 fo we can conclude by the isoperimetric inequality
Lemma 3.3 and formulas (3.3) and (3.4) that
@S > 210 p(@)! Z minL(p(Q) N {f > 2D, LpONf > 1))
> (L(p(Q) min{e/27472, 1 — 27/ ¢!

Ze L@
Thus for each Q € Q4 by Lemma 3.2 and Holder’s inequality we have

2—8/3f

P d—1 d—1
[ et e [ g = a0 po) o

—25/3fQ 72— s/SfQ

- / v/l
xep(Q):f(x)e(226/3,2¢/3) o

d—4 4
<1(p(Q)"~ 7 (/ IVfIP)
xep(Q):f(x)e(226/3,2=¢/3) f

Now we use (2) and conclude

> (1@ o) 5o Y (10007 o))"
QeQ+ QeQy

iy 278 fo p
Ser D, (KP(Q))P / 1(p(@)*! dx)
0cQ. 2 o

S IV£I1P

N /XEP(Q)If(X)€(2‘2€/3,2‘8/3)fQ

< / V117,

For p = 1 with var f instead of |V f]|; we use Lemma 3.1 instead of Lemma 3.2 and
Holder’s inequality. For p = oo let Q € Q. Then by the Sobolev-Poincaré inequality we
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have

1V flloo = IV Flle(pioy 2 1(p(Q) 4! /

p(

> 1(Q) 4 ed ™! fQ If = fro

Lf = fr
0)

> 1(Q) 4 gd ™! /Q )
=1Q) e (fo — fr0)
>1(Q) et (1 - 27%) fo.

O

Proof of Theorem 1.5 Let ¢ > 0 and Q, be the set of cubes from Lemma 3.7. Let Q € Q.
Then thereisa P € O, with Q C prt(P) and fo < 2¢ fp. Then fo < 4 fyu(p). Thus since
1(Q)* fo > L(prt(P))* fpr(p) we have 1(Q) > 4—d/e 1(prt(P)). Thus for each P there are at
most ¢, many Q € Q, with @ C prt(P) and fp < 24 fp. We conclude

> (i) = Y > (@' r0)"

0€Q4.1(Q)* fo>¢ PeQ, 0€Qu. QCPI(P), fo=2¢fp
d_q p
Sepca . (P2 1)
PeQq

For each dyadic cube P € {prt(Q) : Q € Oy} pick a Q € @, with P = prt(Q) such
that for all Q' € Q, with P = prt(Q’) we have for < fp. Denote by Q, the set of all such
dyadic cubes Q. Then

Y (@) s X > (@)

0€9, Pelprt(Q):0€Qu} Q€ Qqy: P=prt(Q)

< Y 2 Y ()

Pe{prt(0):0€Qy}  Q€Qq4:P=prt(Q)
d_q 14
=203 (@ fo)
0e9,

We want to show that Lemma 3.8 applies to Qa with p(Q) = prt(Q). Since Qa C Qy We
have Qa C Qo by Remark 3.5, and (1) follows from fo > 2% f(0). For 2) let O, P € Qa
be distinct such that prt(Q) and prt(P) intersect. Since we have prt(Q) # prt(P), Lemma3.7
implies fo/fp ¢ (2=4,24). Thus by Lemma 3.8 we have

23 (027 o) S IV
0€Qq

We have proven for every ¢ > 0 that

d_q 14
> (@ fo)" Sup IVAIL
0€Qq.1(0) fo>e

with constant independent of €. So we can let ¢ go to zero and conclude Theorem 1.5.
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For the endpoint p = oo let Q € Q. Then we use fpr(g) < 27 fp and copy the proof
of the endpoint in Lemma 3.8 with p(Q) = prt(Q) and ¢ = 1/2. O

4 Hardy-Littlewood maximal operator

In this section we prove Theorem 1.2.

4.1 Making the balls disjoint

Lemma4.1 Let M, € {M;, M tand 1 < p < d/(1 +a+;3) and f € LP(R?) and let
e > 0. Thenfor any c1 > 2,cy > 1 there is a set ofballs B c By such that for two balls
B, A € Bwe have ciBNciA = or falfe & (c; ,cz) and furthermore

o0
/ )L(]f'*(1+Ol+ﬁ)/d)71*1[,(U{B € By :r(B)* P fp > A}) da

&

Sapoperen (Z(r(B)%”fB)

p) (1—p(I4a+pB)/d)~"
BeBB

Proof Let B € B, with r(B)**# fg > &. Then
e < r(BYP fy < r(BY LBy~ £(B)' TP ( / ) <o e g,

which means that r(B) is bounded by
1
= (o7 "I fllp/e)"/@IPm=P),

Define B = {B € B, : r(B) € [1/2, 1]K}. Then for all B € B° we have that r(B)* fp
is uniformly bounded. Inductively define a sequence of balls as follows. For By, ..., Bx_1
already defined choose a ball By € B9 such that ¢ By is disjoint from ¢ By, . .., ¢1 Bx—1 and
which attains at least half of

sup{fp : BGB ,c1BN(c1BpU...Uc|Br_1) =0}

if one exists. Set BO = {By, Bi,...}. Then for all B € B we have that ¢; B intersects
U{c1B : B € BY. Define

B = {B(x,r)e B, :3A € g() A C B(x,5c11(A)), fBex.r) < c2fa}
Then B° C B. We proceed by induction. For each n € N define
B'"={Be B \BOU...UB) : r(B) €[1/2, 1127"K },

as above greedily select a sequence B" of balls B € B" with almost maximal f such that
for every already selected A € B" we have ¢; B N c1A = ¢, and define

BT = |B(x,r) € By, :3A € B* A C B(x,5c17(A)), fpix.r) < 2fa)-
Note that we have B" C B". Finally set B= Eﬁ U gl U....ForA e 5, we denote

Uap = {B(x,r) € By : AC B(x,5c1r(A), foer < c2fa. P fpir > A}
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Let A > € and B € By with r(B)‘”ﬂfB > A. Then there is an n with B € B, and hence a
A€ B"with B € Ua,y. Let A € B and B(x,r) € Up,x. Then A C B(x,5c1r(A)). Since
r € Ry f(x) we have

r ey = (5e1r(A)® fBix.seray = (5c1r (AN (Ser) ™ fa
which implies
r > 5en)' V(A (fa) foe) ' = Gen) e r (A).

Since r < 5c¢ir(A) it follows that

5¢1)f >0
ﬁ< A‘B ( 1) —Z U,
rt=r(d) {(Scl)ﬁ—dﬁ/aczﬁ/a’ B -0.

Together with

r [Bx.r) < (Serr(A)*ca fa
we obtain

rM gy < e3r (AP 4,
where

_ {(501)““’62, B =0,
a (561)“+ﬂ_dﬁ/“c‘;+ﬂ/a, B <0.
Thus U, is only nonempty if
A< c3r(A)* TP £y,
We can conclude

o0 o —
/ §T T (| (B € By r(BYH fg > 1)) da

‘ o0
:/ A et e () (Juas) @

€ AeB

© T = tatp)/d) " -1
52[ PG E(UUA,A>d)\
AeB €
ar(A P _1
_ Z/ 3 (7 =(tatB)/d) _lﬁ(UUA,O‘“
&

AeB

Ayxth
< Z(Scl)dL(A)/Lgr( S (p’l (I+a+p)/d) ! 1y
AeB

(™' =(ratp)/d)”!
<(/p—Uta+tpd) 3 Gen? L (erah 1) "

AeB

1 —1 d_ (™' = ta+p)/d) !
= (U/p—(+a+pdEe)’e IO 0, 3 (rayr T 1)
AeB

“1_(14a -1 d_q
= (/p— (U ta+pld)Septe —HethD ad(z(r(A)ﬁ ')

p><1—p<1+a+ﬂ>/dr1
AeB

[}
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4.2 Transfer to dyadic cubes

In this subsection we pass from disjoint balls to dyadic cubes and then conclude Theorem 1.2
using a result from the dyadic setting.

Remark 4.2 There are 3¢ dyadic grids Dy, ..., D34 such that each ball B is contained in a
dyadic cube Qp € D =Dy U--- U D3 with1(Q) S r(B).

Lemma4.3 Let M, € {Mg,ﬁ[a} and f € L}OC(Rd). Then for each B € By we have
fop ~ fBand1(Qp) ~ r(B).

Proof Let x be the center of B, and Qp be the cube from Remark 4.2, and A =
B(x, /d1(Q)). Then r(B) ~ 1(Qp) ~ r(A) and f5 < fo, < fa. Since B € By we
also have r(A)* fa < r(B)“ fp and therefore conclude fp, < fa S fs. O

Lemma4.4 Let M, € {Mg, 1\710,} and f € LI]OC(]Rd). Foreach o > 0 and B € B, and cube
P D Qp we have I(P)* fp Sa (QB))* fo-

Proof For x the center of B define A = B(x,+/d1(P)). Then from fp < f4 and
r(A)afA < I’(B)afB and fB § fQB we obtain I(P)afp 5 Safg(x’s) < I”afB(X,r) 501
l(QB(x,r))a fQB(,[,,-) . ]

Proof of Theorem 1.2 For B € B, denote by Pp the largest cube that attains maxp~g, fp.
Then Pp € Qp and by Lemmas 4.3 and 4.4 we have 1(Pg) ~¢ r(B) and fp, ~« fB. By
Lemma 4.4 there further exists a cube p(Pg) D Pp with f,(py) < fp,/2 and 1(p(Pp)) Sa
1(Pg).

Let & > 0 and let BB be the set of balls from Lemma 4.1. By Lemmas 4.3 and 4.4 there are
c1, ¢ such that for any two distinct B, A € B we have that p(Pp) and p(P,) are disjoint or
frp/fpy & (1/2,2). Define Q = {Pp : B € B}. By the layer cake formula and Lemmas 4.1,
and 4.3 we have

-1 _1
/(Ma,ﬁf)(p —(14+a+p)/d)

1

o0 _ _
= (! f(l+a+ﬂ)/d)_1/0 AT =t DT L s ) da

o0 o —
=@p! *(l+a+ﬁ)/d)_1giil})/ (P =(tatpr/d) 1—15(U{B € B s r(BH £y > 3)) da
&

Sa.f.p gfl0<192;§(r(3)¢—1f3)p>
€

p>(1—p(1+a+ﬁ>/d>1

(1=p(l+a+p)/d)~!

~af.p JL"%( Y (@7 1)

0eQ
Foreachi =1, ..., 3% we apply Lemma 3.8 to Q N D; and obtain

3d
(@) =Y Y (@7 o) Sapn IVFIS.
0cQ i=1 QeQND;

For the endpoint p = d/(1 + « + B) we use [Mu g flloo = Suppcp, r(B)* P fp. Let
B € B,. Then fop <27% fp and we have by the Sobolev-Poincaré inequality

)(1+a+ﬁ)/d

IV Flla/aasp) > ( /2 |V k) > r(2B) /2 \f — fas]
B B
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> goth—dy(gyath—d / \f — fos]
B

v

peth—d . (gyethd /B (f — fan)

= 029"~ (BY* P (f5 — fop)
> 0420 TP r(B) TP (1 — 27%) f5.

m}
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