
Variation of the uncentered maximal characteristic Function

Julian Weigt

Department of Mathematics and Systems Analysis, Aalto University, Finland,
julian.weigt@aalto.fi

May 11, 2021

Abstract

Let M be the uncentered Hardy-Littlewood maximal operator or the dyadic maximal op-
erator and d ≥ 1. We prove that for a set E ⊂ Rd of finite perimeter the bound var M1E ≤
Cd var 1E holds. We also prove this for the local maximal operator.

Introduction

The uncentered Hardy-Littlewood maximal function of a nonnegative locally integrable function f
is given by

Mf(x) = sup
B3x

1

L(B)

ˆ
B

f

where the supremum is taken over all open balls B ⊂ Rd that contain x. Various versions of
this maximal operator have been investigated. There is the (centered) Hardy-Littlewood maximal
operator, where the supremum is taken only over those balls that are centered in x, or the dyadic
maximal operator which maximizes over dyadic cubes instead of balls. Those operators also have
local versions, where for some open set Ω ⊂ Rd the supremum is taken only over those balls or
cubes that are contained in Ω. For example the local dyadic maximal function with respect to Ω
of f ∈ L1

loc(Ω) at x ∈ Ω is given by

Mf(x) = sup
x∈Q⊂Ω

1

L(Q)

ˆ
Q

f

where the supremum is taken over all half open dyadic cubes Q ⊂ Rd with x ∈ Q ⊂ Ω.
It is well known that many maximal operators are bounded on Lp(Rd) if and only if p > 1.

The regularity of the maximal operator was first studied in [17], where Kinnunen proved for the
Hardy-Littlewood maximal operator that for p > 1 and f ∈W 1,p(Rd) also the bound

‖∇Mf‖p ≤ Cd,p‖∇f‖p
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holds, from which it follows that the Hardy-Littlewood maximal operator is bounded on W 1,p(Rd).
The proof combines the pointwise bound |∇Mf | ≤ M|∇f | with the Lp(Rd)-bound of the maximal
operator. Since the maximal operator is not bounded on L1(Rd), this approach fails for p = 1.
For p > 1 the gradient Lp(Rd)-bound or some corresponding version is valid for most maximal
operators. However so far no counterexample has been found for p = 1. So in 2004, Haj lasz
and Onninen posed the following question in [15]: For the Hardy-Littlewood maximal operator
M, is f 7→ |∇Mf | a bounded mapping W 1,1(Rd) → L1(Rd)? This question for various maximal
operators has since become a well known problem and has been the subject of lots of research.
In one dimension for L1(R) the gradient bound has already been proven in [26] by Tanaka for
the uncentered maximal function, and later in [21] by Kurka for the centered Hardy-Littlewood
maximal function. The latter proof turned out to be much more complicated. In [22] Luiro has
proven the gradient bound for radial functions in L1(Rd) for the uncentered maximal operator.
More research on this question, and also more generally on the endpoint regularity of maximal
operators can be found in [1, 2, 3, 7, 8, 9, 14, 24]. However, so far the question has been essentially
unsolved in dimensions larger than one for any maximal operator.

In this paper we prove that for M being the dyadic or the uncentered Hardy Littlewood maximal
operator and E ⊂ Rd being a set with finite perimeter, we have

var M1E ≤ Cd var 1E .

This answers the question of Haj lasz and Onninen in a special case, and is the first truly higher
dimensional result for p = 1 to the best of our knowledge. We furthermore prove a localized version,
as is stated in Theorems 1.2 and 1.3. The Hardy-Littlewood uncentered maximal function and the
dyadic maximal function have in common, that their levels sets {Mf > λ} can be written as the
union of all balls/dyadic cubes X with

´
X
f > λL(X). Our proof relies on this. Since this is not

true for the centered Hardy-Littlewood maximal function, a different approach has to be found for
that maximal operator.

Also related topics for various exponents 1 ≤ p ≤ ∞ have been studied, such as the continuity of
the maximal operator in Sobolev spaces [5] and bounds for the gradient of other maximal operators,
such as fractional, convolution, discrete, local and bilinear maximal operators [6, 10, 11, 16, 19, 20,
23, 25].

I would like to thank my supervisor, Juha Kinnunen for all of his support, and Panu Lahti for
discussions on the theory of sets of finite perimeter, his suggested proof of Lemma 4.1, and repeated
reading of and advice on the manuscript. The author has been supported by the Vilho, Yrjö and
Kalle Väisälä Foundation of the Finnish Academy of Science and Letters.

1 Preliminaries and main result

We work in the setting of sets of finite perimeter, as in Evans-Gariepy [12], Section 5. For a
measurable set E ⊂ Rd we denote by L(E) its Lebesgue measure and by Hd−1(E) its d − 1-
dimensional Hausdorff measure. For an open set Ω ⊂ Rd, a function f ∈ L1

loc(Ω) is said to have
locally bounded variation if for each open and compactly supported U ⊂ Ω we have

sup
{ˆ

U

f divϕ : ϕ ∈ C1
c (U ;Rd), |ϕ| ≤ 1

}
<∞.
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Such a function comes with a measure µ and a function ν : Ω → Rd that has |ν| = 1 µ-a.e. such
that for all ϕ ∈ C1

c (Ω;Rd) we have

ˆ
Ω

f divϕ =

ˆ
Ω

ϕν dµ.

We define the variation of f in Ω by
varΩ f = µ(Ω).

For a measurable set E ⊂ Rd we define the measure theoretic boundary by

∂∗E =
{
x : lim sup

r→0

L(B(x, r) \ E)

rd
> 0, lim sup

r→0

L(B(x, r) ∩ E)

rd
> 0
}
.

The following is our strategy to approach the variation of the maximal function.

Lemma 1.1 (Theorem 5.9 in [12]). Let Ω ⊂ Rd be open. Let f ∈ L1
loc(Ω). Then

varΩ f =

ˆ
R
Hd−1(∂∗{f > λ} ∩ Ω) dλ.

We say that measurable set E ⊂ Rd has locally finite perimeter if 1E has locally bounded
variation. For f = 1E we call varΩ 1E the perimeter of E and ν from above the outer normal of E.
Lemma 1.1 implies

varΩ 1E = Hd−1(∂∗E ∩ Ω).

Recall the definition of the set of dyadic cubes

⋃

n∈Z
{[x1, x1 + 2n)× . . .× [xd, xd + 2n) : i = 1, . . . , n, xi ∈ 2nZ}.

The maximal characteristic function can be written as

M1E(x) = sup
X3x

L(E ∩X)

L(X)
,

where X ranges over all balls for the uncentered maximal operator, and over all dyadic cubes in Ω
for the dyadic maximal operator. Now we are ready to state the main results of this paper.

Theorem 1.2. Let M be the local dyadic maximal operator with respect to an open set Ω ⊂ Rd.
Let E ⊂ Rd be a set with locally finite perimeter. Then

varΩ M1E ≤ CdHd−1(∂∗E ∩ Ω)

where Cd depends only on the dimension d.

Theorem 1.3. Let M be the local uncentered maximal operator with respect to an open set Ω ⊂ Rd.
Let E ⊂ Rd be a set with locally finite perimeter. Then

varΩ M1E ≤ CdHd−1(∂∗E ∩ Ω)

where Cd depends only on the dimension d.
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We can take Ω = Rd. We denote {M1E > λ} = {x ∈ Ω : M1E(x) > λ}. We reduce Theorems 1.2
and 1.3 to the following results.

Proposition 1.4. Let M be the local dyadic maximal operator with respect to some open set
Ω ⊂ Rd. Let E ⊂ R be a set with locally finite perimeter and λ ∈ (0, 1). Then

Hd−1(∂∗{M1E > λ} ∩ Ω) ≤ Cdλ−
d−1
d Hd−1(∂∗E ∩ Ω).

By Lemma 2.6 we have E
∗ ∩ Ω ⊂ {M1E > λ}∗ so that we might intersect the right-hand side

with {M1E > λ}∗.

Proposition 1.5. Let M be the local uncentered maximal operator. Let E ⊂ Rd be a set with
locally finite perimeter and λ ∈ (0, 1). Then

Hd−1(∂∗{M1E > λ} ∩ Ω) ≤ Cdλ−
d−1
d (1− log λ)Hd−1(∂∗E ∩ {M1E > λ}).

The constants Cd that appear in Theorems 1.2 and 1.3 and Propositions 1.4 and 1.5 are not
equal. Since the proofs of Theorems 1.2 and 1.3 are almost the same we do them simultaneously.

Proofs of Theorems 1.2 and 1.3. By X we denote a ball in Ω for the uncentered maximal operator
and a cube in Ω for the local dyadic maximal operator. By Lemma 1.1 and Propositions 1.4 and 1.5
we have

varΩ M1E =

ˆ 1

0

Hd−1(∂∗{M1E > λ} ∩ Ω) dλ

≤ Cd
ˆ 1

0

λ−
d−1
d (1− log λ)Hd−1(∂∗E ∩ Ω) dλ

= d(d+ 1)CdHd−1(∂∗E ∩ Ω).

In Sections 2 to 4 we prove Propositions 1.4 and 1.5. In Section 5 we prove Proposition 5.1

which is Proposition 1.5 without the factor 1− log λ. The rate λ−
d−1
d is optimal.

We introduce some notation we will use throughout the paper. By a . b we mean that there
exists a constant Cd that depends only on the dimension d such that a ≤ Cdb. For a set B of subsets
of Rd we write ⋃

B =
⋃

B∈B
B

as is commonly used in set theory. For a ball B = B(x, r) ⊂ Rd and c > 0 we denote cB = B(x, cr).
If B is a set of balls we denote

cB = {cB : B ∈ B}.
We also need more measure theoretic quantities. We define the measure theoretic interior by

E̊∗ =
{
x : lim sup

r→0

L(B(x, r) \ E)

rd
= 0
}
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and the measure theoretic exterior by

E{ =
{
x : lim sup

r→0

L(B(x, r) ∩ E)

rd
= 0
}
.

Then we have for the measure theoretic boundary that ∂∗E = Rd \ (E̊∗ ∪ E{). We further define
the measure theoretic closure by

E
∗

= E̊∗ ∪ ∂∗E =
{
x : lim sup

r→0

L(B(x, r) ∩ E)

rd
> 0
}
.

Lemma 1.6. Let A,B ⊂ Rd be measurable. Then

∂∗(A ∪B) ⊂ (∂∗A \B
∗
) ∪ (∂∗B \A

∗
) ∪ (∂∗A ∩ ∂∗B).

Proof. Let x ∈ ∂∗(A ∪B). Then

lim sup
r→0

L(B(x, r) ∩ (A ∪B))

rd
> 0,

lim sup
r→0

L(B(x, r) \ (A ∪B))

rd
> 0.

By symmetry it suffices to consider the case that

lim sup
r→0

L(B(x, r) ∩A)

rd
> 0.

Then

lim sup
r→0

L(B(x, r) \A)

rd
≥ lim sup

r→0

L(B(x, r) \ (A ∪B))

rd
> 0

which means x ∈ ∂∗A. Analogously, if

lim sup
r→0

L(B(x, r) ∩B)

rd
> 0

then x ∈ ∂∗B so we get x ∈ ∂∗A ∩ ∂∗B. Otherwise

lim sup
r→0

L(B(x, r) ∩B)

rd
= 0

and we can conclude x ∈ ∂∗A \B
∗
.

We define the reduced boundary as the set of all points x such that for all r > 0 we have
µ(B(x, r)) > 0,

lim
r→0

 
B(x,r)

ν dµ = ν(x),

and |ν(x)| = 1. This is Definition 5.4 in [12]. As in the remark after Definition 5.4 we have
∂∗E ⊂ ∂∗E. By Lemma 5.5 in [12] we have that Hd−1 restricted to ∂∗E is equal to Hd−1 restricted
to ∂∗E. Thus it suffices to consider only the reduced boundary when estimating the perimeter of
a set. But most of the time we will formulate the results for the measure theoretic boundary. The
exception is Lemma 2.6, which we could only prove for the reduced boundary because there we
make use of Theorem 5.13 in [12], which states the following.
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Lemma 1.7 (Theorem 5.13 in [12]). Let E ⊂ Rd be a measurable set. Assume 0 ∈ ∂∗E with
ν(0) = (1, 0, . . . , 0). Then for r → 0 we have 1 1

rE
→ 1{x:x1<0} in L1

loc(Rd).

A central tool used here is the relative isoperimetric inequality, see Theorem 5.11 in [12]. It
states that for a ball B and any set E we have

min{L(E ∩B),L(B \ E)}d−1 . Hd−1(∂∗E ∩B)d. (1)

However we need the relative isoperimetric inequality also for other sets than balls. An open
bounded set A is called a John domain if there is a constant K and point x ∈ A from which every
other point y ∈ A can be reached via a path γ such that for all t we have

dist(γ(t), ∂A) ≥ K−1|y − γ(t)|. (2)

This is called the cone condition, see Figure 2. Theorem 107 in the lecture notes [13] by Piotr
Haj lasz states the following:

Lemma 1.8. Let A ⊂ Rd be a John domain with constant K. Then A satisfies a relative isoperi-
metric inequality with constant only depending on K, i.e.

min{L(E ∩A),L(A \ E)}d−1 .K Hd−1(∂∗E ∩A)d.

For example a ball and a cube are John domains.
Another basic tool is the Vitali covering lemma, see for example Theorem 1.24 in [12].

Lemma 1.9 (Vitali covering lemma). Let B be a set of balls in Rd with diameter bounded by some
R ∈ R. Then it has a countable subset B̃ of disjoint balls such that

⋃
B ⊂

⋃
5B̃.

Instead of considering {M1E > λ} we will only consider a finite union of balls/cubes. In order
to pass from there to the whole {M1E > λ} we will use an approximation result. We say that
a sequence (An)n of sets in Rd converges to some set A in L1

loc(Rd) if (1An)n converges to 1A in
L1

loc(Rd).

Lemma 1.10 (Theorem 5.2 in [12] for characteristic functions). Let Ω ⊂ Rd be an open set and
let (An)n be subsets of Rd of locally finite perimeter that converge to A in L1

loc(Ω). Then

Hd−1(∂∗A ∩ Ω) ≤ lim inf
n→∞

Hd−1(∂∗An ∩ Ω).

2 Tools for both maximal operators

We start with a couple of tools that are used for both maximal operators.

Lemma 2.1. There is a constant N depending only on the dimension such that for any open ball
or cube X in Rd and any ball C that is centered on the boundary of X and with diamC . diamX
and L ≤ 1

4 and A = X ∩ C ∩ {y : dist(y,X{) > LdiamC} we have the relative isoperimetric
inequality

min{L(E ∩A),L(A \ E)}d−1 ≤ NHd−1(∂∗E ∩A)d.
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C

X

E

Figure 1: The regions in Lemmas 2.1 and 2.5.

A

x

y

γ

Figure 2: A in Lemma 2.1 is a John domain.
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Proof. By Lemma 1.8 it suffices to show that A is a John domain. We pick as our point x the one
with the largest distance to ∂A. Note that then there is a K such that

supy∈∂A dist(y, x)

dist(x, ∂A)
≤ K.

For any y ∈ A we take our path to be the straight line between x and y. Since A is convex, for
every y ∈ A it contains the convex hull of B(x, dist(x, ∂A)) ∪ {y}, which implies (2), the cone
condition.

Lemma 2.2. Let X ⊂ Rd be a set with finite measure which satisfies a relative isoperimetric
inequality, for example an open ball, an open cube or the set A from Lemma 2.1. Let 0 < ε < 1.
Let E ⊂ Rn be a measurable set with L(E ∩X) ≤ (1− ε)L(X). Then

L(E ∩X)d−1 .ε Hd−1(∂∗E ∩X)d.

Proof. For L(E∩X) ≤ L(X)
2 the claim follows directly from the relative isoperimetric inequality for

X. It remains to consider L(X)
2 ≤ L(E ∩X) ≤ (1− ε)L(X). Then by the isoperimetric inequality

Hd−1(∂∗E ∩X)d & L(X \ E)d−1 ≥ εd−1L(X)d−1 ≥ εd−1L(E ∩X)d−1.

Eventually we only need the following consequence.

Corollary 2.3. Let X ⊂ Rd be an open ball, an open cube, or the set A from Lemma 2.1. Let
ε > 0, λ, E such that λ ≤ L(E ∩X)/L(X) ≤ 1− ε. Then

Hd−1(∂∗E ∩X) &ε λ
d−1
d Hd−1(∂X).

Proof. The set X satisfies the premise of Lemma 2.2 and furthermore Hd−1(∂X)d . L(X)d−1.
Thus

Hd−1(∂∗E ∩X) &ε L(E ∩X)
d−1
d ≥ λ d−1

d L(X)
d−1
d & λ

d−1
d Hd−1(∂X).

Lemma 2.4 (Boxing inequality, c.f. Theorem 3.1 in Kinnunen, Korte, Shanmugalingam, Tuominen
[18]). Let E ⊂ Rd be a set with finite measure that is contained in the union of a set B of balls

B with L(E ∩ B) ≤ L(B)
2 . Then there is a set F of balls F with L(F ∩ E) = L(F )/2 that covers

almost all of E. Furthermore each F ∈ F is contained in a B ∈ B and each B ∈ B contains an
F ∈ F .

Proof. It suffices to show that for every ball B(x1, r1) ∈ B every Lebesgue point x ∈ E̊∗ with
x ∈ B(x1, r1) is contained in a ball F ⊂ B(x1, r1) with L(F ∩ E) = L(F )/2. By assumption

L(E ∩B(x1, r1)) ≤ L(B(x1, r1))

2

and since x is a Lebesgue point there is a ball B(x0, r0) with x ∈ B(x0, r0) ⊂ B(x1, r1) and

L(E ∩B(x0, r0)) ≥ L(B(x0, r0))

2
.
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Define xt = (1 − t) · x0 + t · x1 and rt = (1 − t) · r0 + t · r1 so that t 7→ B(xt, rt) is a continuous
transformation of balls. That means there is a t with

L(E ∩B(xt, rt)) =
L(B(xt, rt))

2
.

Since x ∈ B(x0, r0) ⊂ B(xt, rt) ⊂ B(x1, r1) that means we have found the right ball.

We also need a more specialized version of Lemma 2.4. It has a similar proof.

Lemma 2.5. Let X be a cube or ball in Rd and E a set with L(E ∩X) ≥ λL(X). Then there is

a cover C of ∂∗X \ E
∗

consisting of balls C with diamC ≤ 2 diamX and

Hd−1
(
∂∗E ∩ C ∩

{
y : dist(y,X{) >

λ diamC

4d
d
2−1

})
& λ

d−1
d Hd−1(∂C). (3)

The constants in Lemma 2.5 are not optimal and one could also impose a stronger bound on
the diameter of the balls C ∈ C for large λ.

Proof of Lemma 2.5. It suffices to show that for each x ∈ ∂X \ E∗ there is a ball C centered in x

that satisfies (3). So let x ∈ ∂X \ E∗ and 0 < r ≤ diamX. Then

L
({
y ∈ B(x, r) ∩X : dist(y,X{) ≤ λr

2d
d
2−1

})
≤ L

({
y ∈ X ∩B(x, r) : dist(y, (B(x, r) ∩X){) ≤ λr

2d
d
2−1

})

≤ λr

2d
d
2−1
Hd−1(∂(B(x, r) ∩X))

≤ λr

2d
d
2−1
Hd−1(∂B(x, r))

=
λ

2d
d
2

L(B(x, r))

≤ λ

2
L(B(x, r) ∩X). (4)

For r > 0 define

A(r) = B(x, r) ∩
{
y : dist(y,X{) >

λr

2d
d
2−1

}
.

Then from
L(X ∩ E)

L(X)
≥ λ

and (4) with r = diamX we get

L(A(diamX) ∩ E)

L(A(diamX))
≥ L(A(diamX) ∩ E)

L(X)
≥ λ− λ

2
=
λ

2
.

Since x 6∈ E∗ we have L(E ∩B(x, r))/rd → 0 for r → 0. That implies that in particular there is an
r0 with

L(A(r0) ∩ E)

L(A(r0))
≤ λ

2
.
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By continuity that means there is an r0 ≤ r ≤ diamX such that

L(A(r) ∩ E)

L(A(r))
=
λ

2
.

Then we use Corollary 2.3 for X = A(r) and ε = 1
2 to get

Hd−1(∂B(x, r)) . Hd−1(∂A(r)) . λ−
d−1
d Hd−1(∂∗E ∩A(r)),

which is (3).

Note that the following Lemma 2.6 addresses the reduced boundary ∂∗E and not the measure
theoretic boundary ∂∗E.

Lemma 2.6. Let Ω ⊂ Rd be an open set and E ⊂ Rd be measurable. Then for both maximal
operators and every λ ∈ (0, 1) we have E̊∗ ∩ Ω ⊂ {M1E > λ}, and for the uncentered maximal
operator also ∂∗E ⊂ {M1E > λ}.

Note that this is a version of Mf ≥ f almost everywhere.

Proof. Let x ∈ E̊∗ ∩ Ω. Then for every ε > 0 there is a ball B ⊂ Ω with center x with L(B \ E) ≤
εL(B) and a dyadic cube x ∈ Q ⊂ B with L(Q) & L(B). That means L(Q \E) ≤ εL(B) . εL(Q).

Let x ∈ ∂∗E. It suffices to consider x = 0 and

lim
r→0

 
B(0,r)

νE = (1, 0, . . . , 0).

Denote by B a translate of the unit ball that contains the origin and with

L({y ∈ B : y1 < 0}) > λL(B).

Denote by Br the same ball scaled by r with respect to the origin. Then by Lemma 1.7 we have

lim
r→0

 
Br

1E =
L({y ∈ B : y1 < 0})

L(B)
> λL(B),

which means M1E(0) > λ.

3 The dyadic maximal function

In this section we discuss the argument for the dyadic maximal operator. It already showcases the
main idea of the proof for the uncentered maximal operator. We have

{M1E > λ} =
⋃
{dyadic cube Q : L(E ∩Q) > λL(Q)}.

The first step in the proof of Proposition 1.4 is to consider only a finite set Q of cubes Q with
L(E ∩Q) > λL(Q) instead of the whole set, because this allows to write

Hd−1(∂∗
⋃
Q) ≤

∑

Q∈Q
Hd−1(∂∗Q ∩ ∂∗

⋃
Q).
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From there we use approximation results to extend to the union of all cubes Q with L(E ∩ Q) >
λL(Q). The strategy for the uncentered maximal operator is precisely the same, with cubes replaced
by balls.

The main argument is Proposition 3.1, which is more or less Proposition 1.4 for the case that
{M1E > λ} consists of only one cube. Proposition 3.1 readily implies Proposition 1.4 because
{M1E > λ} is a disjoint union of such cubes. Two balls however can have nontrivial intersec-
tions, which is why the proof for the uncentered Hardy-Littlewood maximal operator is much more
complicated than the proof for the dyadic maximal operator.

Proposition 3.1. Let E ⊂ Rd be measurable and Q a cube with L(E ∩Q) = λL(Q). Then

Hd−1(∂Q \ E∗) . λ−
d−1
d Hd−1(∂∗E ∩ Q̊).

Proof. We apply Lemma 2.5 to X = Q̊ and for the resulting cover use Lemma 1.9 to extract a
disjoint subcollection C such that 5C still covers ∂Q \ E∗. Then by Lemma 2.5 we have

Hd−1(∂Q \ E∗) ≤
∑

C∈C
Hd−1(∂5C)

. λ−
d−1
d

∑

C∈C
Hd−1(∂∗E ∩ C ∩ Q̊)

≤ λ− d−1
d Hd−1(∂∗E ∩ Q̊).

Remark 3.2. For λ ≤ 1
2 Proposition 3.1 also follows directly from the relative isoperimetric inequal-

ity (1) for Q. Proposition 3.1 also holds for Q being a ball.

Proof of Proposition 1.4. For each x ∈ {M1E > λ} ∩ Ω there is a dyadic cube Q ⊂ Ω with x ∈ Q
and L(E ∩ Q) > λL(Q). Since there are only countably many dyadic cubes we can enumerate
them Q1, Q2, . . .. For each n let Qn be the subset of maximal cubes of Q1, . . . , Qn. We want to
approximate the boundary of {M1E > λ} by the boundary of

⋃Qn. We have

⋃

n

Qn = {M1E > λ}

and by Lemma 2.6 ⋃
Qn ⊂

⋃
Qn ∪ E̊∗ ⊂ {M1E > λ}.

Therefore, as E and E̊∗ agree up to measure zero,
⋃Qn ∪ E approaches {M1E > λ} in L1

loc(Ω).
Thus by Lemma 1.10 we get

Hd−1(∂∗{M1E > λ} ∩ Ω) ≤ lim sup
n→∞

Hd−1(∂∗(
⋃
Qn ∪ E) ∩ Ω).

Then we use that the boundary of the union of two sets is contained in the union of the boundaries
of the sets, but supported away from their interiors, i.e. we apply Lemma 1.6

Hd−1(∂∗(
⋃
Qn ∪ E) ∩ Ω) ≤ Hd−1((∂∗

⋃
Qn \ E

∗
) ∩ Ω) +Hd−1(∂∗E ∩ Ω). (5)
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C

⋃
B

Figure 3: The objects in Lemma 4.1.

Even though this is not necessary, in the line corresponding to (5) in the proof for the uncentered
Hardy-Littlewood maximal function we can actually eliminate the term Hd−1(∂∗E ∩ Ω) thanks to
Lemma 2.6; see (7) in Section 4 and the subsequent comment. Here this is not so clear because for
the dyadic maximal function Lemma 2.6 is weaker. But in any case, it suffices to estimate the first
term on the right hand side of (5). We invoke Proposition 3.1 and use the disjointness of the cubes
in Qn. This implies

Hd−1((∂∗
⋃
Qn \ E

∗
) ∩ Ω) ≤

∑

Q∈Qn

Hd−1((∂∗Q \ E
∗
) ∩ Ω)

.
∑

Q∈Qn

λ−
d−1
d Hd−1(∂∗E ∩Q)

≤ λ− d−1
d Hd−1(∂∗E ∩ Ω ∩ {M1E > λ}).

4 The uncentered maximal function

In this section we prove Proposition 1.5. The main step is Proposition 4.4. It is Proposition 3.1 for
a set B of finitely many balls B with L(B ∩ E) > λL(B) instead of one cube.

Lemma 4.1. Let K > 0 and C be a ball and B a finite set of balls B with diam(B) ≥ K diam(C).
Then

Hd−1(∂∗
⋃
B ∩ C) . (K−d + 1)Hd−1(∂C).

The rate K−d does not play a role in the application. We need a short computation before we
can prove Lemma 4.1.

Lemma 4.2. There is a number N large enough such that the following holds. Let C ⊂ Rd be a
ball centered in the origin. Then for any two points y1, y2 ∈ C and x1, x2 ∈ Rd with |x1|, |x2| ≥
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(N + 1) diam(C)/2 and ^(x1, x2) ≤ π/4 we have

^(y1 − x1, y2 − x2) ≤ π/2.

Proof. Since |yi| ≤ diam(C)/2 we have

|yi − xi| − diam(C)/2 < |xi| < |yi − xi|+ diam(C)/2.

Thus for N →∞ we have
|yi − xi|/|xi| → 1 (6)

uniformly. For simplicity assume |x1| ≤ |x2|. Then

〈y1 − x1, y2 − x2〉
|x1||x2|

=
〈y1, y2〉
|x1||x2|

− 〈y1, x2/|x2|〉
|x1|

− 〈y2, x1/|x1|〉
|x2|

+ 〈x1/|x1|, x2/|x2|〉.

The first three summands vanish uniformly for N → ∞ and by assumption 〈x1/|x1|, x2/|x2|〉 ≥
cos(π/4). Thus by (6) there is an N such that

〈y1 − x1, y2 − x2〉
|y1 − x1||y2 − x2|

≥ cos(π/2).

Proof of Lemma 4.1. It suffices to consider the case that the center of C is the origin. Take N from
Lemma 4.2. First consider the case K ≥ N . Then Lemma 4.2 says that for any two balls in B
whose centers have an angle of at most π/4, the angles of their surface normals at any two points
inside C differs by at most π/2. That means for any unit vector e we have that

∂∗
⋃
{B(x, r) ∈ B : ^(e, x) ≤ π/4} ∩ C

is a graph with Lipschitz constant 1 which thus has perimeter bounded by Hd−1(∂C). So take a
finite π/4-net of directions A. Then

Hd−1(∂∗
⋃
B ∩ C) ≤

∑

e∈A
Hd−1(∂∗

⋃
{B(x, r) ∈ B : ^(e, x) ≤ π/4} ∩ C) . Hd−1(∂C).

If K < N then we cover C by .
(
N
K

)d
many balls C1, C2, . . . so that for each i we have

diam(B) ≥ N diam(Ci). Then

Hd−1(∂∗
⋃
B ∩ C) ≤

∑

i

Hd−1(∂∗
⋃
B ∩ Ci) .

∑

i

Hd−1(∂Ci) .
(N
K

)d
Hd−1(∂C).

For a set of balls B we denote by Bn the set of those B ∈ B with diam(B) ∈ [ 1
2 , 1)2n and

B>n =
⋃
k>n Bk and B≥n,B<n, . . . accordingly.

Lemma 4.3. Let E ⊂ Rd be measurable and B be a finite set of balls B with L(E ∩B) > λL(B).
Then there is a set of balls C such that for each n ∈ Z the following holds.

13



(i) The balls in Cn are disjoint.

(ii) ∂∗
⋃B ∩ ∂∗

⋃Bn−1 \ E
∗

is covered by 5C≤n.

(iii) Each C ∈ Cn has distance at most 2 diam(C) to ∂∗
⋃B \ E∗

(iv) and Hd−1(∂∗E ∩ C ∩ {x : dist(x,
⋃B{) ≥ λd1− d2 2n−3}) & λ

d−1
d Hd−1(∂C).

Proof. Apply Lemma 2.5 to each ball in B and denote by C̃ the union of all these balls. They cover
∂∗
⋃B \ E∗. In particular ∂∗

⋃B ∩ ∂∗
⋃Bn−1 \ E

∗
is covered by C̃≤n. Let n ∈ Z. By Lemma 1.9

there is a subcollection Cn of C̃n of disjoint balls with
⋃ C̃n ⊂

⋃
5Cn. That means (i) and (ii) are

satisfied. Now remove those balls C from Cn such that 5C does not touch ∂∗
⋃B \ E∗. Then (ii)

still holds and we also get (iii).
Let C ∈ Cn. Let B ∈ B be the ball which gave rise to C. Since B ⊂ ⋃B we have

{
x : dist(x,

⋃
B{) >

λ diamC

4d
d
2−1

}
⊃
{
x : dist(x,B{) >

λ diamC

4d
d
2−1

}
.

Then we invoke Lemma 2.5 to conclude (iv).

Proposition 4.4. Let λ ∈ (0, 1). Let E ⊂ Rd be a set of locally finite perimeter and let B be a
finite set of balls such that for each B ∈ B we have L(E ∩B) > λL(B). Then

Hd−1(∂∗
⋃
B \ E∗) . λ−

d−1
d (1− log λ)Hd−1

(
∂∗E ∩

⋃̊
B
∗)
.

The idea of the proof of Proposition 4.4 is that we want to split ∂∗
⋃B into pieces according to

how far away ∂∗
⋃B is from ∂∗E, and then identify for each such piece of ∂∗

⋃B a corresponding
piece of ∂∗E with comparable size.

Proposition 4.4 is the most crucial result in the paper. Since

{M1E > λ} =
⋃
{B : L(E ∩B) > λL(B)}

it implies Proposition 1.5 due to an approximation scheme.

Proof of Proposition 4.4. We use Lemma 4.3. We first rearrange ∂∗
⋃B\E∗ and divide it according

to the (Cn)n in Lemma 4.3, (ii) so that afterwards we can apply Lemma 4.1. We obtain

Hd−1(∂∗
⋃
B \ E∗) = Hd−1

(⋃

k

∂∗
⋃
B ∩ ∂∗

⋃
Bk \ E

∗)

= Hd−1
(⋃

k

∂∗
⋃
B ∩ ∂∗

⋃
Bk ∩

⋃

n≤k+1

⋃
5Cn
)

= Hd−1
(⋃

n

⋃

k≥n−1

∂∗
⋃
B ∩ ∂∗

⋃
Bk ∩

⋃
5Cn
)

= Hd−1
(⋃

n

∂∗
⋃
B ∩ ∂∗

⋃
B≥n−1 ∩

⋃
5Cn
)

≤
∑

n

Hd−1(∂∗
⋃
B ∩ ∂∗

⋃
B≥n−1 ∩

⋃
5Cn)
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=
∑

n

∑

C∈Cn

Hd−1(∂∗
⋃
B ∩ ∂∗

⋃
B≥n−1 ∩ 5C).

.
∑

n

∑

C∈Cn

Hd−1(∂C).

In what follows we apply first (i), then (iv) and (iii). We obtain

∑

C∈Cn

Hd−1(∂C) . λ−
d−1
d

∑

C∈Cn

Hd−1(∂∗E ∩ C ∩ {x : dist(x,
⋃
B{) ≥ λd1− d2 2n−3})

= λ−
d−1
d Hd−1(∂∗E ∩

⋃
Cn ∩ {x : dist(x,

⋃
B{) ≥ λd1− d2 2n−3})

≤ λ− d−1
d Hd−1(∂∗E ∩ {x : λd1− d2 2n−3 ≤ dist(x,

⋃
B{) ≤ 2n+1}).

Now we sum over n. Since for a fixed number r ∈ R λd1− d2 2n−3 ≤ r ≤ 5 · 2n can only occur for
4 + (d2 − 1) log2 d− log2 λ many n ∈ Z we can bound

Hd−1(∂∗
⋃
B \ E∗) ≤ λ− d−1

d

∑

n

Hd−1(∂∗E ∩ {x : λd1− d2 2n−3 ≤ dist(x,
⋃
B{) ≤ 2n+1})

. λ−
d−1
d (1− log λ)Hd−1(∂∗E ∩

⋃
B).

Remark 4.5. If the balls in
⋃
n Cn were disjoint then we could get rid of the factor 1 − log λ| by

using Remark 3.2 instead of (iv).

Now we extend Proposition 4.4 to the whole set {M1E > λ}.

Proof of Proposition 1.5. Note that

{M1E > λ} =
⋃
{B ⊂ Ω : L(B ∩ E) > λL(B)}.

First we pass to a countable set of balls. By the Lindelöf property, for example Proposition 1.5 in
[4], there is a sequence of balls with

{M1E > λ} = B1 ∪B2 ∪ . . .

such that for each i we have L(E∩Bi) > λL(Bi). Denote Bn = {B1, . . . , Bn}. Then
⋃Bn converges

to {M1E > λ} in L1
loc(Ω). Furthermore by Lemma 2.6 we have

⋃
Bn ⊂

⋃
Bn ∪ E̊∗ ⊂ {M1E > λ}

which means that also
⋃Bn ∪E converges to {M1E > λ} in L1

loc(Ω). We apply this finite approxi-

mation using Lemma 1.10 and then divide the boundary using Lemma 1.6. Since E and E̊∗ agree

up to a set of measure zero we have (E̊∗)
∗

= E
∗

and ∂∗(E̊
∗) = ∂∗E so that we get

Hd−1(∂∗{M1E > λ} ∩ Ω) ≤ lim sup
n→∞

Hd−1(∂∗(
⋃
Bn ∪ E̊∗) ∩ Ω)
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≤ lim sup
n→∞

Hd−1(∂∗
⋃
Bn \ E

∗ ∩ Ω) +Hd−1
(
∂∗E \

˚(⋃
Bn
)∗
∩ Ω

)
. (7)

By Lemma 2.6 the second summand is bounded by Hd−1(∂∗E ∩ Ω ∩ {M1E > λ}). In fact, if
Hd−1(∂∗E ∩ Ω ∩ {M1E > λ}) is finite then the second summand in (7) even goes to 0 for n→∞.
This is due to Lemma 2.6 for the uncentered maximal function, because

˚(⋃
Bn
)∗
⊃
⋃
Bn

which is an increasing sequence that exhausts {M1E > λ}. In any case, it remains to estimate the
first summand in (7). Note that all balls B ∈ Bn satisfy in particular L(E ∩B) > λL(B). Thus by
Proposition 4.4 we have

Hd−1(∂∗
⋃
Bn \ E

∗
) . λ−

d−1
d (1− log λ)Hd−1(∂∗E ∩

⋃
Bn)

≤ λ− d−1
d (1− log λ)Hd−1(∂∗E ∩ {M1E > λ}).

5 The optimal rate in λ

In this section we prove the following improvement of Proposition 1.5.

Proposition 5.1. Let M be the local uncentered maximal operator. Let E ⊂ Rd be a set with
locally finite perimeter and λ ∈ (0, 1). Then

Hd−1(∂∗{M1E > λ} ∩ Ω) . λ−
d−1
d Hd−1(∂∗E ∩ {M1E > λ}).

More important than the statement of Proposition 5.1 is maybe the proof strategy. It may be
helpful when attempting to generalize Theorem 1.3 to var Mf . var f for general functions f of
bounded variation.

Remark 5.2. From taking Ω = Rd and E = B(0, 1) it follows that the rate λ−
d−1
d in Proposition 5.1

is optimal.

In order to prove Proposition 5.1 it suffices to prove the following improvement of Proposition 4.4.

Proposition 5.3. Let E ⊂ Rd be a set of locally finite perimeter and let B be a finite set of balls
such that for each B ∈ B we have λL(B) < L(E ∩B) ≤ 1

2L(B). Then

Hd−1(∂∗
⋃
B) . λ−

d−1
d Hd−1(∂∗E ∩

⋃
B).

Proof of Proposition 5.1. Let B be a finite set of balls B with L(B ∩ E) ≥ λL(B). Then

Hd−1(∂
⋃
B \ E∗) ≤ Hd−1(∂{B ∈ B : L(B ∩ E) >

1

2
L(B)} \ E∗)

+Hd−1(∂{B ∈ B : λL(B) < L(B ∩ E) ≤ 1

2
L(B)} \ E∗)
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By Proposition 4.4 the first summand in the previous display is . Hd−1(∂∗E ∩
⋃B) and by Propo-

sition 5.3 the second summand is . λ−
d−1
d Hd−1(∂∗E ∩

⋃B). We conclude

Hd−1(∂
⋃
B \ E∗) . λ−

d−1
d Hd−1(∂∗E ∩

⋃
B),

which is Proposition 4.4 without the factor 1−log λ. Thus we can repeat the proof of Proposition 1.5
verbatim without the factor 1− log λ.

There is a weaker version of Proposition 5.3 which has a simpler proof, but already suffices to
prove Proposition 5.1 for Ω = Rd.

Proposition 5.4. There is an ε > 0 depending only on the dimension such that for all λ < ε the
following holds. Let E ⊂ Rd be a set of locally finite perimeter and let B be a finite set of balls
such that for each B ∈ B we have λL(B) < L(E ∩ B) ≤ εL(B). Then there is a finite superset B̃
of B consisting of balls B with L(E ∩B) > λL(B) that satisfies

Hd−1(∂∗
⋃
B̃) . λ−

d−1
d Hd−1(∂∗E ∩

⋃
B).

Proof of Proposition 5.1 for Ω = Rd. Take ε > 0 from Proposition 5.4. For λ ≥ ε Proposition 5.1
already follows from Proposition 1.5. It suffices to consider the case that there is an x0 ∈ {λ <
M1E ≤ ε}. Let M1E(x) > λ. Then there is a ball C 3 x with L(E ∩ C) > λL(C), while
L(E ∩ B(x0, 2|x − x0|)) ≤ εL(B(x0, 2|x − x0|)). By continuity we can conclude that {M1E > λ}
is a union of balls B with λL(B) < L(E ∩ B) < εL(B). Thus by the Lindelöf property there is a
sequence of balls (Bn)n with λL(Bn) < L(E∩Bn) < εL(Bn) such that {M1E > λ} = B1∪B2∪ . . ..
Let B̃n be the finite superset of Bn = {B1, . . . , Bn} from Proposition 5.4. Then

⋃
Bn ⊂

⋃
B̃n ⊂ {M1E > λ}

which means that
⋃ B̃n ∪ E̊∗ also converges to {M1E > λ} in L1

loc(Ω). Thus we get as in the proof
of Proposition 1.5 that

Hd−1(∂∗{M1E > λ}) ≤ lim sup
n→∞

Hd−1(∂∗
⋃
B̃n).

By Proposition 5.4 we have

Hd−1(∂∗
⋃
B̃n) . λ−

d−1
d Hd−1(∂∗E ∩

⋃
Bn)

≤ λ− d−1
d Hd−1(∂∗E ∩ {M1E > λ}).

5.1 The global case Ω = Rd

In this subsection we present a proof of Proposition 5.4. It already contains some of the ideas for
the general local case Proposition 5.3.
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Proof of Proposition 5.4. Restrict ε ≤ 1
2 . Let F ′ be the collection of balls from Lemma 2.4 applied

to E ∩ ⋃B and B. Then let F̃ be the countable disjoint subcollection from Lemma 1.9. Extract
from that a finite subcollection F so that for every B ∈ B we have

L(E ∩
⋃

5F ∩B) ≥ λ

2
L(B). (8)

This is possible since B is finite. For every F ∈ F the ball B = (2λ)−
1
dF satisfies

L(E ∩B) ≥ L(E ∩ F ) =
L(F )

2
= λL(B).

Add all those balls B to B. Then B is still finite.
Here F serves as a decomposition of E into pieces F ∩ E where each piece has a substantial

amount of boundary. Recall that Hd−1(∂∗E ∩ F ) & Hd−1(∂F ). The overall goal now is to collect
for each F its contribution to Hd−1(∂∗

⋃B) and show that it is bounded by ∂F .

Let r > 0 and F ∈ F with diamF ≥ 8rλ
1
d . Then (2λ)−

1
dF has diameter at least 4r. Restrict

further ε ≤ 20−d, i.e. 5 · 4rε 1
d + r ≤ 2r. That means any ball B ∈ B with diameter at most r that

intersects 5F is entirely contained in (2λ)−
1
dF ∈ B, which means we may remove B from B without

changing ∂∗
⋃B \E∗. Or conversely, if B ∈ B has diameter r and F ∈ F such that 5F intersects B

then diamF < 8rλ
1
d . Thus if we further restrict ε ≤ 1

240−d then

L(5F )

L(B)
<

5d8drdε

rd
≤ 1

2
. (9)

Now denote by Bn the set of balls in B with diamB ∈ [ 1
2 , 1)2n and let B ∈ Bn. Denote by Fn

the set of those balls with diamF ∈ 2nλ
1
d [4, 8). Let F ∈ F such that 5F intersects B. Then

F ∈ Fk for some k ≤ n. (10)

By (9) we can apply Corollary 2.3 with X = B and E = 5F and get

Hd−1(∂B) .
(L(5F ∩B)

L(B)

)− d−1
d Hd−1(∂5F ∩B)

.
(L(5F ∩B)

L(B)

)− d−1
d Hd−1(∂F ). (11)

Since any F such that 5F intersects B is contained in 2B, we get from (8) that

λ

2
L(B) ≤

∑

F⊂2B

L(5F ∩B).

We rewrite the last display as

Hd−1(∂B) ≤ 2
∑

F⊂2B

L(5F ∩B)

λL(B)
Hd−1(∂B).
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We apply (11) on the right-hand side and remember (10), i.e. that F ⊂ ⋃k≤n Fk. So we get

Hd−1(∂B) .
∑

F⊂2B

(L(5F ∩B)

λL(B)

) 1
d

λ−
d−1
d Hd−1(∂F )

.
∑

k≤n

∑

F∈Fk,F⊂2B

(L(5F ∩B)

λL(B)

) 1
d

λ−
d−1
d Hd−1(∂F )

≤
∑

k≤n

∑

F∈Fk,F⊂2B

(L(5F )

λL(B)

) 1
d

λ−
d−1
d Hd−1(∂F )

.
∑

k≤n

∑

F∈Fk,F⊂2B

2k−nλ−
d−1
d Hd−1(∂F ). (12)

This estimate can be seen as a way to distribute Hd−1(∂B) over the balls F that it contains.
The next step will be to turn the dependence around, and see for a fixed F , for how much variation
of Hd−1(∂∗

⋃B) it is responsible.
Since Bn is finite we have

Hd−1(∂∗
⋃
Bn) =

∑

B∈Bn

Hd−1(∂B ∩ ∂∗
⋃
Bn).

We again multiply each summand by a number bounded from below according to (12).

∑

B∈Bn

Hd−1(∂B ∩ ∂∗
⋃
Bn)

.
∑

B∈Bn

Hd−1(∂B ∩ ∂∗
⋃Bn)

Hd−1(∂B)

∑

k≤n

∑

F∈Fk,F⊂2B

2k−nλ−
d−1
d Hd−1(∂F )

= λ−
d−1
d

∑

k≤n

2k−n
∑

F∈Fk

Hd−1(∂F )
∑

B∈Bn,2B⊃F

Hd−1(∂B ∩ ∂∗
⋃Bn)

Hd−1(∂B)
.

Now we have reorganized ∂∗
⋃Bn according to the F ∈ F . We want to bound the contribution of

each F uniformly. For each F ∈ Fk for which there is a B ∈ Bn with F ⊂ 2B, denote by BF a
largest such B. Then for all B ∈ Bn with F ⊂ 2B have B ⊂ 3BF . Thus

∑

B∈Bn,2B⊃F

Hd−1(∂B ∩ ∂∗
⋃Bn)

Hd−1(∂B)
.

∑

B∈Bn,B⊂3BF

Hd−1(∂B ∩ ∂∗
⋃Bn)

Hd−1(∂BF )
,

which is uniformly bounded according to Lemma 4.1. Therefore we can conclude

Hd−1(∂∗
⋃
Bn) . λ−

d−1
d

∑

k≤n

2k−n
∑

F∈Fk

Hd−1(∂F ).

The interaction between the scales is small enough so that we can just sum over all scales and
obtain

Hd−1(∂∗
⋃
B) ≤

∑

n

Hd−1(∂∗
⋃
Bn)
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. λ−
d−1
d

∑

k

∑

n≥k

2k−n
∑

F∈Fk

Hd−1(∂F )

. λ−
d−1
d

∑

k

∑

F∈Fk

Hd−1(∂F )

= λ−
d−1
d

∑

F∈F
Hd−1(∂F ).

Now we use Lemma 2.4 and the isoperimetric inequality (1) to get back from F to E. Recall that
Hd−1(∂F ) . Hd−1(∂∗E ∩ F ) and that the balls in F are disjoint. Hence we can conclude

Hd−1(∂∗
⋃
B) . λ−

d−1
d

∑

F∈F
Hd−1(∂∗E ∩ F )

≤ λ− d−1
d Hd−1(∂∗E ∩

⋃
B).

5.2 The general local case Ω ⊂ Rd

In this subsection we present a proof of Proposition 5.3. It requires a few more steps than the proof
of Proposition 5.4.

Lemma 5.5. Let λ ≤ 2−
d+1
2 d−

3
2 and B,C be balls with diamC ≥ diamB and L(B∩C) ≤ λL(B).

Then (1− 2d
3
d+1λ

2
d+1 )B and C are disjoint.

For the application we only need that for λ small enough B and (3/4)
1
dC are disjoint. Since

diamC ≥ diamB this follows if (3/4)
1
dB and C are disjoint. The rate in λ also plays no role.

Proof. We first do some calculations. Let σd be the measure of the d dimensional unit ball. We
have

σd
σd−1

= π
1
2

Γ(d/2 + 1)

Γ(d/2 + 1/2)
.

By Stirling’s formula it holds for all x ≥ 1 that

Γ(1 + x) ∈ [
√

2π, e]xx+ 1
2 e−x.

Thus for d ≥ 3 we have

σd
σd−1

≤ e√
2π

(d/2)(1+d)/2

((d− 1)/2)d/2
e−

1
2

=
e

1
2√
2π

(
1 +

1

d− 1

)d/2(d
2

) 1
2

≤ e
1
2√
2π
e

1
2

(
1 +

1

d− 1

)1/2(d
2

) 1
2

=
e

2
√
π

(
d+ 1 +

1

d− 1

)1/2
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Figure 4: The lower bound for L(B ∩ C) in the proof of Lemma 5.5.

≤ e

2
√
π

(
1 +

1

3
+

1

6

)1/2

d
1
2

≤ d 1
2 . (13)

After rescaling, rotation and translation it suffices to consider the case that there are r ≥ 1, 0 <
ε ≤ 2 such that B = B(e1, 1) and C = B((ε − r)e1, r). We bound L(B ∩ C) from below by the
marked area in Figure 4. For x ∈ Rd denote x̄1 = (x2, . . . , xd). The two spheres ∂B and ∂C
intersect in a plane orthogonal to e1 that is between ε

2e1 and εe1. Thus

{
x : x̄2

1 < x1 <
ε

2

}
⊂
{
x ∈ B : x1 <

ε

2

}
⊂ B ∩ C

and by symmetry and r ≥ 1 also the image of the first set mirrored at x1 = ε
2 is containd in B ∩C,

so that

L(B ∩ C) > 2L
({
x : x̄2

1 < x1 <
ε

2

})

= 2

ˆ ε
2

0

σd−1h
d−1
2 dh

= 2−
d−3
2
σd−1

d+ 1
ε
d+1
2 ,

Therefore since L(B ∩ C) ≤ λL(B) = λσd we can conclude the following upper bound for ε using
(13).

ε
d+1
2 ≤ λ(d+ 1)σd

σd−1
2
d−3
2

≤ 2
d+1
2 λ

(d+ 1)d
1
2

4

≤ 2
d+1
2 λd

3
2 ,

ε ≤ 2d
3
d+1λ

2
d+1 .
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F

B0

B1

B2

Figure 5: The objects in Lemma 5.7.

One can check this bound also for d = 1, 2. This finishes the proof because (1 − ε)B and C are
disjoint.

Lemma 5.6. Let B be a ball and F be a set of balls F with L(
⋃F ∩B) ≥ λL(B). Then there is

a ball F ∈ F that intersects (1− λ/d)B.

Proof. Since

L(B \ (1− λ/d)B) = dL(B)

ˆ 1

1−λ/d
rd−1 dr

< λL(B)

⋃F cannot lie outside of (1− λ/d)B.

Lemma 5.7. Let λ > 0 and let F be a ball and B a finite set of balls B with L(B ∩ F ) ≥ λL(B).
Then

Hd−1(∂(F ∪
⋃
B)) . (1− log λ)λ−2+ 3

d+1Hd−1(∂F ).

The rate in λ plays no role for the application and is probably also not optimal.

Proof. After translation and scaling it suffices to consider F = B(0, 1). We split B into

B0,− =
{
B(x, r) ∈ B : r ≤ 1

2
, |x| ≤ 1− r

2

}
,

B0,+ =
{
B(x, r) ∈ B : r ≤ 1

2
, |x| > 1− r

2

}
,
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xB

y

0

Figure 6: The case B ∈ B0,−.

B1 =
{
B(x, r) ∈ B : r >

1

2

}
.

It suffices to bound the perimeter of each component separately.
First consider B1. For each n ≥ 1 take a ball Bn ∈ B1 with diamBn ∈ [ 1

2 , 1)2n, if one exists.
The largest such n is bounded by d1 − log2 λ/de. For each such n ≥ 1 all balls B ∈ B1 with
diamB ∈ [ 1

2 , 1)2n are contained in 8Bn. Thus by Lemma 4.1 we have

Hd−1(∂
⋃
B1) ≤

d1−log2 λ/de∑

n=1

Hd−1
(
∂
⋃{

B ∈ B1 : diamB ∈
[1

2
, 1
)

2n
})

.
d1−log2 λ/de∑

n=1

Hd−1(∂8Bn)

.
d1−log2 λ/de∑

n=1

2(d−1)n

. λ−
d−1
d

. (1− log λ)λ−2+ 3
d+1 ,

and we are done with B1.
For B ∈ B0,− ∪ B0,+ denote by xB the center of B.

Claim. Let B ∈ B0,− and y ∈ ∂B \B(0, 1). Then ^(y, y − xB) ≤ π
3 .

Proof. Denote B = B(xB , r). Clearly ^(y, y − xB) increases the closer y is to ∂B(0, 1). Thus it
suffices to consider y ∈ ∂B ∩ ∂B(0, 1), and ^(y, y − xB) does not depend on the choice of y, but
only on |xB | and r. Consider the triangle with endpoints 0, y, xB . It has sidelengths 1, r, |xB | with
r ≤ 1

2 and 1− r ≤ |xB | ≤ 1− r
2 . So by the law of cosines

cos^(y, y − xB) =
1 + r2 − |xB |2

2r
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Figure 7: The two extremal cases of B ∈ B0,+.

≥ 1 + r2 − (1− r/2)2

2r

=
3
4r

2 + r

2r

=
3
4r + 1

2

≥ 1

2
.

By the claim at each point y ∈ ∂B the angle between y and ∂B is at least π
6 . That means

for each z ∈ B(0, 1) there is exactly one yz ∈ ∂(F ∪ ⋃B0,−) with yz/|yz| = z. Furthermore the
mapping z 7→ |yz| is Lipschitz with constant tan(π/2− π/6) =

√
3 and bounded by 5

4 . Thus

Hd−1(∂
⋃
B0,−) ≤ 2(5/4)d−1Hd−1(∂B(0, 1)).

For B ∈ B0,+ denote rB = dist(xB/|xB |, ∂B(0, 1) ∩ ∂B).

Claim 5.8. Let B ∈ B0,+. Then dist(B( xB
|xB | ,

rB
4 ),Rd \ (B(0, 1) ∪B)) ≥ rB/12.

Proof. It suffices to check the distance at parallel points of ∂B( xB
|xB | ,

rB
4 ) and ∂(B(0, 1) ∪ B) and

where ∂(B(0, 1) ∪ B) has a corner. Denote r = diamB/2. If y1 is a corner of ∂(B(0, 1) ∪ B) then
y1 ∈ ∂B(0, 1) ∩ ∂B and there dist(B( xB

|xB | ,
rB
4 ), y1) = 3

4rB .

The only parallel points lie on the line that goes through the origin and xB . Of those points
the only interesting one in ∂(B(0, 1) ∪ B) is y2 = xB + r xB

|xB | . If |xB | ≥ 1 then rB ≤ r which

implies dist(B( xB
|xB | ,

rB
4 ), y2) ≥ 3

4r ≥ 3
4rB . Thus it suffices to consider |xB | ≤ 1. In this case since

|xB | ≥ 1− r
2 we have | xB|xB | −xB | ≤

r
2 and thus rB ≤ 3

2r. Therefore dist(B( xB
|xB | ,

rB
4 ), y2) ≥ r

2 − rB
4 ≥

r
2 − 3

8r = r
8 ≥ rB

12 .
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For each n ∈ Z denote by Bn the set of B ∈ B0,+ with rB ∈ [ 1
2 , 1)2n. Let B ∈ B0,+ and C ∈ B0,+

with C 6= B. If C ⊂ B(0, 1)∪B then C does not contribute to ∂(
⋃B0,+ ∪B(0, 1)). Thus it suffices

to consider the case that each C ∈ B0,+ intersects Rd \ (B(0, 1) ∪B).

Claim 5.9. There is a c ∈ Z+ log2 λ
d+1 that depends only on the dimension such that for all n, k with

k − n ≤ log2 λ
d+1 − c and B ∈ Bn no C ∈ Bk intersects B(xB/|xB |, rB/4).

Proof. Note that λ2−d diam(B)d ≤ L(B ∩ B(0, 1)) ∼ rd+1
B / diam(B). Thus rB ≤ diamB .

λ−
1
d+1 rB . This means 2n−1 ≤ diamB . λ−

1
d+1 2n and similarly diamC . λ−

1
d+1 2k. Thus for

c small enough and k ≤ n+ log2 λ
d+1 − c we have

diamC ≤ λ− 1
d+1 2n+log2 λ/(d+1)2−1/12 = 2n−1/12 ≤ rB/12.

So since we assumed that C intersects Rd \ (B(0, 1) ∪ B) it follows from Claim 5.8 that C cannot
intersect B(xB/|xB |, rB/4).

Take a disjoint subcollection B̃n of Bn such that 5B̃n covers Bn. Then by Lemma 4.1 we have

Hd−1(∂
⋃
Bn) ≤

∑

B∈B̃n

Hd−1(5B ∩ ∂
⋃
Bn)

. λ−
d
d+1

∑

B∈B̃n

Hd−1(∂5B)

. λ−2+ 3
d+1

∑

B∈B̃n

rd−1
B

. λ−2+ 3
d+1

∑

B∈B̃n

Hd−1(∂B(0, 1) ∩B(xB/|xB |, rB/4))

≤ λ−2+ 3
d+1Hd−1(∂B(0, 1) ∩

⋃
{B(xB/|xB |, rB/4) : B ∈ Bn}).

So we can conclude from Claim 5.9
∑

k∈Z
Hd−1(∂

⋃
B
n+k(c− log2 λ

d+1 )
) . λ−2+ 3

d+1

∑

k∈Z
Hd−1

(
∂B(0, 1) ∩

⋃{
B(xB/|xB |, rB/4) : B ∈ B

n+k(c− log2 λ
d+1 )

})

= λ−2+ 3
d+1Hd−1

(
∂B(0, 1) ∩

⋃{
B(xB/|xB |, rB/4) : B ∈

⋃

k∈Z
B
n+k(c− log2 λ

d+1 )

})

≤ λ−2+ 3
d+1Hd−1(∂B(0, 1))

and thus

Hd−1(∂B0,+) ≤
c− log2 λ

d+1∑

n=0

∑

k∈Z
Hd−1(∂

⋃
B
n+k(c− log2 λ

d+1 )
)

.
(
c− log2 λ

d+ 1

)
λ−2+ 3

d+1 .
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Proof of Proposition 5.3. According to Lemma 2.4, for every B ∈ B, almost every point in E ∩ B
is contained in a ball F ⊂ B with

L(F ∩ E) =
1

2
L(F ).

Denote by G the set of all such balls F . By scaling it suffices to consider the case that all balls in
G and B have diameter at most 1. We build inductively sequences (Fn)−∞n=0, (Gn)−∞n=0 of subsets of
G. We denote F>n =

⋃
n<k≤0 Fn and G>n and Fn<·≤k accordingly. Assume we are at scale n ≤ 0.

Denote by Bn the set of balls in B with diamB ∈ [ 1
2 , 1)2n. Decompose Bn into

B0
n =

{
B ∈ Bn : L(

⋃
5F>n ∩B) ≤ λ

2
L(B)

}
,

B1
n =

{
B ∈ Bn : L(

⋃
5F>n ∩B) >

λ

2
L(B)

}

and B1
n into

B1,0
n =

{
B ∈ B1

n : L(
⋃
F>n ∩B) ≤ 1

8
d+1
2 d

d+7
2

L(B)
}
,

B1,1
n =

{
B ∈ B1

n : L(
⋃
F>n ∩B) >

1

8
d+1
2 d

d+7
2

L(B)
}
.

Denote by Gn the set of balls G ∈ G with diamG ∈ [ 1
2 , 1)2n which intersect E \ ⋃ 5F>n or are

for some k ≥ n and some B ∈ B1,0
k contained in B \ ⋃Fn<·≤k. Set Fn to be a maximal disjoint

subcollection of Gn.
Denote F =

⋃
n Fn, B0 =

⋃
n B0

n and B1,0 and B1,1 accordingly. Here are a few properties of
those ball collections.

(i) 5Fn covers Gn.

(ii) 5F covers almost all of E.

(iii) (3/4)
1
dF is disjoint.

(iv) If B ∈ B0
n then 5F≤n covers at least λ

2 of B.

(v) If B ∈ B1,0
n then 5F≤n covers at least λ of B.

Proof. (i) By maximality of Fn every G ∈ Gn intersects an F ∈ Fn. Since diamG ≤ 2 diamF
this means G ⊂ 5F .

(ii) Let G ∈ G with diamG ∈ [ 1
2 , 1)2n. If G ∈ Gn then by (i) G is contained in

⋃
5Fn. If G 6∈ Gn

then G is contained in 5F>n because G intersects E. And since G covers almost all of E this
means so does 5F .

(iii) For each n Fn is disjoint. It remains to show that it is disjoint from (3/4)
1
dF>n. So assume

F ∈ Fn. If F was chosen because it intersects E \ 5F>n then it doesn’t intersect F>n. It
remains to consider the case that there is a k ≥ n and a B ∈ B1,0

k such that F ⊂ B and F

does not intersect Fn<·≤k. Since B ∈ B1,0
k for every G ∈ F>k we have

L(B ∩G) ≤ 1

8
d+1
2 d

d+7
2

L(B),
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so that by Lemma 5.5 (1 − 1/(4d))B and G are disjoint. Since (3/4)
1
d ≤ 1 − 1/(4d) and

diamG ≥ diamB this means that (3/4)
1
dG and B are disjoint, too. Hence also F and

(3/4)
1
d

⋃F>k are disjoint.

(iv) Let B ∈ B0
n. Then because 5F covers almost all of E and

L(
⋃

5F>n ∩B) ≤ λ

2
L(B)

we must have

L(
⋃

5F≤n ∩B) ≥ λ

2
L(B).

(v) Since L(B ∩ E) ≥ λL(B) it suffices to show that 5F≤n covers E ∩ B. Recall that almost all
of B ∩ E is covered by the union of all G ∈ G with G ⊂ B and diamG < 2n, so it suffices to
show that each such G is contained in 5F≤n. Let k ≤ n and G ⊂ B with diamG ∈ [ 1

2 , 1)2k.
If G intersects

⋃Fk<·≤n then G ⊂ ⋃ 5Fk<·≤n. If G does not intersect
⋃Fk<·≤n then G ∈ Gk

and thus by (i) we have G ⊂ ⋃ 5Fk.

Denote B̃ = B0 ∪ B1,0 so that B = B̃ ∪ B1,1. Then by Lemma 1.6 we have

∂∗
⋃
B ⊂ ∂∗

⋃
B̃ ∪

(
∂∗
⋃
B1,1 \

⋃
B̃
∗)
.

Note that for finite sets of balls the topological and measure theoretical notions agree up to d− 1
dimensional measure zero. By Lemma 5.6 for every B ∈ B1,1 there is an F ∈ F with diamF >

diamB that intersects (1− 8−
d+1
2 d−

d+7
2 /d)B. By Lemma 2.4 F is further contained in a BF ∈ B.

Since diamB < diamBF we have B 6= BF . For each F ∈ F denote by B(F ) the set of B ∈ B with

diamB < diamF such that F intersects (1− 8−
d+1
2 d−

d+7
2 /d)B. Then

∂
⋃
B1,1 \

⋃
B̃ ⊂ ∂

⋃
B1,1 \

⋃
B

⊂
⋃

F∈F
∂
⋃

(B1,1 ∩ B(F )) \
⋃
B

⊂
⋃

F∈F
∂
⋃

(B1,1 ∩ B(F )) \ (
⋃
B(F ) ∪BF )

⊂
⋃

F∈F
∂
⋃
B(F ) \ (

⋃
B(F ) ∪BF )

=
⋃

F∈F
∂
⋃
B(F ) \BF

⊂
⋃

F∈F
∂(F ∪

⋃
B(F )).

Thus Lemma 5.7 implies

Hd−1(∂
⋃
B1,1 \

⋃
B̃) .

∑

F∈F
Hd−1(∂F )
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Recall that we made (3/4)
1
dF disjoint and that by Lemma 2.4 we for each F ∈ F we have F ⊂ ⋃B

and L(F ∩ E) = L(F )/2. Thus L(( 3
4 )

1
dF ∩ E) ∈ [ 1

4 ,
3
4 ]L(F ) and so by the relative isoperimetric

inequality (1) we can conclude

∑

F∈F
Hd−1(∂F ) .

∑

F∈F
Hd−1(∂(3/4)

1
dF )

.
∑

F∈F
Hd−1(∂∗E ∩ (3/4)

1
dF )

≤ Hd−1(∂∗E ∩
⋃
B). (14)

It remains to prove

Hd−1(∂
⋃
B̃) . λ−

d−1
d

∑

F∈F
Hd−1(∂F ). (15)

For n ∈ Z denote by B̃n the set of balls B ∈ B̃ with diamB ∈ [ 1
2 , 1)2n. Let B ∈ B̃n and F ∈ F≤n

such that 5F intersects B. Then F ⊂ 9B. By (iv) and (v) this means

λ

2
L(B) ≤ L(B ∩

⋃
5F≤n) ≤

∑

F⊂9B

L(5F ∩B). (16)

For each k ∈ Z denote by F̃k the set of balls F ∈ F with diamF ∈ [ 1
2 , 1)2kλ

1
d . We make a case

distinction. If there is a k ≥ n and an F ⊂ 9B with F ∈ F̃k we have

Hd−1(∂B) =
Hd−1(∂B)

Hd−1(∂F )
Hd−1(∂F )

≤ 2d
2n(d−1)

λ
d−1
d 2k(d−1)

Hd−1(∂F )

∼ 2(n−k)(d−1)λ−
d−1
d Hd−1(∂F ), (17)

and we are done with this case for the moment.
Assume all F ⊂ 9B are contained in F̃<n. Then for each F ⊂ 9B we can apply Corollary 2.3

with X = B and E = 5F and get

Hd−1(∂B) .
(L(5F ∩B)

L(B)

)− d−1
d Hd−1(∂5F ∩B)

.
(L(5F ∩B)

L(B)

)− d−1
d Hd−1(∂F ). (18)

We rewrite (16) as

Hd−1(∂B) ≤ 2
∑

F⊂9B

L(5F ∩B)

λL(B)
Hd−1(∂B).

We apply (18) on the right-hand side and get

Hd−1(∂B) .
∑

F⊂9B

(L(5F ∩B)

λL(B)

) 1
d

λ−
d−1
d Hd−1(∂F )
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.
∑

k≤n

∑

F∈F̃k,F⊂9B

(L(5F ∩B)

λL(B)

) 1
d

λ−
d−1
d Hd−1(∂F )

≤
∑

k≤n

∑

F∈F̃k,F⊂9B

(L(5F )

λL(B)

) 1
d

λ−
d−1
d Hd−1(∂F )

.
∑

k≤n

∑

F∈F̃k,F⊂9B

2k−nλ−
d−1
d Hd−1(∂F ). (19)

If d = 1 then Proposition 5.4 is straightforward to prove directly, so it suffices to consider d ≥ 2.
There we can combine (17) and (19) into

Hd−1(∂B) . λ−
d−1
d

∑

k

2−|k−n|
∑

F∈F̃k,F⊂9B

Hd−1(∂F )

for simplicity. This estimate can be seen as a way to distribute Hd−1(∂B) over the balls F that
it contains. The next step will be to turn the dependence around, and see for a fixed F , for how
much variation of Hd−1(∂∗

⋃ B̃) it is responsible.
Since B̃n is finite we have

Hd−1(∂∗
⋃
B̃n) =

∑

B∈B̃n

Hd−1(∂B ∩ ∂∗
⋃
B̃n)

and we multiply each summand by a number bounded from below according to (19)

Hd−1(∂∗
⋃
B̃n) .

∑

B∈B̃n

Hd−1(∂B ∩ ∂∗
⋃ B̃n)

Hd−1(∂B)

∑

k

∑

F∈F̃k,F⊂9B

2−|k−n|λ−
d−1
d Hd−1(∂F )

= λ−
d−1
d

∑

k

2−|k−n|
∑

F∈F̃k

Hd−1(∂F )
∑

B∈B̃n,9B⊃F

Hd−1(∂B ∩ ∂∗
⋃ B̃n)

Hd−1(∂B)
.

Now we have reorganized ∂∗
⋃ B̃n according to the F ∈ F . We want to bound the contribution of

each F uniformly. For each F ∈ F̃k for which there is a B ∈ B̃n with F ⊂ 9B, denote by BF a
largest such B. Then for all B ∈ B̃n with F ⊂ 9B have B ⊂ 3BF . Thus

∑

B∈B̃n,9B⊃F

Hd−1(∂B ∩ ∂∗
⋃ B̃n)

Hd−1(∂B)
.

∑

B∈B̃n,B⊂99BF

Hd−1(∂B ∩ ∂∗
⋃ B̃n)

Hd−1(∂BF )

which is uniformly bounded according to Lemma 4.1. Therefore we can conclude

Hd−1(∂∗
⋃
B̃n) . λ−

d−1
d

∑

k

2−|k−n|
∑

F∈F̃k

Hd−1(∂F ).

The interaction between the scales is small enough so that we can just sum over all scales and
obtain

Hd−1(∂∗
⋃
B̃) ≤

∑

n

Hd−1(∂∗
⋃
B̃n)
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. λ−
d−1
d

∑

k

∑

n

2−|k−n|
∑

F∈F̃k

Hd−1(∂F )

. λ−
d−1
d

∑

k

∑

F∈F̃k

Hd−1(∂F )

= λ−
d−1
d

∑

F∈F
Hd−1(∂F ),

and we have proven (15). Now from (14) we can conclude Hd−1(∂∗
⋃ B̃) . λ−

d−1
d Hd−1(∂∗E ∩

⋃B)
and finish the proof.
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