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Abstract
We prove that for the dyadic maximal operator M and every locally integrable function
f € L .(RY) with bounded variation, also Mf is locally integrable and var Mf < Cqvar f for
any dimension d > 1. It means that if f € L, (R?) is a function whose gradient is a finite
measure then so is VM f and |[VMf|| p1gay < Cal|V f| L1 (ray-
We also prove this for the local dyadic maximal operator.

1 Introduction

Let d € N and € be an open set in R%. For every locally integrable function f € L} () we define
the dyadic local maximal function by

Mof(z) = sup ﬁ /Q f

z€Q,QCN

where the supremum is taken over all dyadic cubes @ that contain z and whose closure is contained
in 2. With minor modifications we may also demand @ or its interior to be contained in (2 instead,
see Remark Various maximal operators have been investigated. The most well known are the
centered Hardy-Littlewood maximal operator which averages over all balls centered in z, and the
uncentered Hardy-Littlewood maximal operator which averages over all balls that contain x.

The regularity of a maximal operator was first studied in [I7], where Kinnunen proved for the
Hardy-Littlewood maximal operator that for p > 1 and f € WHP(R9) also the bound |[VMf||, <
CapllV fllp holds, from which it follows that the Hardy-Littlewood maximal operator is bounded
on WHP(R?). His proof fails for p = 1. Note that also || Mf||; < Ca1||f||1 fails for any nonvanishing
f € LY(RY) because Mf ¢ L'(R?). So in 2004 Hajlasz and Onninen asked in [I6] whether for
f € WEHH(RY) the Hardy-Littlewood maximal function satisfies VMf € L'(R?) and ||[VMf||; <
Cy||V fll1- This question for various maximal operators has become a well known problem and has
been subject to lots of research, but has so far remained essentially unanswered in dimensions larger
than one.

Here is the main result of this paper.
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Theorem 1.1. Let d € N and Q be an open subset of R%. Let f € L} () with varg f < co. Then
Mqf € L (Q) and

varg Mq f < Cyvarq f

where Cy depends only on d.

Note that we can for example take Q@ = RY. Theorem answers the question of Hajtasz
and Onninen for the dyadic maximal operator in the appropriate sense because it is clear that the
gradient of the dyadic maximal function usually does not exist as a function in L'(R). It also
means that [|[VMf||, < Cq,||Vf]l, does not make sense for any p for the dyadic maximal operator.
However for p = 1 it actually suffices also for the uncentered Hardy-Littlewood maximal operator
to prove var Mf < Cy, var f, because under this assumption f € W1 (R?) implies VM f € L' (R%).
This is due to Panu Lahti [21I]. In this sense Theorem is the first full answer to the question
of Hajtasz and Onninen for any maximal operator in dimensions larger than one to the best of our
knowledge.

In [27] we already proved Theorem for characteristic functions for the dyadic and the un-
centered Hardy-Littlewood maximal operator. This paper also makes use of Lemma [2:4] which is
a variant of the relative isoperimetric inequality established in [27].

In one dimension for L!(R) the gradient bound has already been proven in [26] by Tanaka for
the uncentered maximal function, and later in [20] by Kurka for the centered Hardy-Littlewood
maximal function. The latter proof turned out to be much more complicated. In [3], Aldaz and
Pérez Lazaro improved Tanaka’s bound to the sharp [[VMf| 1wy < |V f||L1(r) for the uncentered
Hardy-Littlewood maximal function. In [23] Luiro has proven the gradient bound for the uncentered
maximal operator for radial functions in W1 1(R9). In [2] Aldaz and Pérez Lazaro have done the
same for block decreasing functions.

As a first step towards weak differentiability, Hajtasz and Maly proved in [I5] that for f € L*(R?)
the centered Hardy-Littlewood maximal function is approximately differentiable. In [I] Aldaz,
Colzani and Pérez Lazaro prove bounds on the modulus of continuity for all dimensions. A related
question is whether the maximal operator is a continuous operator. Luiro proved in [22] that for
p > 1 the uncentered maximal operator is continuous on W' (R?). There is ongoing research for
the endpoint case p = 1. For example Carneiro, Madrid and Pierce proved in [I1I] that for the
uncentered maximal function f — VMF is continuous W1(R) — L'(R).

The regularity of maximal operators has also been studied on other spaces and for other maximal
operators. We focus on the endpoint p = 1. For example in [I2] Carneiro and Svaiter and in [§]
and Carneiro and Gonzdlez-Riquelme consider convolution maximal operators associated to certain
partial differential equations. They prove [|[VMf||11ray < Cyl|V f||p1(raey for d = 1, and for d > 1
if f is radial. In [9] Carneiro and Hughes proved the discrete result |[VMf|[;1(zay < Cal| f |1 (zay for
centered and uncentered maximal operators. This bound does not hold on R? but is weaker than the
yet unknown [[VMf|;1(zay < Cal|V |11 (z4), due to ||V fll;1zay < Call fllir(ze)- In [19] Kinnunen and
Tuominen work in the metric setting. They prove the boundedness of a discrete maximal operator
in the Hajlasz Sobolev space M!. In [25] Pérez, Picon, Saari and Sousa consider Hardy-Sobolev
spaces instead of Sobolev spaces. They prove the boundedness of certain convolution maximal
operators on HYP for a sharp range of exponents, including p = 1. The study of the regularity
of the fractional maximal operators was initiated by Kinnunen and Saksman in [I8]. It does not
map from LP(R?) to LP(R?) but the exponent changes, so also the endpoint question, formulated
in [I0], looks a little different. It remains unanswered, but there is partial progress, similarly as
for the Hardy-Littlewood maximal operator; see for example [5] [6] [10] [24]. For more background



information on the regularity of maximal operators there is a survey [7] by Carneiro.

The dyadic maximal operator has enjoyed a bit less attention than its continuous counterparts,
such as the centered and the uncentered Hardy-Littlewood maximal operator. Dyadic cubes are
usually way easier to deal with than balls, but the dyadic version still serves as a model case
for the continuous versions since they share many properties. A classical example is the Hardy-
Littlewood maximal inequality, where the proofs are identical for both types of maximal operators,
after the Vitali Covering Lemma is applied for the continuous version, which however is the most
complicated part of the proof. Another example is [27], which proves varMlg < Cyvarlg for
the dyadic maximal operator and the uncentered Hardy-Littlewood maximal operator. The proof
for the dyadic maximal operator is much easier, but the same proof strategy also works for the
uncentered maximal operator. But also there, the general strategy is simple in comparison to the
tools that are needed to apply the strategy in the continuous setting. Therefore this paper may
raise hope that the variation boundedness also holds for continuous maximal operators. For the
centered Hardy-Littlewood maximal operator another strategy would be necessary though, because
both the proofs in [27] and here rely on the fact that the levels sets {Mf > A} of the maxmial
functions can be written as the union of all balls/dyadic cubes X with [y f > AL(X), which does
not hold for the centered Hardy-Littlewood maximal function.

For f € Li () it already follows from well-known theory that Mo f € LL (). We state it in
Theorem because it is a prerequisite to define the variation of Mg f. Define L110~C(Q) to be the

set of all functions f such that for each measurable and bounded set U we have that [, |f| is finite.
Note that L110~C(Q) C L (). For f € L110~C(Q) define

Mof(z) = sup ﬁ /Q /.

T€Q, QCQ
where the supremum is taken over all dyadic cubes @) that contain x and whose interior is contained

in Q. For local maximal operators such as Mg, L () is not the correct domain of definition

because f € L () does not imply that Mg f is finite almost everywhere. This has already been
observed in footnote (2) of [16l p. 170]. Instead the following variant of Theorem holds true.

Theorem 1.2. Let f € LI%C(Q) with varg f < co. Then Mqf € L110~C(Q) and

varg Mgf S Cd varg f

Remark 1.3. Theorem [[.1] and Theorem [[.2] also extend to the maximal function of the absolute
value due to var Mq(|f|) < Cyvarq |f| < Cyvarg f.

Typically, the maximal operator integrates over |f| instead of f. That is because traditionally
the maximal function is used for L? estimates for which the absolute value of a function matters.
However here we are looking at regularity properties and didn’t see a major reason to restrict like
that.

Remark 1.4. As will be visible from the proof, Theorem and Theorem actually hold for all
maximal operators of the form

Mf(@) :er oco L(Q) / f



where Q is a collection of dyadic cubes Q with Q C Q or Q C Q respectively, and functions f such
that Mf > f a.e. in ). The constant is the same as in Theorem in particular it only depends
on d.

Remark 1.5. The discrete version of Theorem also holds on Z¢. This is a consequence of the
correspondence between a function f on Z¢ and f = > eeza [(2)1[0 1744, o0 R,

The main step towards the proof of Theorem is the following finite version.

Proposition 1.6. Let Q be a finite set of dyadic cubes, such that for each dyadic cube P C UQeQ Q
for which there is a Q € Q with Q C P we have P € Q. Let  be open with UQeQ Q C Q. Let
f € LY(Q) and denote

Mo f(z) :max{f(x),ﬁg@/Qf xeEQE Q}.

Then
varg Mo f < Cyvarg f. (1)

We first prove Proposition [I.6] because it allows us to set aside convergence issues. In the proof
of Theorem we only use Proposition [1.6| with 2 = UQeQ Q

Remark 1.7. In Proposwlon@we could also prove vary Mg f < Cyvary f for any Borel set U C Q
with UQ co Q C U because as noted in [4, Theorem 3.40], the coarea formula Lemma also holds
for Borel sets.

I would like to thank my supervisor, Juha Kinnunen for all of his support, Panu Lahti for
repeated reading of and advice on the manuscript, and Olli Saari for his idea on how to prove
Mqf € Li .(Q) more quickly. The author has been supported by the Vilho, Yrjé and Kalle Viiséld
Foundation of the Finnish Academy of Science and Letters.

2 Setup

We work in the setting of functions of bounded variation, as in Evans-Gariepy [13], Section 5. For
an open set 2 C R?, a function f € L} () is said to have locally bounded variation if for each
open and compactly supported V' C €2 we have

Sup{/vfdivap tp € CHV;RY), |o] < 1} < o0

Such a function comes with a measure p and a function v :  — R? that has |v| = 1 p-a.e. such
that for all ¢ € CL(;RY) we have
/ fdive :/ wvdpu.
v v

varg f = u(9).
Recall the definition of the set of dyadic cubes

We define the variation of f in Q by

U{[wl,x1+2") X .o X [xg,xqg+2") i=1,...,n, x; € 2"Z}.
neZ



For a dyadic cube @ denote by 1(Q) the sidelength of Q. For a locally integrable function f denote

fQ][QfE(lQ)/Qf-

Ue=U @

QeQ

For a set Q of dyadic cubes denote

as is commonly used in set theory. For a set © C R? denote by B(Q) the set of dyadic cubes

contained in Q. By a < b we mean that there exists a constant C; that depends only on the

dimension d such that a < Cyzb. For a measurable set E C R? we define the measure theoretic
boundary by

L(B E

0. E = {x : lim sup M > 0, limsup

T

r—0 r—0 r

£(B(J;,;“) NE) N O}

and the measure theoretic closure by

L(B(z,r)NE) S 0}.

E = {x : lim sup y
r

r—0

We denote the topological interior, boundary and closure by E, OF, E. Note that for finite unions
of cubes the measure theoretic boundary, closure and interior agree with the respective topological
quantities.

As in [27], our approach to the variation is the coarea formula.

Lemma 2.1 (Theorem 3.40 in [4]). Let Q C R be open. Let f € LL _(2). Then

loc
varg f = / HELO{f > A NnQ)dA.
R

We need the following elementary decomposition of the measure theoretic boundary of the union
of two sets.

Lemma 2.2 (Lemma 1.7 in [27]). Let A, B C R? be measurable. Then
0.(AUB) C 8,A\B Ud,B\ A U (d,AN,B).

The proof of Lemma [2.2]is straightforward and can be found in [27].
A central tool is the relative isoperimetric inequality. In Theorem 5.11 in [I3] it is stated for
balls, but it also holds for cubes, see Theorem 107 in [14].

Lemma 2.3. Let Q, E C R? be a cube and a measurable set with £(E N Q) < 3£(Q). Then
LIENQ) ! <HIY0,EN Q)
The following result from [27] is closely related to the relative isoperimetric inequality.

Lemma 2.4 (Proposition 3.1 in [27]). Let E C R¢ be measurable and @ a cube (or a ball) with
L(ENQ)=AL(Q). Then

HELOQ\E) < AT HIHO.EN Q).



In the proof of Proposition we split the variation of Mg f into two pieces. One piece can be
bounded using Lemma Bounding the second piece is the main contribution of this paper. We
formulate it as follows.

Proposition 2.5. Let f and Q be as in Proposition @ For each A € R let 9, be the set of
maximal cubes of {Q € Q: fo > A}. Then

HATHOQ) AN < var, ;5. f
QEQ/)‘:QEQM L@N{F>A}<27472L(Q) Viaeas

Proof of Proposition[I.6, For each ), denote by Q, the set of maximal cubes in Q with fo > A.
Then Q) consists of disjoint cubes and

{Mof > ={Jau{r>AL
By Lemmas 2.1] and 2.2 we get

varg Mo f = /_OO Hd_l(a*{MQf > )\} NQ)dAa
_ /OO H (0, Q0 UL > D N Q) da
< /w 1T O N\ T > A NQ) +HTH O > A} nQ)dr

S/ Hd_l(a*U N\ {F > AP ) dA + varg f.
It remains to estimate the first summand. We split it into two parts.

[ ueUenTrEaas [ Y w0\ =) a

X Qeon

_ d—1 Tr <y F
- Z/X@%H (0Q\[F> A1) dA

QeQ

/ HILOQ\ T > N ) dA
Qeco XQEQN, LIQN{f>A})>2-4-2L(Q)

+ HELOQ\ {f > A ) dA

QEQ/A:QeQA, L@QN{f>AD<2-1=2£(Q)

The second summand in the previous display is bounded by Proposition 2.5} The first summand
can be bounded using Lemma [2.4]

/ H@Q\ TS A d
deo/raeas, L@nIf>AN22-1-2L(Q)

<

sy CHNO > A N Q) dA
Qe /MREQN LQN{f>A}227472L(Q)



<[ ¥ weqrs Qo

X N:QeQx
g/ H @ f > 210 Q@ e @)

= var .o}

3 Proof of Proposition

For a finite set Q of dyadic cubes, a dyadic cube @ and r > 0 set

ANQ,Q,r] = min{max{inf{)\ L >ANQ) <rL(Q)},max{fp: P€ Q, Q< P}},fQ}.
Then Proposition 2.5 claims

Z(fcz AQ, Q277 2])Hd H0Q) S varygugeoy I
QeQ

The part inf{X: L({f > A} N Q) < rL(Q)} is also called the r-median of f on Q.
Recall that J3(£2) denotes the set of dyadic cubes contained in .

Proposition 3.1. Let Qy be a dyadic cube, \g € R and f € L'(Qo) with L({f > X} N Qo) <
2791£(Qp). For each A € R denote by Q, the set of all maximal cubes @ C Qo with fo > A.
Then

£Q) T, ~ o) 27 [ £(17 > AP € 0us £(UF > AN P) < £(P)/2}) O

Proof. Recall that - -
/AO E({f>>\})d)\/A0 [Z({f>)\}ﬂUQA)d)\. 2)

Let P be the set of dyadic cubes Q@ C Qo with L({f > fo} N Q) > 274"1£(Q) and denote by
‘P the set of maximal cubes of P. Then

A ({f>>\}ﬂUP)d)\ / ({f<)\}ﬂU7?)d/\

Ao
—Z(/ LA{f>ANQ)dr— ﬁ({f<)\}ﬂQ)d>\)
QeP -
=Y L@Q)(fe — )
QeP
< > L@(fg — M)
QEP,fa>No



<2 N L({f > fe} NQ)(fo — M)

QEP,fa>Xo

<ottt Y /fQE({f>)\}mQ)d)\

. A
QeP,fo>ro 0

:2d+1/ z:( U {f>>\}mQ)d>\. 3)
N Qep oA
In the last equahty we interchanged the order of summation and integration and used the disjoint-
ness of Q. By and . we get
Ao

£(Qo)(fay — No) = / £ >apar- [ L <apax

/C({f>)\}ﬂUP>d>\/ c(tr <xnlUr)ax
/:ﬁ({f>A}\U7>)dA/ c(tr <xUJr)ax

o0

241 [ {f>>\}ﬂQ)d>\+/ c(tr>\UJP)ax

A
0 QEP fo>A

_|_

oo

1A E{f>)\}\U7)U U {f>)\}ﬂQ)d)\

QEP,fo>A

1/:05 (17> 3\ Ut@ e P, fo < A})

I /\

_2d+1/AO ,C({f>)\}mUQ)\\U{Q€ﬁ,fQ<A})d)\
§2d+1/k:o£({f>)\}ﬂU{QeQA:ﬁHPeﬁQ,CLP})d)\.

It remains to show that if Q € P such that for all P € P we do not have Q C P, then for all

max{ Ao, max{fp : P C Qo,P 2 Q}} < A < fo we have L({f > fo} N Q) < L(Q)/2. If Q = Qo
then this is true by assumption. If Q C Q¢ then the dyadic parent P of @) is contained in @y and
not in P, and since Q) € Qy we have A > fp. Therefore

LAf>ANQ)<LH{f>ANP)
<L{f>fp}nP)
<27471L(P)
_ L@
2
O

Remark 3.2. By the Lebesgue differentiation theorem we have that | J Q contains almost all of Q.
Thus some terms in the proof of Proposition [3.1] are actually 0.



Corollary 3.3. Let Qo be a dyadic cube, \g € R and f € L'(Qp) with L({f > Mo} N Qo) <
2792£(Qp). Then

fr
£(Q0)(fa, — o) <2072 Y / LPA{f > A} d
PCO, I NPR(Q0).1/2)

Proof. We have
fao faQo
/A C{F > A} N Qo)dA < A 9712 £(Qp) dA = 2-92L(Q0) (fon — M)

so that we get

fe
£(Q0)fa, = %a) < 2[£(Q0) o, ~do) = 21 [ £((f > A} Qo) aA].

Ao

Since L({f > Mo} N Qo) < 27972L(Qo) < 27971L(Qy) we can apply Proposition to estimate
L(Qo)(fg, — o) on the right hand side of the previous display and obtain

fQo
£(Qo) (o — ) < 2[£(Q) (o, — )~ 27 [ £((1 > A} n Qo) ]

Ao

gg{zdﬂ/wc({pA}mU{Pe% L{f >N} P) < £(P)/2} ) dA
= e > 0o
<2d+2/fQoﬁ({f>A}mU{PeQA LOf >N NP)<L(P /2})

zzd+2/foo > LPO{f>\})dX

Qo PEQ:L({f>AINP)<L(P)/2

:2d+2/:o > LPO{f>A})dX

Q0 PCQo:A[PB(Qo),1/2]<A<fp

fe
=212 )" / LPO{f>A})dX
PCQo APB(Qo),1/2]

O
Proof of Proposition[2.5 Let Q € Q with \Q, Q,27972] < fo. Then every A > \Q, Q,27972]
satisfies the premise of Corollary [3.3]so that

/ HI(0Q) dA = (fo — A[Q. ©, 2241 (0Q)
AQEQn, LIQN{f>A})<274-2L(Q)

d2d+2 fr
. / LPA{f> A} dA
PCQ APB(Q),1/2]

©



By L({f > A} N P) < £(P)/2 and Lemma 2.3 we have

LHf>ANP)

P < LH{f> A NP)TT SHETVO{f > A} N P).

Further note that

1 1
2,1~ P

Combining the previous three displays, using A[P,P(Q),1/2] = AP, B(U Q),1/2] which follows
from the assumption on Q, and using that for P, C P, C Q € Q we have A[P,B(U Q),1/2] >
min{ fp,, fp, }, we can conclude

/ HL(0Q) dA
Oeo I MQEQN, LIQN{f>Ah<2-1-2£(Q)

<a Y /fP LA >MN0P) o
A

P:3Qeo,pcQ’ APBU)1/2] geg.gop Q)

fr G
S 2 / HITLO{f > A} N P)dr
P:3QeQ,pcq@’ AIPBUQ)1/2]

g/oo HIHO{f > A | J{P: P e Q})da

= Varip pegy I

This finishes the proof. O

4 Approximating the full maximal operator

We need an approximation result to conclude Theorem from Proposition [1.6

Lemma 4.1 (Theorem 5.2 in [I3]). Let U C R? be an open set and f € L{ _(U). Let (f,), be a

loc
sequence functions that converges to f in Li (U). Then

vary f < linrgioréf vary fn.

Proposition 4.2. Let Q be open and f € LL (Q) with varg f < co. Then

loc
/Hd_l(a*{x € Q:Mqf > A}) Svarg f.
R

The same holds true for f € L110~C(Q) and Mg f.

Proposition is almost Theorem But we also need Mo f € L () to invoke the coarea
formula Lemma 2.1

10



Proof of Proposition[{.4 Take an enumeration Q1,Q2, ... of all dyadic cubes whose closure/interior
is contained in €2, and such that for each n € N, each dyadic cube Q C Q1 U...UQ, that contains a

cube in {Q1,...,Q,} already belongs to {Q1,...,Q}. Denote Q" = {Q1,...,Qx»}. Then (U Q")n

is an increasing sequence of sets. Since () is open we have
UUar =2
n
For a function g and N € N denote the truncation of g by
gV (x) = min{max{g(z), —-N}, N}.

Then for each N € N we have MQfN € L110~C(Q) Thus by Lemma

/del(a*{er:MQf>>\}):A}1m HEL(0{z € Q: Mqof > \})
R — 00
= lim varq MQf
N —o0

. . ——N
= lim lim var o Mq f

N —oco0 n—o0

Furthermore Mg fN is the pointwise supremum of the set of countable functions ( anN)n and
MQfN > ?N a.e. on {2. Thus by monotone convergence Mg fN converges to MQfN in LIIONC(Q) for
k — oo, and hence for each n in L*(|J Q”) Thus by Lemma

var g, MQf < hm mf var g My or fN

< hkm mf var g, My or f-

The above up to here also holds verbatim for MQ in place of Mg. In the setting of Mg we have that
U Oy is compactly contained in . Thus f € L!(|J Qx). In the setting of Mg we have f € L=()

so that f € L' (U Qk) follows from |J Qj being bounded. Thus in both settings we can invoke
Proposition [I.6] and get
var o, My o f S varq f,

which finishes the proof. O

4.1 Membership of L] ()

Lemma 4.3. Let Q1,Qs2,... be an increasing sequence of cubes and denote by ), the quadrant
Q1UQ2U.... Let f €Ll (Qo) with f >0, le f <ooandvary f < oo. Then

limsup fq, < oo.

n—oo

Proof. Since fg, < oo it suffices to bound | fg, — fo,| independent of n. By the triangle inequality
and by Poincaré’s inequality

\far = fo.l < L@Q1)7Mf = faulleron

11



< LQ) TN — faon
< LQ) TN — faon

< L(Q1) T varg, f

< LQ)™T varg f
< 0

_d_
Ld=1(Q1)

_d_
La=1(Qn)

U
Proof of Theorem[I1] Let f € Lj  (€) with varg f < co. We have [Mqf| < Mqlf| and varg | f| <

loc

varq f < co. Hence it suffices to consider the case that f > 0. Let @ be a dyadic cube with @ C €.
Then by Lemma |4.3
cg= sup fp<oo
QCPCQ

and on @ we have Mq f = max{Mqf,cg}. Thus by the maximal function theorem

Mo £)75 < £(Q)edT Mo f) 7T
/Q< o) < L(Q)ch +/Q< of)

< LQ)ch T +Cd/Qfdfl

which is finite by Sobolev embedding. Since every set U which is compactly contained in €2 can
be covered by finitely many dyadic cubes which are compactly contained in €2, this implies Mq f €

_d_
LT () € L. (). Thus Lemma allows us to invoke Proposition [4.2| and we get

loc loc

varg Mq f = / Hdil((?*{z € Q:Mqf > A}) Svarg f.
R

O

~ _d_
Remark 4.4. For [ € L110~C(Q) C Li () the above arguments also show Mqf € L '(Q) and
varg 1\~/IQf < varg f.

We need more careful arguments to prove Mo fe L%&:(Q) and finish the proof of Theorem

4.2 Membership of L110~C(Q)

loc

Here we prove that Mqf € L110~C(Q) if fe L110~C(Q) Note that for f € LL (), with minor tweaks

these arguments can be used as an alternative proof of f € Li (Q).

Lemma 4.5. Let Q be a dyadic cube and f € L'(Q) with varg f < co and f > 0. Then

/QMQfs/QfM(Q)évaer.

12



Proof. We use the boundedness of the maximal operator on L7T and the Gagliardo-Nirenberg-
Sobolev inequality [13, Theorem 5.10 (ii)] for cubes. Split

/QMQf/QH/QMQ(fo)

£ Malr — fa) = (f Mats — f)77)

(][f fQ)? )d%1

< L(Q)7  varg f.

and estimate

N
I

Lemma 4.6. Let © be open and f € LL- (Q) with varg f < co. Then Mqof € LL.(9).

Proof. We have [Mqf| < Mg|f| and varg |f| < varq f < oo. Hence it suffices to consider the case
that f > 0. Let U C Q be open and bounded and depending on the setting with U C Q. We have
to show that fU Mqf < oo. For each A € R let Q) be the set of cubes @ that intersect U and
have fg > A. Assume that for each A € R J Q’A is unbounded. Since U is bounded this means
for each n Q! contains a nested sequence of cubes whose union is a quadrant. From those we can
take a nested diagonal sequence (@), whose union is a quadrant and with fg, — oo. But this
contradicts Lemma Hence there is a Ag such that | Q’)\O is bounded. For each A € R let Q,
be the set of maximal cubes in Q). Then for A > Xy we have (J Q) =J Qx and

/Mgf:/ooﬁ({er:MQf>>\})d)\
U

Ao
< i LU d)\+/,\ Z L{x € Q:Maf > A})dA

0 QEQA

<MLOU)+ Y c{er Mo f > A})dA

QEQx,

Since L(U) < oo it suffices to bound the second term in the previous display. For x € @ with
Maq f(z) > Ao we have Mq f(x) = Mg f(x). Thus by Lemmaﬁ we have

Z / LU{zeQ:Mof>A)dA< Z /f+ Z L£(Q 5var f

QEQy, M0 QEQx, Q€EQy,
<[ reeJostang,, f
U, LJ 0 U Qi
This is finite because L(|J Qx,) < o0, f € LI%C(Q) and varg f < oc. O
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Proof of Theorem[I.3 By Lemmawe have Mg, fe L110~C(Q) Thus Lemma allows us to invoke
Proposition [.2] and we get

varg MQf = / "del(a*{x e N: MQf > /\}) S varg f
R

5 Further approaches
Now maybe the most obvious strategy to prove
varMf < Cyvar f (4)

for the uncentered Hardy-Littlewood maximal operator is to transfer the arguments of this paper
from dyadic cubes to balls, using ideas from [27]. So here is a potential alternative proof strategy
of . The idea is to conclude for general functions f from for characteristic functions and
subadditivity.

Claim 5.1. Let M be a maximal operator. Assume that there is a functional V : BV(R?) — R
with the following properties. For a function g with bounded variation and a characteristic function
h supported on {z : g(z) = ||g]leo} V is subadditive,

V(g+h) <V(g)+V(h) (5)

and
V(h) < Cgqvar h. (6)

Furthermore for all for all f € BV we have
varMf < V(f). (7)
Then we can conclude also for all f € BV that
var Mf < Cyvar f.
Proof sketch. Let hy > ... > h,, be characteristic functions. Then inductively we have
varM(hy + ...+ hy,) < V(b + ...+ hy)

<V(hi+ ...+ hp-1) + V(hy)

<V(h)+...+V(hy)
< Cyvarhi +...+varh,
= Cyvar(hy + ...+ hy),

and by approximation we can extend the estimate from sums of characteristic functions to general
feBV. O

14



Note that V' = (Cyvar satisfies and @, but the whole statement becomes trivial because
then is already what we want to prove. Still, this shows that the existence of a V" as in Claim
is actually equivalent to . However even for the dyadic maximal operator the only V' we have
found is Cy var.

Another candidate for V' is var M, because we already know (6]) from [27] and (7)) is trivial. In [27]
we even prove @ for the uncentered Hardy-Littlewood maximal operator. But unfortunately
fails for both the dyadic and the uncentered Hardy-Littlewood operator, see Example

Example 5.2. Let d =1 and g = 1|9 3) + 1[5,8) and h = 133y + 15,6). Then for f = g,h, g+ h we
have
varMf = Mf(2.5) + [Mf(2.5) — Mf(4)] + [Mf(5.5) — Mf(4)] + Mf(5.5).

Thus

varMg =1+ (1—-3/4) + (1 —-3/4) +1=2.5,
varMh=1+(1-1/2)+(1-1/2)+1=3,
varM(g+h) =2+ (2—1)+(2—1)+2=6 > 3 + 2.5.

The same counterexample works for the uncentered Hardy-Littlewood maximal function. It
also works for d > 1 by defining § : R? — R by j(z) = g(x1)1_n, nje(z) with N large enough and
h: R — R similarly.

However since maximal operators are pointwise subadditive, one might hope to find a modifica-
tion of var M that is subadditive. The most promising candidate is V' (f) = max{var Mf, Cyvar f}.
By [27] it satisfies @ and it clearly also satisfies . In order to prove , by the subadditivity of
var it suffices to prove that there is a Cy such that

var M(g + h) < varMg + Cyvar h (8)

for g, h asin Claim That means from (8]) one could conclude var M f < Cyvar f. But even for the
dyadic maximal operator is still an open question. Note that in Example we have varh = 4
so it is not a counterexample against (§). Maybe is still close enough to varMh < Cgvarh
for characteristic functions to make use of [27]. One might also come up with more sophisticated
functionals in between var M and var that satisfy the premise of Claim
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