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Abstract

We consider the set of Haar functions {h I | I dyadic, I c [0, 1)} restricted
to sets E C [0,1). We show that if p > % and £ C [0,1) then the set of all
functions &1, with |I N E| > p|I] is a Riesz basic sequence. The proof can be
seen as an instance of the Bellman function technique. For p < % we provide a
counterexample. We further extend this result to a slightly more general setting
where for each p we additionally formulate a guess for the optimal constant that
holds for all Riesz basic sequences. For certain sequences we prove this constant.
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1 Introduction

1.1 Setting

Riesz basic sequences Let H be a Hilbert space and V a set of vectors. Then V is
called a Bessel sequence if there is a C such that for all finite subsets U C Vandu € H
we have

D Kuv)* < Clwll”. (1)

vel
Note that this is equivalent to asking (] to hold for at most countable subsets. This in
turn is the definition of the analysis operator

U ((u, U>)ueU

being amap H — [ with bound C. This is the case if and only if the synthesis operator

(aU)UEU = 2 a,v,

vel

the dual of the analysis operator, has bound C as an operator /> — H. This means that
the condition given by (1) is equivalent to

1) aol> <C ) la,l? 2)

velU velU

If (I) and for some c its reverse inequality

lol* < e )7 Ko, v (3)
k

holds, the vectors are called frame. If instead the reverse inequality of (2]

D la > <ell Y aul? (4)

velU VEU

holds in addition to (T)), they are called Riesz basic sequence.
Example. Consider the case that V'is finite. Then
e Vis a Bessel sequence.
e Vis a frame if and only if it is spanning.
e Vis a Riesz basic sequence if and only if it is linearly independent.

Hence neither of the conditions given by (3) and (4)) imply the respective other.
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Restricted Haar functions For an interval I := [a, b) we write [(]) := [a, a+b) and
r(I) := [, b). We denote by h; the Haar function of I,

hp==Tyn+ 1y

and further denote
hyg=hilg.

We call the latter a restricted Haar function.

We call two intervals I, I, compatible if they are disjoint or one is contained in one
half of the other. We call a set of intervals | compatible if all 7,J € [ with I # J are
compatible. For example the set of dyadic intervals contained in [0, 1), which we denote
by 9, is compatible. We will be mostly interested in the case of dyadic intervals, but
the compatibility of intervals is actually the only property we need. Note that for a set
of compatible intervals [, {”:ﬁ | I e l]} is an orthogonal subset of Lz([O, 1)). A few
questions are even more easily answered in the setting of compatible intervals than in
the dyadic setting.

Letp € [0,1]and E C R. An interval I is called (E, p)-dominant if |I N E| > p|I]|.

1.2 Main Result

The main result of this work is the following Theorem [I.1]

Theorem 1.1. p > % if and only if for all E C [0, 1) and compatible sets [ of (E, p)-

dominant intervals, .
LE ‘
Ie u} )
{ 77 £l

is a Riesz basic sequence.

Proof. The theorem will be a consequence of Theorem [2.1]and Theorem O

For the reverse direction of the theorem we show that for | = 9, p = %, E =10, %),
() is not a Riesz basic sequence.

For every p > % we also compute a constant ¢(p) with respect to which all (5] are
Riesz basic sequences; see Theorem [2.1] Then in Section [3] we compute the optimal
constant for E = [0 p) and a certain Rlesz sequence; see Theorem [3.1]and Proposition
For p close to 2 itis by a factor S greater than the constant we find for the general
case in Theorem @ In Section 4] we show that the constant for that special case is
actually valid for certain types of Riesz basic sequences; see Theorem @.1{and Theorem
We currently believe that this constant is actually also the optimal constant for the
general case, i.e. that Theorem [2.1]still holds with this constant.



Remark. It can also be proven directly from Theorem [I.1]that the constant of the Riesz
basic sequence (9) can be chosen to only depend on p; see LemmalA.13]

Remark. The statements and constants do not change if we also allow the function i ”
EIN2
to be in (5). We may also express this by allowmg the interval [—1, 1) to be in [, even

though [—1, 1) is never E-dominant for p > =. For a proof; see Lemmal|A.14

Note that any I C [0, 1) is compatible to [—1, 1). Allowing [—1, 1) € [ simplifies the
arguments in Sections 3| and

1.3 Related Topics

The initial question of the thesis was the following:

Question 1. Let D be the set of dyadic intervals of [0,1). Let [0,1) = EyU E| be a
partition. Is there a partition & = 2y U D, such that fori =0, 1

hl E;
| 1e, (©6)
{nm@m|

is a Riesz basic sequence?

By this we mean that if |1 N E;| = 0 then we must put I into &;_;. We were not able
to answer this question. However in Section [5| we prove a first result.

An initial approach to Question [I] could be to construct a partition by a majority
decision: Fori =0, 1 take 9, s.t. for all I € &; we have

1
I E| 221 ()

However by Theorem with p = % this strategy does not produce Riesz basic se-
quences for all E. It even fails if we take some p < % and don’t assign the intervals
with |I N E| < p|I| to either of &; and @zﬂ What the majority decision (7] . ) does

achieve however, is that (6) is a Bessel sequence: For i = 0,1 let (a;) 1eo, € 1% (2)).

) ay. Then

Deﬁneal—(” nE]

Y, okt
”Z HmEm” Hg% ” | 2 ot

iz Ve i

2

'In the particular counterexample E = [0, %) in Theorem [2.3|we actually assign all intervals. However
the proof idea still works for E = [i, %) where the dyadic interval [0, %) lies in E and E with a portion

of only % each and hence is not assigned.



Z |a;* <2 Z laI?

|I| 1€, 1€,

|3 a
1€,

By the same argument, actually for any p > 0 and any set of compatible (E, p)-dominant
intervals [, (3) is a Bessel sequence with constant =

In [1] Bownik, Casazza, Marcus and Speegle proved the following Theorem [1.2]
based on the resolution of the Kadison-Singer problem by Marcus, Spielman and Srivast-
ava in [3]. It directly implies Corollary [I.3] a weaker version of Theorem[I.1]

Theorem 1.2 (Corollary 6.5 in [1]). Ler 0 < 6y < 7, &g = % — 1/20¢(1 = 26y). Let @

be a finite Bessel sequence with bound 1 where for all @ € © we have ||(p||§ > 1-=9,.
Then there is a partition ® = ®y U ®| such that ®y and ®, are Riesz sequences with
constant €.

As they note in [1]], it can be extended to countable sequences.

Corollary 1.3. Let p > % and E C [0, 1). Then

hi kg,
{————‘Ie@,ﬂnﬂﬂzmﬂ} ®)
(LI P
{————‘Ie@ HnE”>MH} )
Ihy gl

can be partitioned into two Riesz sequences with lower bound % — \/ 21— p)2p—-1).

Note that Theorem [I.1]says, that (8) and (9) are already Riesz basic sequences. And
since they are orthogonal to one another, by Lemma also their union is already a
Riesz basic sequence prior to partitioning. Also this already holds for p > %

Proof of Corollary[I.3] Letéy=1—p e (0, i). For i =0, 1 consider
hy,

H. = {
' ||h1||2

Similarly to what we already discussed above, H, and H, are Bessel sequences with
bound 1. And because H, and H are orthogonal to one another, by Lemma[A.3] also
H,yU H, is a Bessel sequence. Furthermore for I € Y andi = 0,1 with |[I N E;| > p|I|
we have

‘Ie@ umE|>mn}

Ik g 115 =110 E;| 2 plI| = plihl; =1 =8)llAll5.
Hence we can apply Theorem [I.2]and obtain that H, U H; can be partitioned into two
Riesz basic sequences with constant l - \/ 2(1 — p)(2p — 1). Now for each I with the

- . I E; I E . .
corresponding i replace i ”‘ by i ’” This only increases the norm of the vectors
2 IE; 112
and hence conserves the constant of the Riesz sequence. ]
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The advantage of Corollary over Theorem is that the former still has the
chance to be strengthened to p < 3 Assume that we can apply Corollary |1.3|to (8)u()

with p = % and obtain a partition ®,U ®,. Now for all I € Dthereisani € {0, 1} such

that |1 N E;| > %ll |, which means h; g or hy g appears in @, U @;. Unfortunately
this kind of partition might still not be the partition we are looking for in Question
@, and @, might each contain some restricted Haar functions of Ej-dominant intervals
and some of E;-dominant ones. In fact, it is even somewhat likely that they do, because
we might also prove Corollary [I.3]as follows: Use Theorem|[I.2]to show that (8) and (9)
can separately be partitioned into two Riesz basic sequences each. The partition of
is orthogonal to the partition of (9). That means by Lemma we can combine these
two partitions to one partition of (§)u(O) into two Riesz basic sequences.

Theorem is not a consequence of the fact that {h I.E | I e I]} is only a small
perturbation of the orthogonal set {h I | I e I]}, in the sense that ||h; — A E”% <

(1 - p)||h1||§ < %||h1||%- Take the following example: Assume that u,,...,u, are or-

thonormal. Abbreviate u :==u; + ... +u, and fori =1,...,n set
! . _ -
u; = u nu.
Then "
2 Loz 1 2 _ 1
u. —u. = —\lu = — U = —,
ety = w117 = = lul nzgu 7=
but
up+ ... tu;=u—u=0,
1.e. {ui, ...,uy} is an arbitrarily small perturbation of {u,...,u,} but is no Riesz basic
sequence.

2 Proof of Theorem 1.1

2.1 The Case p > %

First we introduce some notation: Let [ be a set of intervals and .S = {(a 1) | I e I]}
be a set of pairs of real numbers and intervals. In order to reduce the number of symbols
we will usually omit the (,) and write S = {a;I | I € 1}.

Let E C [0, 1). Then define

Fg(S)= ) ah; .
aleS

Ap(S) =) llah; g3
aleS
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Bi(S) = ), ah; gll3.
aleS

In order to reduce the number of symbols we will also write Fg(a;1;,a,1,,...) for
Fr({a\1;,a,1,,...}).

For any set .S of pairs of coefficients and intervals we will denote the set of intervals
by I(.S).

Now one direction of Theorem [L. 1l reads as follows:

Theorem 2.1. Let % < p £ 1. Then there is a c(p) > 0 s.t. for all E C [0, 1) and for all
S where 1(S) is compatible and consists of (E, p)-dominant intervals, we have

Bg(S)

Ag(S)

> c(p)

Wit 81 2 2
2 3
=—((p-=)+0 .

C(p) 3 (p 3) (» 3)

We first introduce a function g that we need for the proof of Theorem [2.1]

2

Definition. For p > % define € := p — %

a'—il+1—0+is

T 27e 9 37

b:=1+%£

and g : [0,1) - R by

a—q
— qzp

glq) =< b4 (10)
{g(p)f q<p

This definition makes sense because b > 1. Also g is continuous. Proposition
lists all the properties of g that we use in the proof of Theorem [2.1]

Proposition 2.2. g as defined above has the following properties:

1. Forall g € (0, 1] we have

1< <8@ (11)
p q
and g 1 )
g(l) = 3122 + @(E)-



2. Forall q;, 9, € [0, 1] with [“—erqz =:q € [p, 1] and x € R we have

(1 - x)? (1 + x)?
5 g(q)) + 5

G(x,q,4p) = g(q) — g(q) > x* > gx*. (12)

For g € [0, 1], g is convex.

Remark. Note that (12)) for g € [0, 1] and x = 0 would be midpoint convexity of g. In
order to prove Theorem for the case [(S) ¢ & we will in fact only use midpoint
convexity and not convexity. However we get convexity from midpoint convexity by

Lemma anyways.

Remark. We do not actually need % > 1

p and G(x,q;,q,) > x2: For the proof of
Theorem % > 1 and G(x,q;,9,) > gx* suffice. However the g we found also

happens to satisfy the stronger bounds. G(x,q;,q,) > x2 probably comes from the
fact that we actually found g by solving the ODE that arises when sending q; — ¢, in
G(x,q1,9,) > x2. We did this because we could not solve the corresponding ODE for
G(x,q1,9,) > qxz. Details on how we came up with the explicit function g can be found
in subsubsection

The constant in Theorem which we find is
[ g(q )] -

qE(O 1]

(13)

otherwise the value of g(1) is not important. Hence if there is another g that also satisfies
Proposition but with an even smaller upper bound for g(q) , then Theorem can

be proven with a greater constant. However we will show later that if we minimize
1) over all a, b and g glven by (T0) under which the other statements of Proposition
hold, then we get = +0 ( ) as the minimal value. Since by (L1 we have

1
D < up 89 <)
ge(0,11 4

this means that 5 e + O(¢%) is the maximal value for (T3) among all such g. That

means the choice of a, b in the definition of g is optimal for p close to 2. Itis not clear
however if the function with the minimal value for g(1) that satisfies the other properties
of Proposition [2.2] has to be of the form (I0). It actually seems rather unlikely, since as
remarked above, the g we found satisfies stronger conditions than necessary for the proof
of Theorem

Before we prove Proposition [2.2| we use it to prove Theorem



2.1.1 Proof of Theorem 2.1]

We start with the proof for the special case I(S) C 2 U {[—1, 1)} which is a bit easier to
understand but already showcases the central idea used in the proof for a general S.

For each n denote by 9, the set of dyadic intervals of length between 27" and 1 plus
the interval [—1, 1).

Proof of Theorem|2.1|for I(S) C D U {[-1,1)}. We only need to prove the theorem for
finite S. That means there is an n with I(S) C &,. It suffices to consider the case
I(S) = 9, since adding intervals with coefficient zero does not change A or B, also if
the intervals are not E-dominant.

Let g be given by Proposition[2.2] Then define f : [0,1] - R on (0, 1] by

flg) =2
q

and f(0) := f(p) Then foreach n, I € &, and X C I N E set

(X = f('El?ll| )ix)

This defines a measure y, on E. E|

Claim. For each n and S with I(S) = 9, we have

IFE(HI,, = AR(S).

L2y, —
By Proposition [2.2) we have for all ¢ € [0, 1] that
f@ < g()
and thus by the claim
1 1
By(S) = I Fe()I3 2 —< I Fe(S) 124,y 2~ AR(S)
£ BRI =g BT = ey E

which implies the theorem.

Proof of claim. We proceed by induction on n. If n = 1 then S = {a[-1,1)}. By
Propositionwe have f(|E|) > % > 1 and thus uy(|E|) > | E| so that

IFE(Na,, = @HolED) 2 @*|E| = A(S).

Note that this makes f constant on [0, p] by (I0). We don’t use this fact though. Also, the value of f
at 0 does not actually matter.

3We don’t actually need the o-properties of the measure y, because we will only integrate simple
functionswrt. {INE |1 €9D,,,}.



Now let n > 0, I(S) = 9,,,. Define § = {al | al € S, I € 2,}. Then we may
apply the inductive hypothesis to S. Since

AS) =S+ Y Pl gl
1€2,,1\9D,, aleS

it suffices to show that

1P 20, 2 WFel 2+ Y, @l gl (14)
IE@,H_]\@,,, aleS

in order to prove the induction hypothesis for S. For that in turn it suffices to prove for
allI € 2, \ 9, that

IFEC 24,1 2 WFE 12, 1) + @07 £l (15)
because then summing over I € 9,,, \ 9, will lead to (I4). Now we write out

/ [Fe(S)+ ahy g* dp,yy > / Fp(8$)*dp, + & llhy gll5. (16)
1 1

F(S) is constant on I. If Fi(S) is zero on I then (T6) follows from f > 1, similarly to
the case n = 0. Otherwise we divide everything by F 1(5’)2. After renaming a we then
only have to show

/ [+ ahy 1P gy > (D) + @y g2
1

Written out, this is

2 L) N E] ) lt(I)N E|

(1-a) II(I)nE|f<—|I(I)| )++a |r(I)nE|f<—|r(I)| )
|I NnE| )

> |InE|f<—|I| >+a 11N E|.

Now we divide by | 7| and call
[N E|l  |II)NE]|

=2 = i
é 1] X(D)]

[lt(I)Nn E| [lt(I)Nn E|

g, =2 = >
1] x(D)|

X =a,

so that
@1+a |INE|
2
Then we obtain exactly (12). Now there are two cases to consider. If I is E-dominant,
then ‘“JFTQQ > pand q;, ¢, € [2p — 1, 1], where (12)) is valid. If I is not E-dominant, then
we assumed x = a = 0 where (12) is also valid since g is convex. []
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Now the claim is proven and hence so is Theorem for the case I(S) ¢ D U
{[-1,D}. O

Proof of Theorem 2.1} First we need to establish a few notions. For a finite set of inter-
vals [ that contains [0, 1) and subintervals of [0, 1) such that forall I,J € 1 INnJ €
{@,1,J} define

leaves():={l €l |VJel,J#1:J ¢}

Forn=0,1, ... define

l, = leaves(I'\ U I;).

i<n

Note, that [, [, ... is a partition of . Define inductively forn =0, 1, ...
= | {I\UUE‘IEHH}
n=0,1,... i<n

and

Note that p(l) is a partition of [0, 1).
Let g be given by Proposition[2.2] Then define f : [0,1] = R on (0, 1] by

and f(0) := f (p)ﬂ Now assume that Pis a partition of [0, 1) and E C [0, 1). Then for
each M € Pand X C M N E set

MnE
Hp(X) = f(%)m (17)

This defines a measure ypon E.
Let S be a compatible sequence of intervals. If [—1, 1) is not already in [(.S)) we may
add it to .S with coefficient 0. Then with

h(S) = { KD, ¥ | 1 € US) P\ {[-1,0))

we may define p(h(S)) and u p(h(s))- Note that for each M € p(h(S)) we have that Fg(.5)
is constant on £ N M.

“Note that this make f constant on [0, p] by (I0). We don’t use this fact though. Also, the value of f
at 0 does not matter actually.

11



Claim. For each § we have

2
> .
IFECNTa, o 2 AES)

By Proposition [2.2] we have for all g € [0, 1] that
flg) <g()

and thus by the claim

e !

BE(S) = | Fg(II3 = 2 FESM 2415, 2 53 AES)

which implies the theorem.

Proof of claim. We proceed by induction on n. If n = 1 then S = {a[—l, 1)} and
p(h(S)) = {[-1,0),[0,1)}. By Propositionwe have f(|E]) > L > 1 and thus
us(IEI) > |E] so that

1

p
2 _ 2 > 21F| = _

IFE(Na, =@ us(ED 2 | E| = Ag(S)

So assume it holds for n > 1 and let |S| = n + 1. Then there is an I € leaves(I(.S))
and al € S. Define S = S\ {al}. Then there is a set M € p(h(S)) which contains 1.
Then note that

p(rSu i)
p(h(S U {aI}))

p(AS)\(MyU M\ L1}
(
(

= p(A(S)) \ (M} U (M \ LD, x(D)}.

h(S)U (KD, v(D) )

p

p(A(S)U I} ) \ {1} U (KD, e(D)

Fg(S) and Fg(S U {al}), and Hph(Sutar}y) and ppypnsy) are equal on the complement of
M n E. Hence it suffices to show

/]W(FE(S) +ahy £)* dpynisotaryy) — /MFE(S')2 dttpnisy = @by gl

in order to conclude for S from the inductive hypothesis for S. Fg(S) is con-
stant on M. If Fg(S) is zero on I then follows from f > 1, similarly to the case
n = 0. Otherwise we divide everything by F;(.S )2. After renaming a we then only have
to show

/M(1 + ahy ) dpncsotaryy = sy (M) 2 @1y gl (18)

12



. I L Im\J|
Firstly take ¢ := ] S© that 1 —7 = SR and

I NnE| L _t)l(M\I)nE| _IMnE|
1] M\ 1| M|
Then we get by the convexity of g that

1 IMNE| /|MnE| |IM N E|
o - WEL (0ot
e = == I ) = S

|1 N E]| (M \ )N E|
S’( 7] )+(1_’)g< M\ ]| )
IINE| ([INE| (M\D)NE| (|[((M\I)nE|
=M f( 7] >+ M| < M| )

1
= Mﬂp<h(5)u{1}>(M)~ (19)

t

Hph(Sutal}y) €4Uals pypsyury) On 1% and ah; gis0on I° 50 that

2 2
/M (1 +ah; )" dupnSutary) = /1 (1 +ahp p)" dppnsutary) + HpnsorpM A\ D.

This means by (19) it suffices to prove

2 2 2
/I(l + ahLE) d,up(h(gu{a]})) > Mp(h(S‘)u{I})(I) ta ”hl,Ellz

to get (18). Calculating both sides this means

KDNE HnE
(1_a)2|I(I)nE|f<%>+(1+a)2|r(1)ﬂE|f<%>
|I N E| 2
> 1nElf( i )+a@linE

or equivalently

(1=a)?|lI)N E| (|I(I)nE|> (1+a)?|t(I)N E| (lr(l)ﬂEl)
2 1103] || 2 [x(D)] [x(1)]
[INE| /|INE]| 2|1 N E]|

e T ST A

Now si S (DNE| |x(DNE|
ow since == 2 pand ==, S

1|I(I)nE| +1|r(1)nE| _ I nE]|
2 Ul 2 x| 1]
we may invoke (I2)) in order to conclude (20). O

(20)

[INE|

>2p—1and

Now the claim is proven and hence so is Theorem 2.1} ]
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2.1.2 Idea of the Proof of Theorem 2.1]

If one wants to prove that

Ilh II
as follows: First sort & decreasmg in scale. Then assume we have already linearly com-

bined the first » — 1 Haar functions to the function F,_;. Now check, that after adding
ah; , the increase of /; Fnz_1 to /, F? is just ||ah1n||%.

This strategy is not going to work for restricted Haar functions as F,, might even
have a smaller L>-norm on I , than F,_;. We can however make the strategy work again
by integrating Fnz_1 and Fn2 with respect to weights. The corresponding measures will
nevertheless be comparable to the Lebesgue measure. Consider for example the case
I, n E| = p|I|, |l({,) n E| = |l({,)]. Then the interesting case is a > 0. After
having added ah; it does not make any sense to add any more Haar functions with
support 1ntersect1ng [(1,)) because they are orthogonal to F), for each k > n; [(1,) is

“used up” now. That means that Fj, and F, agree on [(/,). On x(7,) it is different: Many
more functions with support in r(/,)) may be added to F, that might reduce /r( I F? and

contribute to A;. Hence it is reasonable to weigh the L?-norm of F, less on t(I,) than

|r(ln)nE| g(q)
B Note that p

is constant on [0, p] and increasing on [0, 1]. In the case of p = 1 we could choose the
weight to be constantly 1.

on I(Z,). % plays the role of such a weight where here ¢ =

2.1.3 Proof of Proposition [2.2]

Proof of Proposition[2.2) Lemma|A.21|with x = 0 implies that ZT_Z is midpoint convex

and thus convex by Lemma|A.19| By definition, on [2p — 1, p] g is just the linear inter-
polation between g(2p — 1) and g(p). Furthermore g(p) = — Lemma [A.22{ we

have g(2p — 1) > Z (2” 1) . Therefore forall ¢ € [2p — 1 p] we have

— 4

g(q) 2 bT

By Lemma|A.21|this implies (12) for g := @ > pas

1-x)?a- 1+x)?a-— -
G(‘IlaQZax)Z( *) @, 440 B _4745 o
2 b-gq 2 b-q b—g

Now we prove that g is convex on [0, 1]. Since g is continuous, by Lemma |A.19| it
suffices to show that g is midpoint convex, i.e. that for all ¢;, g, € D we have

‘12

—g(Ch) + 8(612) 2 g( )- 1)

14



For q,,q, < p this is true since g is linear there and for [“—erqz > p we just showed it.

. . . + .
Hence it remains to consider the case % < p, g, > p upon renaming. Then

1 Qh+a  gp a1 Gt
2g(th) 8( 7 )= p(2 > )
), 4
p 2
NowtakeZp—lSq]gps.t.@=pand
_s @ _Gita
p 2 2
R q+aq
—zg(ql) g( > )

g1+ap

and since we already proved for qT = p we have

1
>
2 28 (92)
Now it remains to prove that for all g € [0, 1]
q
. < g(g) < g(l)g.

Since g is convex and g(0) = 0 we already get the upper bound. Since 1 < b < a we
have g(p) > 1 = 5. Because for g € [0, p] g is linear we also get g(q) > 1% there. Now

by convexity we may extend this to [0, 1]. [

Remark. Lemma|A.22{says that our choice of a, b is even optimal for p close to %

2.1.4 Motivation for the Choice of g

First we motivate why it is reasonable to choose g linear on [0, p]. Let .S be compatible
and E-dominant and Sy C S'and M € p(h(S,)) with |[M N E| < p|M|. Then the union

of all intervals I(S) \ 1(Sy) can only cover a part of M of size %lM N E| < |M|. This

means the uncovered empty space of size §|M NE|—|M|in M does not have any effect.

The measures given by (17/) reflect this, because if we remove that uncovered part, i.e.
take some M’ € P’ with EC M’ ¢ M and |[M' n E'| = p|M'|, then g being linear
|[MNE)| <p= |[M'NE|

< we have
| M| M|

on [0, p] means that with g :=

8(q) g
Hp(n(senM N E) = TanEl = TanEl =f@IM' NE|=pup(M'NE).

15



It also seems reasonable to take g linear on [0, p] from the point of view of Proposition
, because we mainly want g to be convex on [0, p], with % having the smallest
possible maximum, while g should still be somewhat large on [2p — 1, p]. A linear
increasing function likely could have these properties.

Now we motivate how we chose g on [p, 1]. By Lemma[A.20|we have for any function
g :(0,1) = (1,0) and any q;,q, € (0, 1) that

inflg(q)) + 8(42) — 211G(g1. 4. %) = x°]
9+ q91+q

7 ) +2g(q))g(ay) — g(qy) — g(gp) + 2g(T)- (22)

Claim. Letting q;,¢, — ¢ in (22) > 0 we obtain the ODE

g'(g—1) -2 20, (23)

Proof. We do a Taylor expansion of (22)) around #. Abbreviate g(%) = y and

+ +
Aq=CI2—¥=—[CI1—¥]

Agq are

= —[g(qy) + g(g;)]g(

. The terms constant in Aq vanish. The terms linear in

—[y'(—Aq) + y' Aqly + 2yy' (—Aq) + 2yy' Aq — y' (-Aq) — Yy’ Ag =0

The quadratic terms are

1 " 2 1 " 2 1 " 2 1 ro 2 1 " 2
—[=y"AG* + =y"A 22" VAP — 4=y Ag® + 2=y A
[2y q + 2y q’ly+ 2)’ yaq 2)" Yy Aaq + 2yy q
1

1
—ZVv'A 2——”A2
2y q 2)" q

=" (=1 =-20")1A¢"
Hence dividing 22) > 0 by Ag? and letting Ag — 0, all terms vanish except @3). [

All functions of the form a—gq

—

b—q
are solutions of (23) = 0. Interestingly we have shown in the proof of Proposition [2.2]
that they also satisfy (22)) = 0, even though the calculation above shows only the reverse
direction 22) =0 = (23) =0.

Now we want to find a, b such that g satisfies all the properties of Proposition
with g(1) as small as possible. g < g(q) < g(1)q implies g to be bounded and positive.
This requires a,b > 1 or a, b < 0. Since in the proof of the claim we used g(q) > 1 the
casesa > b > 1and a < b <0 remain. Now

q

a—gq a—>
=1+
b—gq b—gq

16



da—-q_ a-b
dgb—q (b—gq)?
d*a-q__ a-b
dg?b—q  ~(b—q)?

Note, that the functions g — ZT_Z arising from a, b < 0 are just the ones arising from
a,b > 1, mirrored at g = % Now since we want g < g(q) < g(1)q we are rather looking
for functions with positive derivatives, i.e. those with a > b. Actually when looking at

the idea of the proof of Theorem , subsubsection [2.1.2] we even expect % to have

a positive derivative. Since we also want g to be convex, a > b requires b > g. And
since we want it to be well defined at ¢ = 1 we actually need b > 1. That means it is
reasonable to consider only

l<bh<a.

We calculated in Lemma[A.22/how we should choose a, b in detail. The other properties
of g then follow as presented in the proof of Proposition [2.2] subsubsection [2.1.3]

2.1.5 Bellman Function Interpretation

There are strong parallels between the proof of Theorem [2.1] for the case I(S) C &, and
the strategy of the following instances of the Bellman function technique: Lemma 3.3,
(5.1) and Theorem 9.1 in [4]. Note that by Lemma/[A.14]the case I(.S) € D U {[-1, 1)}
is already a consequence of the case [(.S) C 9.

In what follows the two strategies are reformulated and written in one go. At the
places where the strategies differ, this is how we mark the
‘ Bellman function technique in [4] ‘ and [the proof of Theorem [2.1|for I(.S) C 9}

The goal is for some ¢ > 0, N, (x/);¢g,, and

|X[0,])| € [O’ 00) [ (|X1|)169N+1\9N C [0,00))

N

to establish a bound

¢ Z x| < [ X0 pl /c Z x| < 2 |I||X1|\- (24)

I1e2y \\IEQN 1€ 1\DN

We will see later how x, | X ;| can be chosen such that becomes Theorem 2.1} Note
that usually the sum on the left hand side of (24) is over all I € P but it suffices to obtain
a uniform bound for all N. As you can see on the right hand sides, the number N is a
bit more important in our technique than in the Bellman function technique. In order to
prove (24)) they come up with a positive function B with arguments I € 2 and a tuple

17



of parameters X. Here | - | denotes just denotes a function from the parameter space to
[0, o0). B satisfies a‘ concavity ‘[convexity) condition: Forall I € Yand X, X, X, € R

X, +X,

such that in some sense X = > we have
By(1)(X 1) + By (X>3) /BI(I)(X 1)+ By(Xp) h
B,(X) - : >x, | : —B(X) 2 x|
\ J
(25)
Furthermore
¢By(X) < 1X. (26)

That way for eachnand X =2""*D'y

n

\2, X1 by induction

Y, xS Boy(X)— Y IIByX))

1€, 1€2,,,\D,
IET RS |I|B,<X,>—B[o,1>(xﬂ.
1€, 1€2,.,\2, )
This implies
\
> x| < By (X) Y oxlii< Y HIBX) |
1€y \IEQN 1€DN1\DN /,
and by (26)) we are done.

Now we show how to choose x;, X, | - | in order to get Theorem [2.T|using
this strategy | from above. Recall that Theorem [2.1|states

2 2 2
c Y @l glE <Y arhy gl

1e9y 1€y

Here X is of the form
X =(q,s), g€ [0,1], s € [0,00)

For the interval I we will have the interpretation

_[INnE]|
1’

18



s = ZaJ—ZaJ

Ice(J) Icl(J)
We further have

Se(ry — Sy
X = QI(T)Z = an%
and
1X| = gs°.
This means
Y oxlil= ) qdill= Y |Enlldd= ) llah g3
1€y 1€y 1€y 1€y
and
Y Mixd= Y IE0ICY a= D ap)
1€DN 11\ DN 159N+1\9N Ice(J) IcL(J)
/HI( Z ay— Z aJ)2
169N+1\9N Ice(J) Icl(J)
2
/ (Z Tnenar — Z Trntnay)
E Ie@NH\@N Ice(J) Icl(J)
2
/ (Z Tinenas — Z Tininan)
Ereay, \Dy JEDN JEDy
=/ > (D) Vahy)?
E IeEZNH\@N JeDy
/ 15( Z aJhJ)2
Erean \2y JeDNn
(D ashy)?
E jeay
=1l D, ashy gl
JeEDN
That means reads

2 2
1Y ashygl3>c ) laghy gl3.

1€y 1€y
which is what we want to show.
As for an idea why [our technique | uses equalities that are somehow converse to

, note that Lemma 3.3, (5.1) and Theorem 9.1
in [4] resemble operator bounds from above, while Theorem [2.1]is an operator bound
from below.
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2.2 The Case p < %

The remaining direction of Theorem[I.1]follows from the following Theorem

Theorem 2.3. For E = [0, %),

hr g ’ 2
L |reg, |InE|=—|1|} @7)
{”hI,EHZ 3

is no Riesz basic sequence.

Proof. In this proof we denote numbers by their binary representation instead of their
decimal representation.
Let I; be the dyadic interval with |I;| = 27" which contains % = .1010 ---. For any

dyadic I with |I| = 27" there is a sequence of binary digits s of length i — 1 such that

-1 x €[.s00,.s01),
hy:xm—141 x € [.s01, .510),
0 else

For i = O this is ment in such a way that s is empty and everything that comes after
s is moved one place further to the left. For i , s consists of the sequence of digits
101010 --- of length 2i — 1. Note, that the sequence starts and ends with the digit 1.
Since .1010 --- is between .lg(L-Ol and .1010 ---10 this means

2i-1 2i~1
(-1 x €[.1010---00,.1010 ---01),
2i—-1 2i—-1
hyg:x~yq1 x€[.1010--01,.1010 ),
2i-1
(0 else
(-1 x €[.1010---0,.1010 ---1),
2i 2i
=41 x€[.1010---1,.1010--+),
2i
(0 else
Thus
02 2

2i 2i
which means that /; is selected in (27)).
For each I denote by a; the coefficient in front 2 . Set

alo = 1,

20



and abbreviate

Claim. For all n

-1 x€]0,.1),
0 x € [.1,.10-),
Fi) = gt
2" xel[.10--,.1010---).
2n+1

Proof. We proceed by induction on n. The claim is clear for n = 0. Assume the claim
holds for n. When adding a 12(n+1)h Loguety the domain [0, .1010 ---) remains unchanged.

2(n+1)
On the domain [0, .1010 ---0,.1010 ---1), F, ., is zeroed. On the domain

2(n+1) 2(n+1)
[.1010---1,1010 ---), F,,,, is increased by 2" to 2"*1. This proves the claim for n+1. [
2(n+1)

The next claim clearly implies the statement of the theorem:

Claim. For all n we have

n
2 _ 2 n
g lag, by, ell; = 3 + 5
2 2
TATEE
Proof. For each i we have
1
|I(12(i+1)) NE[|= Z|I(12i) N E|,
1

|r(12(i+1)) N El = er(IZi) n El

So by the choice of the coefficients we get

2
||010h0,E||% =3
. 1
iz1: ”aIZthZi’E”% = g
The size of the domain where F,,(x) = 2" is .00 ---0101 - = 3(3)***". So
2n+1
1 11 2
F 2:_'1+_ _2n+122n:_.
1B =5 14+3(3) :
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The claim is proven and hence so is the theorem. [

3 Explicit Optimum for a Special Case

We first introduce a few notions: We extend the definition of A, B, F, because in the
following sections we will not exclusively be dealing with restricted Haar functions any-
more but with slightly more general functions. So if .S'is a finite set of functions in L*(R)
we write

Fp(8)= ) f1.
fes
Ap(S)= Y £ 1l
fes
By(S) =1 ), f1glI%

fes

For a set of pairs of numbers and intervals .S we identify (a, I) with ah; so that this
definition agrees with the original one.

Definition. Let p € [%, 1 Let E C I be two intervals with the same left boundary. An
interval J C I with

|EnJ| = plJ],

£ |E| < plI]|

IT1= 4 11-1E
o, |E| > p|I|

is called a most p-antiparallel interval to I w.r.t. E.
If E is not contained in I we say that J most antiparallel to I w.r.t. E if it is most
antiparallel to I w.r.t. E N I. We sometimes leave p and E away if it is clear what they

are.

Lemma[A.T3|provides a characterisation of this notion.

Fix % < p £ 1. From now on throughout this entire section we will have E = [0, p).
We define (17 ),, inductively as follows: Set Ig := [—1, 1) and for I} given let 1 5 41 be the
most antiparallel interval to r(/, ,f ). Now deﬁneﬁ

= {1’ ..., 1"},

5If p = 1 we may call every interval J with |E n J| = |J| most p-antiparallel. The case p = 1
is never interesting in this work though. Also we could obviously extend this definition to p € (0, %).
However there the notion does not reflect the intended meaning anymore, as Lemma does not hold
for p € (0, %). And we will never consider the case p € (0, %) anyways.

%We don’t mention the parameter p in S, (r) because p is fixed in this section anyways. [, I? will also
be used outside this section though.
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1P = {1, 1], ...},
S, = o {r+ 0L [ 1<k <n ),
S (r) =Sy U S (HU....
Further define

A, (r) = A(S,(r)),
B, (r) := B(S,(r)),

Ay = lim A, (r),
n—oo

B, = lim B,(r).
n—oo

The main result of this section is the following Theorem [3.1}

Theorem 3.1. Let p > % Then

B e\ B
| =Y =

(28)

We believe that the left hand side in (28) can actually be replaced by

inf{ Be(S)
Ag(S)

‘ E c [0,1), S compatible and (E, p)-dominant}.

We couldn’t prove that though. But in the next section 4] we will show some reductions
that allow to enlarge the domain of the infimum in (28) a bit, see Theorem and
Theorem 4.7

Furthermore, we will compute the right hand side in (28)):

Proposition 3.2. Abbreviate % = (2p). Then

—\/ )2
ing 20 _ LEZVED) _ oy 200 65— 20
reR A (r) Zp(l _ mp 3 3

Because this term will appear quite often, abbreviate
1
(-1 2
1-(1 2,,)(1 +r)

fr) =

lx(IDNE|

Note that 1 f , Ié’ , ... all satisfy the first case |1 5 +1| = in the definition of most

antiparallel’. Thus for n > 1 we have

1.,
I’1=01-=—)y"1,
1T, ] = ( 2p)
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Therefore

n—1
A =EnI+ Y 1+ 0* P EnT,|
k=0
n—1 1
2 2 k
=p+pr I1+r)(1-—
p+p kz‘a[( -0

o {1—[<1——><1+r>2] FI) =2+ #1
BE (1——)(1+r) =1

This converges for n — oo if and only if

(1 —i)(1+;~)2 <1
2p
V2
1+ < —L — /2y
2p—1

Hence

A_(r) = {p+p”2f(”) re(-=v@2p)' -1,v@2p' - 1)

1) else

Now to B, (r). First, by the definition of S} (r) it can be checked inductively that for

0<k<nont(d ,f N E) the function F)(r) attains the value
A+t +r@+nt = +r*
and for kK > 1 on [(/ /f N E) it attains the value
A+ —rQ+ ' =1 = + kL.
The latter is also the value that F,(r) attains on [(J ,’; N E). Furthermore

1 1
I"NE) =(p-)I" =p1 = —)
(L N E)l = (p = DI =K 2p) :

1

LN B = DI = 50 - 3

Now as I(If) Uu...u I(I,I,’) U r(If,’ N E) is a partition of E this means
o 1 1 1
B,(r) =Y (1 = )K= (1 + 1) + p(1 = 5=)"(1 +r)>"
() k=02( 2p) (I =r)(1+r~"+p( 2p) (I+r)

24
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1(1 _ { - [a- —)(1 +r?" ) (1- —)(1 +r)?#1
2 (1- —)(1 +r)?=1

+ﬂa—5?a+wﬂ"

%U—ﬁ%l—ﬁb—Uﬂ+wﬂ@fm
= +p[(1— = (1+r)2] (1 —%)(1+r)27é1
%ﬂ—mﬁn+p (1= )1+ =1

Hence just like for A (r) we get

Log 02 _ ’_ r_
Boo(")={2(l N2 fr) re(-v2p) —1,4/2p) 1),'

1) else

(30)

Lemma 3.3. The allowed range of r, (—4/(2p)’ — 1, 4/(2p)’ — 1), lies left of the point
1.

Proof. Since 2p > % we have

4 4
e <Gy=2-=3-4 31
3 49 1
3 3
sothat v/(2p) —1<2-1=1. ]
Proof of Proposition 3.2}
B -0 (1= r?

Au(r) — p+pr2f(r)  2p1—(1— i)(1+r)2+r2.

This means

r] 2d Bo(r)
dr A (r)

=—(1-pr[1-(1- i)(l +r)?2+r2 =1 -r?-1- i)(l +r)+7]
2p 2p

_q-L 2
p[l-( 2p)(1+r)+

=—1+r—r2+r3—r+2r2—r3+(1—zi)(l—rz)[1+r+1—r]
p

1+ 41— -2
2p
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=(1-r)[1 - l]. (32)
p

By Lemma [3.3]in the allowed range of r, (32) is positive for r < —1 and negative for

r > —1. Thus the infimum of ng will be approached at the boundaries, where (1 —
1 2 _ b
5)(1 + r)* =1 so that

Bo() 1(-r
A (r)  2p 12

and thus

Bo() _ 1@+vCp)’
Ag(r) 2P(1+\/ﬁ)2
Bo(r) _ 1C2-ven)
A (r) 2p (1 - W)z

Now note that 2p < 2 so that (2p)’ > 2’ = 2 so that together with (31), Lemma
says that the smaller of the two limits is

1 2-vep'y
20 (1 \/2p) )

By (r)
Ae(r)’

It remains to compute (33)) for p close to 5. First note thatifa > Oand f > 0, f(x) =
O(x) then

r—-—VQ@p)—-1:

@2p) —1:

(33)

which thus is the global infimum of

1 1
— =—-+0(x). 34
a+ f(x) a ) 4
Thussince2p—1=%+2(p—%)wehave
1 2
— =34+0(p—-=
=1 +0O(p 3)
and
2p—8p+4 6 2 2 2.,
2p) — 4= ——— = — —)==18(p—=)+0(p—>)".
p) -1 2p_l(p 3 (p=3)+0p-3)

Therefore by V4 + x =2 + ix + 6(x?) and with x = (2p)’ — 4 we get

V) 2= i[(zpy — 41+ 0[2p) — 4 = —%@ - %) +O(p - %)2. (35)
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Invoking (34)) once more and 2p = % +2(p — %) we get

1 4 2
— == 4+ 0(p-2),
2 3)+ (» 3))
and by (34) and (33)
L epld
V) -1 3

Altogether this implies

1 2=V 49 2.4

(——>+@@ )=ﬂ@—§f+@@—§ﬁ

2p(1_W)2 T 322 3

> 0 such that

Lemma 3.4. There is a r;, >

B (ry) = inf{ BE(S) | 115 € S, I(S) = 17}. (36)

Proof. Let m be the infimum on the right hand s1de of (36). By Theorem [2.1] we have
m > 0. Applying the minimization to the interval [ , D) 1nstead of [0, p) we obtain

m = inf (1 - r)2 2 (1+ a)zm.

reR 2

Since the right hand side is a quadratic polynomial, the infimum is attained for some

" mmins 1-€.

I R I )2
= (1= + (1 2p)(1+rm) m. (37)

First note that we can’t have r;, = 1 because then by Lemma we’d have (1 — %)(1 +

Fmin)> > 1, and together with m > O this would contradict (37). Thus (1 Fanin)> > 0
so that (37) and m > 0 give

(1- é)(l +roin)’ < 1. (38)

Now we insert (37) for m in the right hand side of (37) n times and get

m= 2 ~(1- —)k(l + Pin) (1 = Fin)® + [(1 = %)(1 + )] me(39)

=02
Comparing this with (29) we see that the right hand side of (39) tends to B (ry;,) for
n — oo because the second summand in (39) tends to 0 by (38). O
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Remark. Another way to prove Lemma|3.4{1s to compute the left hand side of using
(30), and to compute the right hand side of by induction on n where we only take
the infimum over .S with |.S| = n. This way we could also avoid the use of Theorem[2.1

Lemma 3.5. For r > r;, in the allowed range of r we have

0
—B > 0.
or o (r)

Proof.
2 f) =201 = )1+ DF G
r 2p

2 Bo) = ~(1 =1 f(0) + 31 =P 2 £ ()
= P =D[=[1= (1 = )1 + 721+ (1 =1 = o)1 +7)
2p 2p
= R = n|-1+20 = D)1 +0)
2p

The first two factors are strictly greater than zero by Lemma [3.3] Since we know by
Lemma that B, (r) has a minimum at r;,, the third factor must be zero at r;,.
Since the third factor is a first order polynomial in r with strictly positive derivative, it

will be positive for all r > r;,. Hence such will be the entire product. []

Proof of Theorem 3.1} We only have to consider finite .S on the left hand side of (28).
By Lemma it suffices to consider the case that all coefficients in .$ are nonnegative.
Now let I? be the largest interval in .S with nonzero coefficient. By scaling we may
assume that the coefficient is 1. Orthogonally split

hp g =—Tarne + Lahne:

We apply Lemma with u = =Ty 2y p, v = 1,7 and then apply Lemma
The validity of the hypothesis of Lemma[A.T0| can be seen when looking at the calcu-
lations of the proof of Lemma So this means it suffices to consider S'\ {hr g} U
{Ty17)ng}- Then by dilating and translating from v(J 7y to [0, 1), we may pass to an .S
with [(§) c I”, 1-[-1,1) € S. Since we may furthermore always add intervals with
coefficients 0, it suffices to consider the case that for some #, I(.S) = I]ﬁ,’ .

So we have shown that it remains to prove that for all n and .S with I(S) = I£, 1 -
[-1,1) € Sthereis an r > 0 with (1 — Zip)(l + r)2 < 1 such that

Ap(Seo(r) 2 Ag(S),
Bp(S4(r) < Bg(S).
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We proceed by induction on .
The case n = 0 works with » = 0. Now assume it holds for » and let .S be a sequence
with I(S) =12, ., 1-[-1,1) € S. Again by Lemmait suffices to consider the case

n+1°
that all coefficients are positive. Denote the coefficient in front of 1 f by r;. Now set

T =S\ {Ig.r 17} U {( + ) g}

Then by the inductive hypothesis translated and dilated to Ié) instead of [0, 1) and with
the coefficients scaled by (1 +r;), there is an r, > 0 with (1 — ﬁ)(l + r2)2 < 1 such that

T = {1+ )1 g, (U4 r)rdy, (L4 r)(+ e I3 (L4 r)A 4+ )Py, )

satisfies
B(T') < Bg(T).
Now with
8" = T\ + 7)1 gag} U LI 7 17}
we have

Ap(S") = Ag(T) - I1 + rl)“]é’mj”% + ||h[(’)’,E||% + ||"1h[f,E||%
> Ap(T) - ||(1+ rl)“lgnE”% + ”hIgE”% + ”"1h1f,E||%
= Ag(9S),

AN !/ 2 4
Bg(S') = ||Fg(S )”quog» +IFE(SDN 2L 1y

= ||hyr g+ rihpe gl + || Fe(T||?
A g+ 1 If,E“Lz([O,%)) Ik )”L2<[§,1))

<\, +rh 2 + || Fp(T)||?
_” Ig,E rq [f’E”L2([0,%)) ” E( )”Lz([%,l))
= B(S).

So if we can show that we may now pass to r = r; = r, while further increasing A and
decreasing B, then note that we have transformed S’ into the form S (r) needed for the
induction step. Denote

A(rl,rz) = AE(S/)’
B(rl,rz) = BE(S,)

Then

Ary.ry) = p+pr?+(1 - é)(l + )X (A(r) — )
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—ptprt+(1- é)(l + 2 ().
B(ry,ry) = %(1 41— %)(1 + B (ry)

1 1 1
=S(I=r)*+ (- PIALR r)? (=)’ f(ry).
It remains to show that there is an » > 0 with (1 — i)(l + r)2 < 1 such that A (r) >

A(ry,ry) and By (r) < B(ry,ry). If with r;, from Lemma [3.4] we have A(ry,r,) <
A(7i0)- then by Lemma r = rp;, already does the job. So it suffices to show that
for each ¢ > A (rpin)

inf{ B(ry, )

> 0,r,>0,(1— zi)(l +r)? <1 Ay = ¢
P
is attained on the diagonal r; = r,. Denote the strip
1 2
D= {(r.r) | (1= )1+ < 1}
(ryr) | ( 2p)( )
and for ¢ > A (r,,;,) denote
D= {(r.r) €D | A1) = .
Then on D n {r; > 0}, A is smooth and increases with r; and r,, i.e. VA points into
the upper right quadrant. Furthermore on D n {r; > 0}, A tends to co whenever (r{,7,)
approaches the boundary of D, while A(0,0) < A (7,;,) < ¢. Thatmeans D.N{r{,r, >
0} is a smooth curve of finite length that starts and ends somewhere on r; = 0. In order

to get the infimum of B on D, N {ry,r, > 0}, we look for the points where VA and VB
are parallel.

0,A(ry, ry) = 2pry +2(1 i)(l PR ()
| 1
_ f(rz){Zprl 1-a-50+ r)?] +2(1 - 2,0+ rl)prg}
- f(rz){Zprl +@2p = D[-ri(1+ 1,2+ +r)r? }
= f(rz){Zprl +(2p - 1)[—r1 —2riry + r%] }
- f(rz){ rL 4+ 2p— Dry(=2r, + rz)}

1 1
0, A(ry, 1) = (1 — 5)(1 + r1)2p{2r2f(r2) +r5(1 - 5)2(1 + rz)f(rz)z}
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1 1
=(- 5)(1 + rl)zpf(rz)z{Zrz [1-(1- 5)(1 +7r,)?]
1
+r5(1 - 2—p)2(1 + rz)}

1 1
=(1- Z)(l + "1)2Pf(”2)2{”2(1 - 5)(1 +r)[-2(1 + ry) + 2]

+2r2}

1 1
=(- 5)(1 + rl)zpf(rz)z{—%(l - Z)(1 +r)+ 2r2}
1 1
=(- 5)(1 +r)2pry[1 = (1 - 5)(1 + 1) f(ry)?
=(- é)(l +r )71 = @2p — Dry] f(ry)?
0,B(ry,ry)=—(1—r)+(1 - é)(l + )1 = ry)?f(ry)
1 1
= f(rz){—(l —r)[l=(1- 5)(1 +r)?] + (1 - 5)(1 +r)( - r2)2}
= f(rz){—(l —r)+ (1 - %)[(1 —rp(L+ )+ (L +r)A = 1) }
= f(rz){—(l —r)+ (1 - %)2[1 + 15— 2r1y] }
1 1
0,B(ri,r) = (1= )1 + r1)2{ —(1=rp)f(r) + (1 —rp)*(1 = 5+ rz)f<r2>2}
= (1= )1+ 1)/ ()
14
1 1
. {_(1 —rp[l -1 - 5)(1 +r)?] + (1= r)*(1 - 2—p)(1 + rz)}
= (1= )1+ 1) ()
14
: {(1 —ry)(1 - i)(l +r)d+r+1-ry)—( —rz)}

1 1 1
=1- 5)(1 +r)2(1 —rp (1 - 5)(1 +7y) = E]f(rz)z
The gradients are parallel if and only if the following expression equals zero:

f(r) 72 det(VA@ry, 1) | VB(ry, 1))
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= [r 4+ @p = Dry(=2r; + rp](1 - i)(l +r)?2(1 - [ - %)(1 + 7)) — %]
—(1- %)(1 + )P [1 = 2p = 1yry] { —(I=r)+( - i)z[l + 12— 2rry] }
=(1- 2ip)(1 + rl)z{ [ri+ @p— Dry(=2r; + r]2(1 = rp)[(1 = zl—p)(l +7y) — %]
— [l = @p— )y (—(1 — )+ (- é)z[l +r2 =211, ) }
=(1- é)(l +r)?

{ [(r1 — ) Hry A+ (2p = Dry(=2(r — 1) — r2)] 2(1 = ry[(1 - 2i)(1 +ry)— 1]
D 2
—ry[1 = @2p = Dry]

1
. (_1 +(r =)+ + (1 - 5)2[1 — 12 = 2(r) = ryr,] ) }
1
=(1- E)(l +r)?
. {(rl - r2)< [1=22p— Dry)2(1 = |1 - %)(1 +ry) — %]
1
— [l = @p = Dy [1 = 4ry(1 — 5)])
1 1
+ <r2[l — @2p= D)2 = (1 - 20 +r2) = 2]
1 2
—r[l=@p=Dry][-1+r,+(1 - Z)2(1 - )] ) }
=(1- Zi)(l +r)*(ry = 1y)
14
: { [1=2Cp = (1 +75) = D]212= (1 + 111 - zipxl +ry) -3
2 1
[—(L+r)+1[2p=Qp— DU +r)|[5- o 4(1 4 ry)(1 — 5)] }
= (L= D)1+ 720y =)
14
{(1 47 [-22p = 1) = 82p = (1 = ) = [1+22p = DI2(1 - )
p 2p

F@2p—1)G =2 +42p—1)+42p - 1)1 — i)]
p 2p
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+ 1+ r2)[4(2p —D+[1+2Cp—-D]+4[14+22p—- D1 - %)
25— 2 = 2p- 15— 2)—4@2p— D]
D D
2
+ [—2[1 +2@2p— D]+ 2p(5 - —)] }
P
=(1 - 21)(1 +r)2(ry = 1y)
D
- {(1 + )21 - i)[—4p _82p—1)—2-4Qp—1)
2p
+2p(5 — %) +8p+4(2p— 1)]

+(1+r2)[p(8+4+16—10—10—8)

+(—4—1+4—8—8+4+5+4+4)+11)(2—2)]
+[2p—2]}
= (1= )1+ )20, - "2){(1 + )1 = A)[2p+ 2] + [2p - 2]}
p 2p

1 2 1

=-2(1-p)1 2p)(l +r)7(r r2)f(r2)
This equals zero if and only if 7| = r,. Hence B(r;, r,) has exactly one local extremum
on D, N {ry,r, > 0} that is not an endpoint, because A(r,r) = A (r) is strictly in-
creasing for r > 0. So let (7,7) € D, n {r;,r, > 0} be that unique extremum. If it
is a local mininmum, it is also the global minimum, because if there was another point
(ry,rp) € D.n {ry,r, 2 0} with B(r{,r,) < B(F,7), there would have to be a second
local extremum in between (7, 7) and (r, r,).

Since for r > r,,;, we have %A(r, r) > 0 and by Lemma also %B(r, r)>0,VA
and V B must be parallel and not antiparallel at (7, 7). Further by our computation

signdet(VA(ry, ry) | VB(ry,ry)) = sign(ry — ry).

That means that if we move from (7, 7) along D, N {r,r, > 0} in the direction where
r, increases and r, decreases, det(VA | VB) becomes negative which means that VB
bends into the direction of motion, implying that B increases. Since it gets the other sign
if we move the other way, B also increases in that direction. Thus our local extremum is
a minimum and we are done. [
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4 Extensions of Theorem 3.1]

4.1 The Case E = [0, b)
The main result of this subsection is the following Theorem . 1]

Theorem 4.1. Let p > %, E c[0,1)and S = {a;1;,a,1,, ...} be a set of compatible
E-dominant intervals with some coefficients, where for i = 1,2... we have I, ; C I,.
Then there is a T with (T') =1, and such that

Biop™) _ Bg(S)
A (T = Ag(S)

Corollary 4.2. Let p > %, b € [0,1] and E = [0, b) and S be a set of compatible E-
dominant intervals with some coefficients. Then there is a T with I(T) = [ , such that

Bop@ _ Bp(S)
AT~ AR(S)

Proof of Corollary By Lemma we may remove those intervals from S that do
not contain b, since all their respective restricted Haar functions are orthogonal to all

other restricted Haar functions. Then call the remaining intervals I, I,, .... Because
they are compatible and all contain b, they can be ordered in such a way such that for
i=1,2,...wehave I, | C I, [

We first show a few lemmas and propositions that provide the steps in the proof of
Theorem .11

Definition. For vectors u, v # 0 we define

_ A{uwv)
ool = e

If0 € {u,v} we set
<[u,v] = 0.

Definition. For E C [0, 1), an ordered set of compatible intervals
[| = {11,12, }
is called nested if for alli = 1,2, ... we have

I, Cx(l).
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Remark. Let | be compatible and nested and for all I € 1, I # [—1,1) assume |[(]) N
E| > |t(I)n E|. Then for any I,J € [ we have <t[h,’E, hJ’E] <0.

Definition. For a nested sequence .S = {ayly, a; I, ...} define

k—1

jal > 1Y, ail}.
i=0

Proposition 4.3. Let p > %, E c[0,1)and S = {ayly,...,a,l,} be a nested sequence
of compatible E-dominant intervals. Then there is an E’ and a nested sequence T of
compatible E’-dominant intervals with
Bp:/(T) < Bg(S)
Ap/(T) — Ag(S)

U(s) :={k21

(40)

and U(T) = @.
Proof. Assume U(SS) # @ and take kK = min U(.S). Abbreviate

SO = {aolo, ...,ak_llk_l}’
Sl = {aka,...,anIn}.

We will prove the proposition by induction on |.S;| = |S|—-min U(S). Incase U(S) = @
we set min U (S) = |§|. This is the base case where there is nothing to be done. So
assume k = minU(S) < |.S].

If Fp(Sp)1;, = 0 then Fg(Sy) and Fg(S)) are orthogonal so that by Lemma
(0) holds for E' := Eand T := S, or T := ). For the case T = S, we are done
because U(S() = @. Since S| # @ which by definition implies min U(S;) > 1 we have
for the case T = S that |S;| — minU(S)) < |S| = |S| — min U(S) so that we may
apply the inductive hypothesis to ..

Thus it remains to consider Fg(agly, ..., a;_ ;)1 # 0. Now for [I([;) N E| 2
|t(L;) N E| set

k—1
U= FE(a()IO’ ...,ak_]lk)]][k = (Z ai)]]]kﬁE’
i=0
k—1
v = i(z aphy, g
i=0
a
a:==+ k s
k=1,
i=0 "

where we take (e.g.) the positive sign for the case of equality. Since p > % we have
(u,v) > —||lu|lllv|| and by the choice of the signs also (u,v) < 0. Furthermore since
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I, € U(S) we have |a| > 1. Hence we may apply Lemma Replacing b by
b( 5;2—01 a;)~!, (TT4) becomes

k—1
2
”FE(aolo, ceey aka)ﬂIk”% = HFE<0010, ceey ak_llk_l, Z ailk>“1k )
i=0
+ 1163 £ bRy g5 (41)

holds.

Now define E* as follows: If we are in the case [L(L)NE| > |x(I;) N E| simply set
E* := E. For later use define J := r({y).

In the other case |I({;) N E| < |x({}) N E| set Et\ I, == E\ I,. Set Etn
(1) == Enx(y) — %llkl. Set J to be the interval with the same left boundary as

r(I;) but length :EQ%";‘ |t(L;)| < |e(Ly)|. Then set Etn r(I;) to be a translated and
k

dilated version of E N r(I}) according to the transformation [(/,) — J. Then we have
|E+nXT)| = |Enx(Ip)|, |EX nr(I)] = |En LI

This means in both cases we have ||b1; g + bh,k’E”% = 16T npL + bh[k,EJ_”% SO
that we may rewrite (1)) as

k—1

2

1Fpaglg, - ax I I = HFE<aOIO, oty ey Y a,.Ik)u,k 2
i=0

+ 1161 gt + bhy, g1l (42)

Now while the function on the left hand side of (42)) also has mass on I(/}), both func-
tions on the right are only supported on r(/,). In particular
FE(aOIO, cen a1y, Zf.:ol aiIk) 1, is just a scaled version of Fr(agly,...,a L)1
and bl g1 +bh; g1 is additionally dilated according to the transformation v(f;) — J.
This means that for

Fuait = Fp(@ii Iprs -5 aply)

and Féﬂ, which shall be F,; dilated according to the transformation t(/,) — J, and
cll, ¢+ with those signs such that the right hand sides of (43) are negative, we haV
k—1

<I[FE(a0[0, ceey aka)]]Ik, Eail] > <I[FE<0010, ceesy ak—lIk—l’ Z aiIk>ﬂ]k’ cllﬂail]
i=0
= <4[bl nps +bhy pi, et Fyl. (43)

Also fix the absolute values of c”, ¢t such that

(M eT)] + (M2 |T] = x(1y), (44)

"@3)) also holds for any other function supported on (1) instead of F,;.

36



2

st 16T gt + bhy g1l
2 B -1 2
(C”) |r(Ik)| ”FE(CI()I(), ey ak_IIk_l, 2?:0 alIk)ﬂIk||2

(45)

Now we add dilated and scaled versions of F,,; to both sides of (42)) and get by (43),
@A), @) that

) k—1 | 2
I FE(S T 115 2 HFE<aOIO’ SN R} ai1k>ﬂ1k + ¢ Py )
i=0
2
+ 1161 qpL + bhy g1+ F .
Adding || Fg(S)1 ¢ ||% to both sides we get
k
k—1 2
IFe(S)II5 = HFE(GOIO, v Qo iy, Z aiIk> +cl Fy )
i=0
2
+ 1161 npr + bRy g+ T F 5. (46)
Furthermore by (115]) we have
k—1
laghy gl <11 Y ashy gl + 16T, 013 + bR, gll3
i=0
k—1
=11 ) ahy gll3+ 161 pell? + 116h; g3 (47)
i=0

Fori=k+1,...,nsetl iJ‘ to be the translate and dilate of I; according to the transform-
ation v(I;) — J. Then adding ¥, ||aih1i’E||% to both sides of and applying (44)
we get

oo k—1 k—1 0
2 2 2 2
Y llahy g3 < Y llahy 341D ahy g3+ Y, llelhy gll3

i=k+1
(6]
2 2 L 2
+ 16T g I3+ bRy, po I3+ D letahy g3 @8)
i=k+1
Now set

k—1
Tl = {61010, ...,ak_lIk_l,(z ai)Ik,C||ak+1Ik+1, ...,C”anIn}, El = E,

i=0
T, = {bﬂ 1o bl a g I ...,cianlj}, E, = E*.
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Then combining and (48)) we see that by Lemma thereis ani € {1,2} with

B (T) <ABEQS)
Ap(T,) = Ag(S)

Also we have
IT;| —minU(T)) <(n+1)—(k+ 1)< (n+1)—k =S| —minU(S)
so that we may apply the inductive hypothesis to T}, E;. ]

Proposition 4.4. Let p > % Let E C [0,1) and S = {a,1,a,1,,...} be compatible,
E-dominant and nested with U(S) = @. Then there is an E’ C [0, 1) and a T which is
compatible, E’-dominant and nested with U(T') = & and

Bp/(T) _ Bi(S)
Ap(T) = Ag(S)

and where for each I € I(T'), I # [—1,1) we have
(DN E'| > [x(I)n E'|. (49)

Proof. We prove the proposition by induction on the number of indices i for which (49)
fails for I;, E. In the base case there are no such indices so there is nothing to be done.
So assume such indices exist and let i be the largest index for which (9) fails. Since
U(S) = @ we have |g;| < | Z;_:ll a;|. Since we may simply remove a;/; from S'if a; = 0

it suffices to consider Z;_:ll a; # 0. Then by rescaling we may pass to 2;11 a; = 1.
Abbreviate

SO = {alll’ "”ai—lIi—l}’

S1= a1 iz 00140, - }-

Then Fg(Sy)1;, = 1. Now there are two cases to consider:

Case a; > 0 Since (@9) fails we have that <1 el ] = 0. Therefore there is an
aza;s.t

2 2 2 2 2
I rne + aihy gl = 1T paells + llahy gll; = 1T a5 + llal gl (50)
Now decompose I; into two intervals I U I, = I; and take E such that

o« ENI,=E\I,
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e |[EnI|=|EnI,

e [N E is a dilate and translate of t(I;) N E,

2 2 2

This is possible due to (50) and |r|(r1(’;r;f N |I|t?f |

dilated and scaled versions of (1 ng+a;h; g)1y,. Take S 11 and 512 to be their respective
corresponding translated, dilated and scaled versions of .S;. Then

. Now 1 IynE and al IynE are translated,

AR(S) = Ap(S)) + Ag(SD),
I epne + aihy, ereay + FESDIZ = 105 + FESDIZ + llal g + FESDI

and thus, recalling that Fg(So)1; = 1, g and hence also Fg(So)1; = 1,5, we get

AR(S) = Ap(Sy) + llashy gll5 + Ap(Sy)
< Ap(Sy) + llal ngll3 + Ap(S)) + Ap(SD)
= Ag(SoU S+ Ap({al; g} UST)
BL(S) = || Fg(Sy)lI?

L2(1%)
+ | Fg(Sp) + “ihf,»,EHZLz(Ii)
— 1 FE(So) + afhn,E”sz(ru,-))
+IFE 2,
= IFECSOI, o

FIFESOI2,,, , + la gl

2 2

+ IFE(So U SIa, ) + llal g + FE(SPI

_ . 2 . 2 _ . 2 . 2y112

= 1RSI, o, + IFESON () = IFES0 oy, + IFE(So U SDI
+lladngll; = Naly npll; + llaty oz + FE(SDIS

= 1 Fg(So U SIS + I1Fz({alqz) U ST)II3

The way they were scaled, both S, U Sl1 and {al;,z} U S12 still satisfy U = @. They

also have at least one interval less that violates (@9) w.r.t. E than .S does w.r.t. E, and by
Lemma|A.24{one of them has a smaller g than .S. We apply the induction hypothesis to
this sequence and are done with the first case.

39



Case g; <0 Since U(S) = @ we have |g;| < 1. Also, if a¢; = —1 then all coefficients
in S| must be zero so that we may remove S| completely. Then we can simply turn
|[I(I;) N E| < |x({;) N E| around while preserving A and B, by swapping [(I;) N E
and r(/;) N E and flipping the sign of a;. That way all properties of the proposition are
preserved and also (49) holds for all intervals because we assumed that it already holds
for Iy, ..., I;,_; anyways.
So it suffices to consider —1 < a; < 0. Then by Lemma there is an a with
la;| < |a|l <1and
IT7nE + aihli,E”iZ(r(Ii)) <MMpne - ahI[,EHZLz([(Ii))’ a1y

”ﬂI[nE-"ath[,E”% = “HI[nE_ahIi,E”%- (52)
Now decompose t(/;) into two intervals I (VI = r(];) and take E such that
e E\I,=E\,
e |[EnX()| =|Enx(I)|, |Ent(,)| =|EnL,;)| which means
2 2
”“IinE - ahIi’E”LQ([(Ii)) = IIT]I,-(‘IE + ahli’E”Lz(r(Ii))’
2 2
”1]1,-(1E - ahli,E”LQ(r([[)) = ||ﬂ1iﬂE + ahli’E”Lz(I(Ii))'
° I” N E is a dilate and translate of ;)N E,

5 2
° [Tne+ aih[i’E”Lz(t(Ii)) =g+ ahli’E”LzUu)'

This is possible due to and Irrrfé;f;ffl > Ill(Il(,;n)? = |r|(rl(';r;f| Now let S be S,
translated and dilated according to t(/ ,-l) — I, and with coefficients scaled according to

1+a; — 1+a. Then Az(S)) = Ag(S,) and

I nE +aihy g+ FE(51)||2L2(r(I,-)) = 110z + ahy g+ Fp(S)I

2
L1y

Therefore recalling that Fp(So)1; = T;~p and Fg(So)1; = 1,45 we get

Ag(S) = Ap(So) + llashy gl + Ag(S))
< Ap(Sp) + llahy g5 + Ag(S)
= AE(SO U {aIl-} U Sl)’

BL(S) = IFE(Sol,, o

+1FE(So) + @by, gl 7o
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— [ Fg(Sy) + a; h] E”Lz( H(1))

+ [ F(Sp) + a; hl ET FE(SI)”
= ISR, 0

+ [ F(Sp) + ah[ E”

— [ F(Sp) + ah[ E”

L2(x(I))

L2(1))

L2(1p)

+ ||FE(S()) + ahl E+ FE(SI)”LZ(I )

= ||Fz(Sp) U {al;} U S))II3

The way it is scaled, S, U {al;} U S, still satisfies U = @. It also has one interval less
that violates (@9) w.r.t. E and a smaller % than S w.r.t. E. So we may apply the induction
hypothesis to S, U {al;} U S, and are also done with the second case. [

Lemma 4.5. Let p > % and E C [0,1). Assume n > 0 and qy, ...,a,_;,a > 0 and let

S={aOIp,...,a 1,aI}

be compatible, E-dominant, with I C r(/ r’: _p) and U(S) = @ and where for all J €
1(S), J # [-1,1) we have |[[(J) n E| > |x(J) n E|. Furthermore assume n = 0 or
E = [0, p). Then there are aé, ..., ay > 0 such that

S" ={aply,....ap1,}

satisfies
usSh=go
Ao p(S") > AR(S),
By ,(S") < BE(S),

1o, (SO Fe(SI?

>
L2(x(Ihy) — I L2(x(1))’

Proof. First consider n = 0. Take aj s.t.

2 2
”a(/)]][O,p)Hz = ||ahI,E”2~
This is already the inequality for both A and B. For the last one observe
’ 2 _ ’ 2
Also U({apI)}) = @

It remains to take care of the other case n > 1 and E = [0, p). This goes in a couple
of steps.

41



1.

2.

First enlarge I while keeping % constant until I N E = x(1 5 _p) N E. This is

possible because |r(Ir’:_1)nE| < p|r(Ir’:_1)| and |I N E| > p|I|. At the same time
decrease a so that [[ah, Ell% stays constant. Then A(S) stays constant. Bg(.5)
decreases because h; p becomes more parallel to 1.5, which can be seen as a

consequence of Lemma|A.7, Furthermore by Lemma [A.17} || F E(S)”iZ(r(z)) in-

creases. Since a decreases also U (.S) stays empty.

Now we want to extend I further to the right. We do this according to Lemma
applied to the intervals E N I ¢ I c IY and coefficients 0 < a < 2?;01 a;.
If I ends up being I then we are done.

. Otherwise we obtain a = Y"~! a;. That means that on [(/) N E = [(]) the

i=0
function Fg(agl, P, a,_1 5 10 al) vanishes. Now we keep extending I to the
right. However this alone would decrease B and also
p p 2
”F[QP)(aol g aeey an_lln_l, al) |IL2(1:(1)) (53)
because [(I) N E grows and v(I) N E shrinks. In order to compensate the loss in

(53) we additionally increase a,_; and a by the same amount such that stays
unchanged. That way Fg(ayI’,...,a, I 5 _p»-al) stays zero on I(I), decreases

on [(/ r’l’ _,) and remains unchanged on (/ f _I)E, which means that B decreases. A
increases due to the growth of I, a,_; and a. We want to do this until I becomes
17

However if n > 2 we need to stop if a,_, reaches 2?;02 a; before that, so that we
don’t violate U (.S) = @. In that case FE(aOIp, B S I,f_l ,al) becomes zero on
1104 ,f _1)- Then we repeat this step by increasing a,,_, and a,,_; by the same amount,
and a as much as a,_, + a,_;. We further repeat this step for n — 3,n — 4, ...
until either I becomes I ,f and we are done, or we arrive at the point where we
want to increase ag. In the latter case however, we may increase as long as we like
without ever violating U (.S) = @ so that eventually I will become T2 and we are
done.

]

Proposition 4.6. Let p > % 0<n<N,EcCI0,1)and

S ={apl},....a,_|1I"_,a,l, ..axIy)

n-n’

be a compatible E-dominant nested sequence with positive coefficients and U (.S) = @
and such thatforall J € 1(S), J # [—1, 1) wehave |(J)NE| > |x(J)NE|. Furthermore
assume that fori =0, ...,n — 1 we have I(If) C E. Letn =0or |E| = p. Then there is
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an E’ c [0,1) with |E’| = p and where fori =0, ..., n we have I(Ilfv) C E’, and there is
a compatible nested E’-dominant sequence

— p P
S = {a(’)lo, ...,a;,In,a;lHII;H, nanIy)
with positive coefficients, U(S’) = @ and s.t. for all J € 1(S’), J # [—1, 1) we have
[LWJ)NE'|>|x(J)nE'| and

By/(S") _ By(S)
Ap/(S") T Ag(S)

Proof. Set

So = {aolg, ~-~,an—1l,f—1’an1n}’
Sl = {an+IIn+1’ ---’aNIN}‘

First we would like to apply Lemma to E,S,. We show that this is also possible
for n > 1 even though there Lemma [{.5] requires E = [0, p): Recall that for any k
we have |J*_ 1(I") € [0,p) and [0, p) \ U~ LIP) € x(I}) and |1V N [0, p)| = p|I}|.
Thus for any E with |E| = p and U;’z_ll I(Il.p) C E and |If:_l NE|> pllfl’_ll must have
E\ /D W)y c xd?_). This means [x(I”_ ) n E| = [x(I’_)) N[0, p)|. So instead of

E and I, we may take [0, p) and the interval I , Which satisfies

[X(I,) n E| = [\(T,,) n [0, p)|,
lx(1,) N E| = |x(T,) n [0, p)l.

Such I, exists by |[(I,) n E| > |t(I,) n E|. Apply Lemma [4.5to [0, p), S, with I,
instead of I,,. By Lemma the result of Lemma.5]also holds for E, Sj,.

So let S be given by Lemma IfS; = @weset E' :=[0,p) and S" == S and
are done with the proof. Otherwise note that

n

Fp(Sp)lyi,) = Z a1y )nE (54)
i=0
n
FopS9Tan = X, o (55)
i=0

Since U(S) # @ and not all coefficients are zero we have g, > 0, and since all coeffi-
cients are positive this means (59) is not zero. By Lemma (53)) has a greater L2-norm
than (54) and by the E-dominantness of I, we have

p
lx(1,) N[0, p)| —2p_ 1< |x(1,) N E|
le(ID)] [x(1,)]
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That means there is an interval I C ([, ,’: ) with

1 Flon (ST = 1Fe(Sp) Ty, 115, (56)
11n[0.p)| _ 1 NE
H 121

Take E’ with E' \ I = [0, p) \ I and s.t. E’' N I is the image of E N I, ; under the linear
transformation I, ; — I. Now denote

Sl, = {a},1+11r,l+l’ ,a;VI]’V}
where I(.S7) is the image of I(S)) under I,,,; — Tand a,_,,a, ,... aT€ Gy, Gpyns -
multiplied by ~ Uil o that A £/(S]) = Ag(S)) and with (56) we have

NI
IFE(S)T; 15 = I1Fp (S5

Define " = SjU S|. By the way a' ., a’ ,,... are scaled, U(S") stays just the same,

i.e. empty. Also |E’| = pand fori = 0,...,n we have [(I;) C E'. Then according to
Lemma 4.5 we have

Ap(S) = Ap(Sy) + Ap(S)) < Ap(S)) + Ap(S)).
Also by Lemma.5| we have
IFE(SOII3 2 I1Fg(Spll3
and by (56) and the choice of E’ we have
IFp(S) Ty, 115 = 1 Fp(SpT4I5.
Therefore eventually we get

IFEI5 = IFp(SYI5 = IFe(S) 1, , I3+ I1Fp(HT, I3
> || Fi(SOI5 = 1Fe (ST N15 + 1 Fer (S 14113
= 1 F (SHI5.

O

Proof of Theoremd.1] First we want to pass to a nested S. We achieve this by go-
ing inductively through all i = 1,2,... with [,,; C [(J;) and reflecting the intervals
I, 1,15, ... and E N I; around the midpoint of I;. We also have to flip the signs of

1
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a;,a;,1, ... because a reflected Haar function is minus a Haar function. After that, A and
B have not changed.

Now by Proposition .3] we may pass to a nested .S with U(S) = @. Then by Pro-
position #.4) we may additionally demand that for all 7 € I(S), I # [—1,1) we have
[X(I)n E| > |x(I) n E|. Then for any two I,J € [(S) we have <I[h17E, hLE] <0,
so that by Lemma |A. 1] it suffices to consider the case that all coefficients are positive.
Further let I be the largest interval in I(.S'). If I # [—1, 1) then I C [0, 1). Then translate
and dilate S such that I = [0,1). Now we may replace I by [—1, 1) because all other
intervals in () are contained in t(1) by nestedness, and h ;¢ equals 1 on x(J), and it
equals =15 on [(). Thus Ag(S) and Bg(.S) don’t change after the replacement.

Now we inductively apply Proposition and eventually for some N pass to an E
and an S with [(S) = I]I;V which is E-dominant and where for all n = 1, ..., N we have
LIy C E and |E| = p. As we already argued in in beginning of the proof of Lemma
this already implies Ag(S) = A, (S) and Bg(S) = By ,(S) by Lemma
Now we add the remaining intervals of [I” with zero coefficients. [l

4.2 The Case of 4.5 Scales

The main statement in this section is the following Theorem

Theorem 4.7. Let p > % E C [0,1)and |E N[0, %)l > |EN [%, D)|. Let Iy, 1,,... be

disjoint subintervals of [0, %). Let J, J,, ... be disjoint subintervals of [%, D, 1,1, ...
Let {K;; | i,j = 1,2,...} be disjoint intervals so that for all i, j we have K;; C J;.
Furthermore all intervals are assumed compatible and E, p-dominant. Let

S = {ao[—l, 1), a[O, 1), (1111,(12[2, ""bl‘]l’bZJZ’ } U {cinij | l,J (S N}
Then there is a Twith I(T) = [ » such that

By )(T) < Be(S)
Apop(T) — Ap(S)

(57)

Remark. If we only consider .S C 9, then Theorem [4.7] states that holds whenever
S contains only intervals of the scales 21, 20, 2_1, 2_2, and those intervals of scale 273
that are contained in [0, %).

The propositions that follow provide the main steps of the proof of Theorem
Most of them are also somehow special cases of Theorem[4.7]in that they reduce certain
compatible sets to a nested sequences. Theorem@4.7|can also be seen as the combination
of a few individual reductions to nested sequences which happen to work together.
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Proposition 4.8. Let p > %, E cIandJ,J,,... C Ibe disjoint and E-dominant and

a,a,,a, ... € R. Then there is an E with | E| = | E| and an E-dominant interval J with

IJNnE|< Z |J; N E|,
i=12....
TnE < D 10N E"
i=12....

and d with

la 213+ llahy gl = lalgll3 + D) llaihy gl3,
i=1,2,...

lat g +ahy gll3 <llalg+ Y, ahy 3.
i=12,...
Proof. By symmetry it suffices to consider the case that a > 0 and that fori = 1,2, ...
we have |[(J;) N E| > |v(J;) n E|. Then it suffices to consider a;, a,, ... > 0 which
follows from i # j : J;n J; = @ for a = 0 and from Lemma [A.T]for a > 0.
Now foreachi = 1,2, ... take E/ C J; and J/ sothat |E/| = |[EN J;| and J; is most
|JinE|

antiparallel to I; w.r.t. E/. Further set a; = TaE Y and
= Eu(eN U 7).
i=12,... i=12,...

Then
C C 2 2
|Jl.’ NE'|<|J,NnE]|, |Jl.’ NE"™| <|J;,nE"| ||alfhji/’E,||2 = ||athi,E||2
and we have

2 2
lalg + Y ahy g3 <llalg+ Y ahy gl
i=1,2,... i=1,2,...

which follows from i # j : J;nJ; = @ for a = 0 and from Lemma [A.13|if a > 0.
Furthermore all restricted Haar functions w.r.t. most antiparallel intervals are translates
and dilates of one another. Thus if we take a in such a way that

~ 2 2
D, lNany gz =Y llajhy 3,

i=1,2,... i=1,2,...
then
~ 2 2
lalp + D, ahy pl3 <llalp+ Y, ajhy gl
i=1,2,... i=1,2,...
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which follows from i # j @ J;nJ; = @ for a = 0, and from Lemma fora > 0
because forall i = 1,2, ... we have |[J/ n E’| = p|J/| and I(J]) C E’. So we may take
an E C I and an interval J C I with

|E| = |E'],

Tl =11+ 1951+ ...,
|/ nE|=pl|J],

I(J)CE

so that

JnEl= Y /nEl< Y |LnElL

i=1,2,... i=1,2,...
TnES = ) |J/nEf < ) |5nEY,
i=1,2,... i=1,2,...
~ 2 2
lahs 13 =", Najhy g3,
i=1,2,...
~ 2 2
lalz+ahj gll3 = lalg + D, alhy gll3.
i=1,2,...

]

Proposition 4.9. Let 1 > p; > p, > Oand p == 222 > 1 Let E = [0,2) U[4, 22

and let I be most p-antiparallel to [0, %). Then for .S = {ao[—l, 1),al0,1),a,;1 } we have

By (=1 D.10.1)) _ B(S)
A (=1, 1),[0,1) ~ A(S)

Proof. For ay = 0 we might as well consider {a[—1, 1), a;I} instead of S, and then the
proposition follows from Lemma For a, # 0 it suffices to consider a, = 1 after
rescaling. Then we split the proof into the casesa <0, a>1, 0 <a < 1.

Case a < 0 Here it suffices to consider a; > 0 because 1 + ahyg ) g is positive on
INE. Set E =1[0,2)u[}, 22) Then

2° 2
<[h11yE P, e] <0 =<[hi11y 8 b 2] (58)
Now take @ > 0 s.t.
Whi—1,1),E + ahyo el = lah_y 1y g + dhyg ) gll, = ||25“[0,%)||%- (59)
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Then by and a > 0 we have
g1, g113 + Nlakyo ) el3 < a0 gll3 + llahio ) g3 = 1210 2 l15. (60)
(59 reads £(1 + |a|)* + (1 — |a])* = £-(2@)* which implies
1+ |a| < 2a. (61)

Furthermore note that on [0, %) the functions h g and hy ; are equal, and hj_; |y g +
ahy 1) g attains the value 1+ |a|. Therefore using (a;h; g, 1 [0,’%)> <0Oand we have

(alhI’E,h[_M),E + ah[o,l)’E) =1+ |a|)(a1hI,E,ﬂ[0,p71)) > (ashy g, 2&1][0’%)). (62)
Now by we get
Ap(S) = A ) (2al-1,1), a,1) (63)
and by (63)), (h[_ 1) g> ahyg1) ) = 0 and we get
Bg(S) > B[O,%)(2a[—l, 1),a;I).

Then the proposition for this case a < 0 follows by translation, dilation, scaling and
LemmalA.3and Lemma[A.13

Case a > 1 Consider S = {a[—l, 1),[0,1), —a,I} instead. Then Ag(S) = AE(S‘)
since ”h[—l,l),EHZ = ”h[O,I),E”2‘ Also BE(S) = BE(S) because h[—l,l),E + ah[O,l),E and

ah_y 1y g+ hyo 1), g are equal on [%, 1) and equal up to a factor —1 on [0, %). Now % does

not change if we further pass to {[—1, 1), %[O, 1), —%I } Hence it suffices to consider

thecase 0 <a < 1.

Case0<a<l1

(hi_y et ahgy g hpp) =1 - g hyp) =1 —a)1 g Ay ) 0.

Hence we may always pass to the case a;y > 0. Then

(aho1).p-arhy g) = aa{—Tgnphyg) 20

and thus
Bg(S) S Bg(S) = 2aho 1) p-arhp)  Ap(S) + 2(h_1 1y g ahyo 1y £ + arhy E)
Ag(S) ~ Ag(S) Ag(S)

(64)
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Now for some 0 < r < p; to be chosen soon, set

r 1 1+r@2p-1)
E, = — -
r D1 1+l"(2p—1) 1+p2
E, =[= = , X
1=13. )Vl 2 > )

Note that r(2p — 1) = r(p; + p; — 1) < rp, < p,. So Ej U E, is a partition of E which
means that
hio,1.e = hion,g, + Ro.E,

is an orthogonal decomposition and with
S/ =5 \ {ah[O,l)’E} U {ah[OJ),E”}

we have A p(S) = Ag(S') + llahyo 1), ||§ by Lemma Hence the right hand side of
(64) equals
Ap(S") + llhy,1) E, 15+ 2(h_y 1y g ahyo 1) g + arhy g)

_ (65)
Ap(S") + A,k 13

NOW Since pl Z p2 and a, aI Z 0 we haVe <h[—1,1),E’ ah[o’l)yE + thI,E> S 0 SO that by

Lemmal[A.24] (63) is

S Ap(S") +2(h_y 1) > ahy ) g+ arhy g)

> 4,51 (66)
Now we want to take r s.t.
ELn (3. DI =ELn[0,3) (67)
= pp—r@p-1)=p —r
= roi= 5(11__1);) = pll __5 20,
— pl_r:pml—p%-wl—m__ml—m)ZO

1—p C1-p
Note that for p = 1 we may take r arbitrarily in [0, 1]. (67) makes hyq ) g, orthogonal
to h_; 1), so that (66) equals

Ap(S) +2(h_y 1) E> ahyoy,, + arhy g)

68
A5 (68)
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Further note that

r r@p-b
El==-+—"T— =
| ||| 2 5 rp,
Ejniz: DI _p—3 _10.p015 D
|E||| p |10, p)|

and since I is most antiparallel to [0, %) w.r.t. [0, 2) we have

_ P_l_ 1
bp—p 2)=1'

r+2|I = + (——
—-p

1 —
That means there are E;, E, C [0, 1) such that E”, E,, E, are disjoint with
E U E, UE,;=10,p),
|Ey| = |Ey| = plI],

Ejnlz. Dl _1Einlz Dl [E20 (5 DI I0.p) (5D
IE)] Bl 1B 0.9

Then we have

2 2
||h[_1,1),[0,p)||2 = ||h[_1,1),E||2,
||h[0,1),E1 ||% = ”h1,E”§,
<h[—1,1),[0,p)’ h[O,l),E”> = <h[—1,1),E’ h[O,l),E”>a
<h[—1,1),[0,p)’ h[O,l),E1> = <h[—1,1),E’ hI,E>~
Therefore with
8 = {hi_11,0.0 9Pio.0). 5, arhio.1) 5, }

we can replace summand for summand by

A10,p)(S) + 21 1y 10,0 @Pyo,1), By + @rPp0,1,E,)
Af.p(S)

and since A |y, Ey and hyq ;) g, are orthogonal this equals

By ([=1. D). ahyo 1 - arhyon k)

Ao (=1, D, ahyo 1y g arhyo ) k)
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_ Buop (=1 1) ahyo ) gy arhpon., Opo.) ) )
Ao ([=1. Duahyo ) g arhio ) g, Ohyo.1).6,)

Since by Lemma the functions Ay Ep hio,1),E,> Pio,1),, can be seen as translates
and dilates of one another, when we take a@ > 0 s.t.

2 2 2 ~ 2
lahyo 1), 13 + Nlarhio g, 13 + 10 13 = D% Nk xl13
X€(E Ey.Ey)

then by Lemmal[A.7] (69) is greater than

Bio (=1, 1), @hyg 1 - @hyo 1) 5, o 1 )

Ao ([(=1. D). ahyg 1) . Ghyo 1) 5, Gy 1) )
By Lemma [A.§| we have

_ By ([=1,1),al0, 1))
Ao ([=1,1),al0, 1))

and by Lemma we have

S B[O,p)([—l, 1),[0,1))
- A[O,p)([—l, 1),[0,1))

]

Proposition 4.10. Let % <p<land E C [0,1) with [0, %) C Eand |E| > p. Let
Iy, Iy, ... C [%, 1) be disjoint E-dominant intervals and for i = 0, 1, ... let 7; be a finite
subset of L2(I ;). Assume

S = {h[—l,l),E’ ah«[o’l)’E} ] TO U Tl U....

Then there is an E’ and a T’ which for some i = 0, 1, ... is a translated, dilated and
scaled version of T; such that

S/ = {h[—l,l),E” ah[o’l),El} U T/ (70)

is E’-dominant and satisfies

B (S") < Bg(S)
Ap/(S") ~ Ag(S)
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Proof. We would like to redistribute E N [%, 1) and translate T}, T3, ... isometrically so
that there is an interval partition

1
[E, 1):L01UL11UL21U... (71)

such that foralli = 0,1, ... we have I; C L;; and

|EN L]

>2p— 1. (72)
| Ll

This can be done as follows: Fori =0, 1, ... define L;; := I,. Then (72) holds. If (71)
holds or .
|03 D\ Uizo,1,... LiD N E|

1 >2p—1 (73)
15 D\ Uizor.... Lit|
add [%, D\ Ui=o,1.... Li1 to Ly;. Otherwise, since
|En(3 D)
—Z —>2-1
D)
there must be a j s.t. |L|’£nf| > 2p — 1. Then add as much of [%, D\Ui—o; L \E
p g
to L;; so that holds or |L|’Llnf| =2p—1.1If still doesn’t hold, then there
il

are j',j”,... for which we can repeat the procedure until holds. After that, add
[%, 1)\Ui=0’1“._ L;; to Ly;. Now redistribute and/or translate EN [%, I)and Lyy, Lyq, ...
and Ty, T), ... isometrically so that Ly, L, ... are intervals. Then holds as an
interval partition and holds.

Now fori =0,1, ... set

1
Ljy:=Lj — bX
L;=LjyUL,
El = E ﬂ Ll'

Then

howne= 2, P
i=0,1,...

hone= D, Moy
i=0,1,...
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are orthogonal decompositions. Now for i =0, 1, ... define
S; = {h_11,E-ahp0,1),61 VT
Then S(;, S{, ... are pairwise orthogonal and by Lemma we have

Ap(S) = Ag(SjUS]U..),
B(S) = BL(S; US| U ...).

That means by Lemma [A.9| there is an i with

BE(S)) _ By(S)
Ap(S]) ~ Ap(S)

Now translate and dilate Si', E; such that L;; = [0, %), and then translate the right half

!

Bg (S
of S/, E; such that L;; = [%, 1). This does not change AE’ES’,;. Now S/ is of the form
Ei i

(70), and by L; N [0, %) = [0, %) C E; and (72)), S/ is also E;-dominant. O

Proposition 4.11. Let p > % Let I be an interval, Let 1 > by > b, > 0, and with b :=

2222 assume b > p. Let E € Iwith [(I)NE| = b, (D], [v(I)NE| = b|x(I)|. Further
assume that (/) N E, [(I) N E are intervals with the same left boundary as v(I), r(1)
respectively and J;, J, are the respective most antiparallel intervals of I(I), r(I). Let
a,ay, ay,a, € R. Denote

S:={alya;l,a,J;,a,J5}.
Then there is an E’ C I with |E’| = | E|, an interval partition

R o '
=101y,

!/

an interval J, f

cr(d |’|) and agyep, doqq € R such that

S|'|’1 = {aﬂlﬁ’afll’l’az"ﬁ}’
Sy2 =1l aevenl ]},

!’ !’
SL = {aIﬂIi,aOddIL}
are each compatible E’-dominant nested sequences and

Ap(S) = Ap/(S), US) )+ Ap(S]), (74)
Bi(S) = Bp:(S) | US) )+ Bp(S)). (75)
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Remark. ([74]) can be written as

2 2 2
Ap(S\{al;}) = llarhy g1l + Nazhyr g1 + Nlaeyenhtr eIl
2 2
+llaf Uy prlls + laoaahsy 3
Proof of Propositiond.11} For p = 1 all functions in S are orthogonal which makes
the statement uninteresting and obvious. Hence only consider p < 1 from now on. By

translating and dilating it suffices to consider the case I = [0, 1), and by scaling we may
passtoa = 1.

Claim.
|J1] < |J5].

Proof. By Lemma and b; > p we have

1 1-bH
|1l = — ;
1 2
1b
ol=q e o
1-p 2 2=P

Note that |J,| is linearly increasing in b, for b, < p and linearly decreasing for b, > p.

Hence it is minimal for b, equal to one of the boundaries. For b, fixed, the lower bound
for b, is given by bl;r—bz > p,1.e. by, = 2p—b; and the upper bound is b, = b;. If b, = b,
then |J,| = |J;] \/ . At the lower bound we have b = p which implies b, < p since

by > p. Therefore

b 2p—b
|JZ| =_21=l p 1’
2p 2 p
|| = |J;| = 2p-b)d =p) = =b)p  —b; +p+2pb -2p°
c 2p(1 = p) 2p(1 = p)
2p — 1)(by —
G VhioD
2p(1 —p)
which proves the claim. O

Now we may partition
Jz = JZ,J_ U JZ,”

in such a way that

|21 ] =141,
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W) N Tl DN Tyl g

= =z, (76)
|51 | o 2
J,, nI(Jy) Cl(J) CE,
Joy NI(J,) C I(Jy) C E, (77)
/oy NE| |J,, NnE]| JHNE
2] _ Moy _LnEl_ (78)
|2, |21 |21

Of course it won’t be an interval partition this time. Orthogonally decompose

hy, g =hy, g, + hJZ,EmJZ,“

and set
Reyen = +hy £+ Ny, B, -
hoga = =hy, g+ My Esy -
Then h.,., and h,44 are orthogonal. Set a..,, a,qq sSuch that
athy, g+ a1y, hy, g = Gevenfleven + doddPodd-
Now define
IJ_ = Jl U JZ,J_
I” = [0, 1)\IJ_

and orthogonally decompose

hio1,E = Py, 1,nE + Rio,nE-

Now define
Sy = { “IHnEa a[o,l)h[o,l),EnIH» aZth,Eng,” b
S||,2 = { ]]IJ_OE’ aevenheven’ }’
S = { aj0,y10,1),En1, > doddModd }

Since we only did orthogonal decompositions and recombinations and Sy ;, S} 2,5
span orthogonal spaces, a few applications of Lemma[A.§|show that

Ap(S) = Ap(S)1) + Ap(S)2) + A(S)), (79)
Bp(S) = Be(S),1) + B(S)2) + Be(S)). (80)
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Now define

’ [ 1_bl
1= |o.—2),
L 1—-p
r1—b
Iy = ]’1>’
L 1—p
r 1-b 1-b by —b
E = O’P( 1)>U[ L2 2)
I 1-p 1-p 2

and the interval JII C r(I|’|) with |J|I| = |J,| and |J|i NE'| = p|J|i|. We will see soon

that such J Ii exists. Note that

b, —b l+b—b,—p—pb+ pb
12 2:1+b—b1: 1~ P—pbTpb
I-p
_1—b1+(b—p)+p(b1—b)>1—b1
B 1-p “1-p’
l—b)—=(1=b)+A=p)(1+b—>b 1—p)b
|E,|=p( D= ( D+ (1= p) 1)=( p) —b=|E|.
I-p I-p

Now we would like to show that the three linear maps induced by

= Tpap

ﬂ’nﬁE I
FLS - S|’|’1 h[O,l),I”nE = hp g }

hJZ’JZ,HnE g h'l|i’E/

(5 . S”,z g S, ﬂIlnE L },

2
I heven = hIJ’_,E’

xS - Si h[O,l),IlnE = 1]IimE’ }
hoaa + hIJ’_,E’

are isometries.

Claim. J, Ii exists, 1 |’|, I.J ﬁ are E’-dominant, and for

T=S T=S
[SE [E2
{ I=F and { F=9

and f €T, i€ {—1,1} wehave

7O iy = |71
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Assume the claim holds. Then S|’I 1 S|’| 5 S are each nested sequences because for

T = I|’|, 1, Jﬁ we have [(T') c E’. Also note that

Supp(h[o D, IHnE) C ﬂlllnE({l})’
Supp(h12 J2 ”nE) C h[o D), I”ﬂE({ 1 }),
supp(Aeyen) C ]]1 nE({ s

and the same holds true for their images under & and & respectively. This means by the
claim and Lemma that #, & are isometries. Furthermore

h[O,l),IlnE = h[0,1) : ]]IL,E’
hoga = hpo,1y - h

even

which implies that also #is an isometry since & is one. Now and follow from
(79) and (80) because .S 1, and S” , span orthogonal spaces. Thus it suffices to prove the
claim in order to finish the proof of the proposition.

Proof of claim.
— b,
=, =1=2|Ji[ = 1] (81)
il =1-111=1=I)] =] (82)
I N El=|(J;nE)YU(y  nE)| =pli| +plda| =plI|=plI[|=|I]nE|
(83)

roves the claim for . also contains that 1S £’ -dominant and that
@3 p hl'fﬂlmE@l i hIi'E’d i d th
|I||nE|:|E|—|IlnE|:|E’| |I’nE’|—|I’nE’| (84)
(84) proves the claim for 1 1yng- And since b > p we have
|I|||:1—|IL|:1—2|J1|,
[IyNE|=|E[-|I.NnE|=>b-2p|Ji| 2 plI}]
so that we get by (81)) and (84) that 1) " is E’-dominant.
Recall that J; is most antlparallel to [0, E) w.r.t. [0, b—l) and that b; > p. Hence
[\ El = =p)|J;| =3 — b =[0,2)\ E| and thus [0, 3) \ E C J,. Therefore
LS nE=(0,5\7)nE=[0,\7=1,n10,3) =10, 1\ 7
||ﬂ[,§)ﬁ _([’E)\ 1)0 —[,5)\ 1= ||ﬂ[,§)—[,§)\ 1>
(85)
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ll_bl—lbl_p
21-p 21-p°

1 1
= |I,n[0,=)NE|==
1y n10.5) N E| = 3

Now since T |’| and I |’| N E’ are intervals with the same left boundary, |1, |’| NE'|is E'-
dominant and p > %, we have

li i ! 1 b 1 1
|I(I||)0E | = |I(I”)|=§(1— pl)=|1||ﬂ[0,§)|=|I||ﬂ[0,§)ﬂE| (36)

1—
so that by (1)) and (86) also
, 1
[Tl = [1 N [5, DI (87)
Furthermore

1 1

and by (81)),(84) and (86) we have
=|[[nE'|-|IIPNE'|=[xI)NE’| (88)

and (88) prove the claim for A ;. InE-

Now to hy, Ty ynE- Note that (1 |’|) and v( |’| )N E’ are intervals with the same left
boundary. Therefore when considering (76)), and ((78), it suffices to find an interval
Ji Cx())y with |J; 0 E'| = |J, 0 E| and || = |J5;|- And since J, € Ij n 5D,
the existence of such an interval J| ﬁ follows from and (88)). So the claim also holds

for hJZ’JZ’”nE.
For h,,., we have by (83) that

supp(heyen) = [J1NE|+ Iy NE[ =, NE| = |IJ’_ NE'| (89)
and by (82) that
—1 1 1 1 1 ’ -1
|heven({ =11 = §|J1| + §|J2,¢| = §|I¢| = §|Il| = hli,E'({_l})' (90)

(89) and (90) prove the claim for A, O
The claim is proven and thus so is the proposition. ]

Proof of Theoremd.7| By Proposition it suffices to consider the case that for each
i the sequence K;, K;,, ... has length 2 and K;; C I(J;), K;, C t(J;). Furthermore

abbreviate
So = {agl=1,1),a[0, 1), a I, a1, ... }.
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Then for each i = 1,2, ... with || Fg(So)ll 12y, = O take S = {b;J;, ¢; K;, o Kjp }, s0
that S is the subset of S that consists of all elements contained in Ji. Then Fp(S\ S;)
and F E(S ;) are orthogonal. That means by Lemma|A.9|that S\ Sy or.S; hasa smaller
ratio 2 than S. Therefore it suffices to prove Theorem

for those .S where foralli = 1,2, ... we have

for each S 7, instead of .S, and

I Fe(S)Nl 205, > O, O1)
which by the way implies for j = 1, 2 that also
IFECSON L2k, > O (92)
For the proof for .S , note that
Sy1 = {bilyne —cnKin },
Sy2=1{bl e cnKin}
are orthogonal and we have by Lemma that

Ap(Sy) = Ap(S;1US; )
Bg(S;) = BE(S;1USy )

so that by Lemmait suffices to consider S; | and S , separately. And from Lemma
it follows that for j = 1,2 we have

By, ([-1, 1,10, 1)) . Bg(S;, )
App([=1,1,[0,1)) ~ Ap(S; )

which, after adding the remaining intervals of [” with coefficient O to the left hand side,
finishes the proof of Theorem.for Sy, instead of S.

Thus it remains to consider such S which for i = 1,2,... satisfy @P from now
on. By Proposition applied to [0, 5), there are E, a’/ e R, T 1’ C [0, 5) such that

1
So = {ag[-1,1),a[0, 1),a} 1]} is E-dominant and

AE(SO) = AE(S()),
Bi(Sy) < BE(S).

Then by Proposition #.9 we have

B, (=1, . [0, 1)) - B(Sy
Ay (=1 D10, D) ~ Ax(Sp)
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Now rescale the coefficients in S in such a way that

B(Sp) = By, ([-1, 1, [0, 1)). (93)

BE(*STO) Bg(Sp)
Ap(Sy) — Agp(Sy

AE(Sp) < A (=1, D, [0, D). (94)

(©3) and (94)) also hold if we replace [0, p) by some E’ with

Then since we have

E'| = p, 0.3 CE" 95)
Due to (93) and since for i = 1,2,... we have (9] and % >p>2p—-1=
1 DHnE’ l

|[2|[1)T)| l, we can take an E’ with and disjoint J, Jz’, ... C [%, 1) in such a way that
fori’ =1,2,... we have

LJIHNE'|  1J)nE]| ltJDNE'|  |x(J)NnE]| (96)

LEA] MEA e(J))] [e(JDl
1Fg: (=1, D10, D)2y = eSO 97

Due to (97) and since for i = 1,2, ... we have (92) and (96), we can redistribute E’ on
[(J}) and x(J}) respectively and take K/, C I(J/) and K/, C ©(J}) in such a way that
for j = 1,2 we have

LK) N E'| B [LW(K;) N E| (K N E'| B [t(K;j) N E] 98)
|I(K,-/j)| |I(Kij)| , |Y(K,~/j)| |r(Kij)| ,
1 Fpr (=1, D010 D)Wz ) = IFECSO o (99)
Now (©7) and (99) further imply
|K/;NnE'| |K;nE]|
- = . (100)
|J/ NE’| |J; N E|
Now fori = 1,2, ..., (96) and imply that when we take b; such that
16}y 115 = Nbshy, 5, (101)
and with the sign of b; times the sign of F¢(S,) on J;, then
<bl{hJi,,E” FE’ ([_1’ 1)7 [O’ 1))) = <bthi,E’ FE(SO)> (102)
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Similarly for j = 1,2, (98) and (99) imply that when we take ci’j such that
lefjhi 0115 = lleh, £l
and with the sign of ¢/ ; times the sign of Fg(Sy) on J;, then
<c;jh,<;j £ Fe ([-1,1,[0, 1)) = (cijhi,, b FE(SO))-

Now by (96)), (98), (100), (101)), (I03)) and the choice of the signs we also have

! ! —
<Cithi’j,E" b; hJ/,Ef) = <Cijh1<,.j,E» bihy, g)-

Now using (93), (I01)), (102), (103), (T04), (103) we get that

Fp(Sp) = Fp:([=1,1),10, 1)),
i:1,2,...,j:1,2 : bthi,EHbi,hJ-/,E,’

!’
cith,-j,E = C[thi’j,E'

induces an isometry. So with

S'={[-1,D,[0,D} u{bjJ],b)J;, ...} u{c/ K/, c K |i=12,..

and recalling (94)) we have

/

Ap(S") = Ap/([-1,D,[0, 1) + Ag, (b/J] /K], c, K], | i=1,2,...

> Ap(So) + Ap(biJ;, ey Kip, cnKpp | i =1,2,...)
= Ag(S),
Bp/(S") = B (Fp/([-1,1),[0, 1)), b}/, ¢/ K/\,c, K], | i=1,2,...)
= Bp(Fg(Sy), biJi, ¢y Kip, cnKip | i =1,2,...)
= Bp(S).

(103)

(104)

(105)

Now by Proposition it suffices to consider the case that J 1’ , J2’, ... consists of
only one interval J'. So we also drop the index i at the K's. It also suffices to consider
the case that K, K, are most antiparallel to [(J") and ©(J") respectively. After possibly
swapping [(J") with ©(J") and flipping the sign of 4’, it suffices to consider the case that

(JHNE'| _ JxJ)NE|
tnt — kWD

Now we apply Proposition to J' and

SI" = {2ﬂJ’nE”blh]’,E”C{hK]’,E”CéhKé,E’}-
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Note that 21 gy = 1 g/ + hyo,1), g7y - Proposition states that we may rearrange
E’ into some E, divide J’ into two intervals I |’| and I and replace S, by three nested

!/ / / .
sequences S||,1’ S||,2’ S with

Ap(S) = Ag(S] [ US] )+ AR(S)),

Bp/(S;) = BE(S| | US/ )+ BE(S)).

Furthermore S|’|’ ,and S |’|72 are supported on [ |’| and I'| respectively and we have 21 z, I €
SI,I,I’ ZHEnIi € S|’|71. Note, that

21]En1|’| + ZﬂEnli = 1]EnJ’ + h[O,l),EnJ’-
Now define

§ o= {[=1D,10.D} U (S) \ (201102 D U (S \ {21 1702)
= {[=1, D, [0, 1), I}, agyend |, €3}
Then using the remark after Proposition d.11] we get also for the original set
S ={[-1,1,[0,1),b'J",c|K],c;K}}
that

Ap(S") = Ag(S) + Ag(S)),
Bp:(S') = BE(S) + Bp(S").

By Lemma thereisa T € {§, S|} for which we have

Bp/(T) _ Bp(S)
Ap/(T) = Ap(S")

If T = S’ then T is already of the form that we can apply Theorem [4.1] to it and are
done. If T = S we first apply Proposition m to replace T by a single nested sequence
to which we thereafter can apply Theorem [4.1] O

5 On Question 1|

For E C [0, 1) and a set of intervals [ define
Hp()={h;g|I€l}.
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Proposition 5.1. Let [0,1) = E, U E; be a partition. Further assume n > 0 and that
E, and E, are unions of intervals of scale 2". Assume that |E;| > 0. Then there is a
partition & = Z, U D, such that H(Z) g, and H(2)), are Riesz basic sequences and

1g, & span(H, (2))).
However for any such partition we have

1 E, € span(H EO(SJZO)).
Remark. A few things about Proposition should be stressed:

e Proposition doesn’t claim anything about the constants of the Riesz basic se-
quences.

o If for some i we have |E;| = 0, then E;_; = [0, 1) and we can answer Question
affirmatively by setting &; := @ and 9, _; := 9. Furthermore if | E;| = 0 then no
matter how we choose &; C & we have 1 = 0 € span(H g (2))).

e Hence |Ey| > Oand | E;| > 0hold for any interesting partition [0, 1) = EyUE;. In
that case Proposition[5.T|says that it is not possible to get a partition & = P, U 2,
with

15, & span(H g, (Zy)),
1p, & span(Hp (2))),

but we always have the two options

1, € span(H g (2))), and 1k, & span(H g (2))),
Tg, & span(Hg (2))) 1g, € span(Hg, (2)))

The case

1k, € span(H g (Z))),
1k, € span(H (<))

is not very desirable, also because if we also want to add [—1, 1) to &; for some i,
then we need 1 E, & span(H E,-(Di))-

e The partitions are not unique. There are choices being made in the proof so that
there actually are exponentially in » many such partitions.
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Proof of Proposition If for some i a dyadic interval I is contained in E; then we have
to put / into 9,. Hence all the intervals I of size 27" and higher are already distributed
into &, 2, and for all such I € &; hy . = h; is orthogonal to all other restricted
Haar functions. Hence it suffices to find a partition of the finite set of dyadic intervals of
size at most 27", That means being a Riesz basic sequence just means being a linearly
independent set.

We proceed by induction on n. First consider the case n = 0. Then E; = [0, 1) and
we must have 2, = 2. Then &), 2, are Riesz basic sequencesand 1z =0 € span @ =

span(H E, (D).

Now assume the proposition holds for n > 0 and let E, E| be unions of intervals of
size 27D If we have | Ey| = O then we are back to scale 20, Otherwise fori = 0, 1
define

1
Egi =10, 2)N E;,

1
El = [5, 1) N El"

1

Then for any j,i = 1,2, E i translated and dilated to [0, 1) is a union of dyadic intervals
of size 27".
We first show the existence of a partition 2, U &, of & into Riesz basic sequences
with
Tg, & span Hg (2)).

Since we have |E;| > 0 and already handled the case |E,| = O, it suffices to consider
the case

| Egol > 0, |E{ ] >0

after possibly swapping [0, %) with [%, 1). Then by inductive hypothesis there are parti-
tions

DoV Dy ={I C [0,%) | I € 2},
DDy ={I 31| €D}
such that for all j,i = 0, 1 the set H El_(@ j,-) is linearly independent and
H[O,%)nEO & span(HEO(QZOO)), (106)
ﬂ[%,l)nEl & span(HE1 (911)). (107)
Define

Dy = Do U D19 U {10, D},

64



91 = 901 U 911.

Now for i = 0,1 the set Hg (Zy; U 2y;) is linearly independent. Hence Hp () is
linearly independent. Its span does not contain 1 because of (107). H £,(Z)) 1s linearly
independent as well because of (106)).

Now we show that for all partitions &, U &; which are Riesz basic sequences with

Tg, & span Hg (2)) (108)
we must have

g, € span H, (Z). (109)
Fori =0, 1 define

1
Dyi=1€2;|1C[0,2)F,
0i { i | [ 2)}
1
D= 1€, |1cC[z]1);.
Li { i | [2 )}
Then for j,i = 0, 1 the set Hg (2);) is a Riesz basic sequence. Due to (I08), one of
Vo, ng, & sPan Hg, (Zo), (110)
ﬂ[%,l)ﬂEl ¢ SpanHEl(gll) (111)
has to hold. After possibly swapping [0, %) and [%, 1) it suffices to consider (ITT)). Then
by inductive hypothesis we must have

1][%71)0E0 € span Hg, (2)). (112)

Now if [0, 1) € Z, then (I09) follows from (T12)). If [0,1) € D, then (108) requires
(110) to hold as well, which by inductive hypothesis implies

H[O,%)ﬂEO € span Hg, (D). (113)

Now (I12) and (I13) imply (109). =

A Elementary Lemmas

This appendix consists of a bunch of lemmas that are used in this thesis. They are put
here instead of into the main text for the following reasons:

e Some lemmas are used many times and throughout large parts of the thesis.
e Some lemmas hold in a more general setting than in the setting of the thesis.

e Some lemmas and their proofs are not very interesting or surprising.
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A.1 Lemmas on Inner Product Spaces

Some lemmas do not only hold in the setting of restricted Haar functions but also more
generally in the setting of a vector space with a scalar product. We list these lemmas in
this subsection.

Lemma A.1. Let v, ..., v, be vectors such that for any i # j we have
(v;,0;) <0

and a, ...,a, € R. Then

n n
2 2
1 alv > < 11 ) a1

Proof.
n n n
2 2 2
I Z a;v;||” = Z a;av;,v;) = Z a; |l ll” + Z a;a;{v;, ;)
i=1 ij=1 i=1 i#j \?I)—,
n B n
2 2 2
> Y o, Pllvll + ) laga (v v) = 11 ) el
i=1 i#) i=1

O

Lemma A.2. Let F and G be Riesz basic sequences that are orthogonal to one another
and with constants ¢ and c¢;. Then F U G is a Riesz basic sequence with constant
max(cp, ¢g).

Proof. Leta € I*(F U G). Then

> a,lP =Y Mg+ ) la,

veFUG veF veG

< max(ep cg)ll )] avll? +11 Y a0l

veF veG

= max(cp, cg)l| Z a,v + Z a,vl?

veF veG

O

Lemma A.3. Let F and G be Bessel sequences that are orthogonal to one another and
with constants ¢y and c;. Then F U G is a Bessel sequence with constant max(cp, cg).
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Proof. Let u be a vector in the surrounding space. Denote by 7z and 7z the projections
onto span F and span G respectively. Then

Y (v =Y () + Y (v.u)?

veFUG veEF veG
= Y {mpw), v)? + ) (W), v)?
veF veG

< max(cp, ¢g)(||zgW)1* + llzg@)|*)

< max(cp, cg)|lull?

Lemma A.4. Let u, v be vectors and v # 0. Then the infimum over a € R of
lu + av||?
18 attained at

_ wo)

loll?

Proof.
2 2 2 2
llu + avll” = llull” + 2alu, v) + a”||v]|

is a second degree polynomial with positive leading coefficient which attains its infimum

(u,0)
ata = — . ]
llol|?
Lemma A.5. Let u, v be vectors with ||u|| = ||v||. Then the infimum over a € R of
llu + av||?
[lull? + llav]|?

1s attained at
a = —sign{u, v).

Lemma|A.5{applied to the setting |[0,3) N E| > |[5, 1) N E| and u = 1 v =

[0.1)nE
hio,1),g Was the first idea to Proposition It also already proves it for the case a; = 0.

The observation that sign{u, v) = —1 and 1g + Ay ;) g is supported on [%, 1) then led to
the role of Proposition 4.9]in the proof of Theorem

Proof. By scaling it suffices to consider ||u|| = ||v|| = 1. Then the fraction is equal to
1+ 2a{u, v) + a* a
=1+2(u,v .
1+ a? (. 0) 1+ a?
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If (u,v) = 0 then any choice for a works. Now consider (u, v) # 0. For |a] — oo we
have —— — 0 while for a 2 0 we have — 2 0. That means the optima will be attained

1+4a2 14a2
at
2 _ 5,2 _ 2
_0_a _l+4a 2a __l-a — ae(-1.1}.
dal+a®>  (1+a>?  (1+a%)?
Note that of the two the infimum is attained at a = — sign{u, v). ]

Lemma is only used to prove Lemmal[A.7

Lemma A.6. Let u, v, w be vectors and u L v and v 1L w. Then

sup |<I[u,av+bw])| = |<I[u,w]|.
a,beR

Proof. 1f v = 0 then argument on the left hand side is constantly equal to the right hand
side except for b = 0. If w = 0 then both sides vanish. Hence it suffices to consider
[lo]l, lw|| = 1. Furthermore because the argument on the left hand side vanishes for
a = b =0, it suffices to consider a* + b*> = 1. Then

|<t[u, av + bw]| = |auv) + b{uw)| = |b{uw)|
which is maximal fora =0, b = 1. ]

Lemma A.7. Let E C R and supp(f) C E and g be dilate and translate of f such that
supp(f) and supp(g) are disjoint subsets of E. Then for all v € span{ f, g} we have

sup |<I[1]E’af+bg]| = |<[HE’f+g]|-
a,beR

Note that Lemma[A.7|can be extended inductively to sets of more than two functions
that are disjointly supported translates and dilates of one another.

Proof of LemmalA.7] First note that

f g
f+s, R—
A5 llgll;
are orthogonal and span span{ f, g}. W - # is orthogonal to 1 since
2 &l

/8 supp(g) Igll3
g g) = =— (g f) = T, f)= g f).
(e = [ 5= 750000 = 20000 1) e

Therefore by Lemmal[A.6 f + g optimizes the supremum. ]
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Lemma A.8. Let E C [0,1), S ¢ L*(E) and let u,v € L*(E) be orthogonal to one
another. Then

AE(S U{u+ U})
FE(S Uf{u+ U})
BE(S Uf{u+ U})

Ap(SU{u,v}),
Fp(S U {u,v}),
Bg(S U {u,v}).

Proof. The equality for Fis evident from the definition and implies the equality for B.
For A it follows from ||v+u||§ = ||U||%+ ||u||%. O

Lemma[A.9]is a corollary of LemmalA.24]

Lemma A.9. Let V| and V, be two sets of vectors where ZUGVl v and ZveVz v are or-
thogonal. Then there is ani € {1,2} with

2 2
I 2per, vll3 < I 2Zvev,ur, vl

2 = 2"
2oy, 1017 2per,um, V113

Proof. Lemma[A.9]follows from

1D wl3=1 D vld+1 ), vl3.

veV UV, VeV veV,
2 2 2
Yooz = Y el + Y ol
veV UV, vevV) VeV,
and Lemma O]
Lemma A.10. Let V' be a finite set of vectors to all of which u is orthogonal. Further
assume
2 2 2
e+ ol < el + ) ol
veV veV
Then

2 2
” ZUEVU” < ”u + ZUEVU”
Zoer oz T > + X e llvll?

Lemmal|A.§and will often be used in conjunction: First a function f € S will
be orthogonally split into f = u + v, of which u will be orthogonal also to all other
functions in S. Then { '} can be replaced by {u, v} in .S by Lemma[A.§] after which u
can again be discarded using Lemma[A.10] That means f has been replaced by its part
v that is more (anti-)parallel to the other functions in .S.
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Proof of Lemma By orthogonality we have

2 2 2
e+ D ol = llall>+ 11 Y, oll

veV veV

so that the assumption of the lemma implies

| Zoer vl _ | P
Zoev ol = lull?
Then Lemma follows from by Lemma|A.9|applied to V and {u}. [l
Lemma A.11. Let |[u|| = ||v||l, =|lu|ll|v]] < {u,v) < 0 and |a| > 1. Then there is a
b>0s.t.
llu+ avll* = |lu+ vll* + l|bu + bv||*. (114)

Furthermore for any such b we have
llavll* < [[oll> + l|bull® + [|bv]|. (115)

Proof. Since —||ul|||v]| < (u, v) implies |[u|| > 0, it suffices to consider ||u|| = ||v|| =1
after rescaling. By Lemma(A.5|and |a| > 1 we have

2 2
2wl + o]l

2 2
< Tl e+ I’ < el

llu+ vl

This means that a b that satisfies (TT4) exists, because by (u, v) > —1 we have [lu+v||> >
0.
Write x := —(u, v). Then (114) reads

1-2xa+a®>=1=-2x+1+b*1=2x+1)=2(1-x)(1 + b?)

and we have to show

a® < 1+2b%.
Now
_ 2
1+2b2—az=2(1+b2)—1—az=112’6—“”—1—612
- X
_1=-2xa+a*—1+x—a*+adx
1 —x
_ —2xa+x+a’x
N 1 —x
12
1—x
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A.2 Lemmas on Restricted Haar Functions
Lemma A.12. Let f, f',g,g’ : [0,1) - {—1,0,1} with suppg € f~'({1}) and
suppg’ C f'~'({1}) and
| supp f| = | supp f'l,
lg'd1p] = |g' ),
lg7'{=1D] = &' d=1D).

Then the linear map induced by

f=rf
floio [y,
fﬂf=_1 = f,ﬂflz_l,
gr g

glg_i — &' Tyt
gle—1— g Ty
1s an isometry.
Proof. straightforward calculation. [
Lemma can clearly be extended to sets of more than two functions.

Lemma A.13. Let p € [%, 1) and I be an interval and E C I. Then there are unique
Ey, I, with E; C I, |E;| = |E| and I is the most p-antiparallel interval to I with
respect to E I Furthermore for all £, p-dominant J C I we have

<[ V0, P o] < <[Vep-hry iy | < <[Vehy gl (116)
Remark. Here are some examples of most antiparallel intervals:

e If [} is most antiparallel to some interval I w.r.t. Eand Iy C J C I'then I is also
most antiparallel to J w.r.t. E.

e [is most antiparallel to I w.r.t. E if and only if I and E N I are intervals with the
same left boundary and |I N E| = p. In particular [0, 1) is most antiparallel to
[0, 1) w.r.t. [0, p).

Proof of Lemma We first prove the existence of a most antiparallel interval I;,. For
that it suffices to consider the case that I = [0, |I|). Now set E; = [0, |E|) and

[0, LE]) |E| < plI|
Iy =9 11EDl] -
[l——p’lll) |E| > pl1|
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For |E| < p[I| it is evident from the definition that I is most p-antiparallel to I w.r.t

E,. For |E| > p|I| we have % > 0 and |E|]__Z|I| < |I|]__pp|1| = |1I|. Also

710 —p) - (EI=plID _ I~ |E|

|I|||= >
1—-p 1—-p
E[(1-p)—(E|-plI I|-|E
1501yl = pale 7l D:pﬂﬂ_ll):mﬁw

Hence 1 is most antiparallel.

E) is clearly the unique interval contained in I with the same left boundary as I
and |Ey| = |E|. I} is the unique most antiparallel interval to I w.r.t. E;, because I =
E U (I \ E)) is an interval partition and the definition of being most antiparallel fixes
[L(I) N Ey| and |x(1)) N E|.

Now we prove the first inequality in (116). First calculate

(P—%)|I|||—%|I||| _p—1 VIl
Vel VIE)] VP VIET

The same calculation holds for E” = [0, p), I | = [0, 1) so that

Vet | =

p—11
<[V, Pro. o] = W%'

Now
1
il <plrl s Sl L
|E||| p
J | 11(1—p)—(| Ey|—-pl 1) 7 E M 1 1
|Ey| = plI] : Il _ L Ll L TR R §
- |E||| |E||| (1 —P)|E||| l-p " 1=-p »p

This proves the first inequality.
Now for the second inequality in (T16) let E, C I, |E;| = |E| and I; be most
antiparallel to I w.r.t. E}. Since J is E-dominant we have

lt(J) N E|

MDA EL S 5,1
WHnE =P~

and it suffices to consider the case

lt(J) N E|
1L(J)N E]|
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since otherwise < [1] e h, E] > 0. That means there is a partition

such that

(D0l je()nd | [x(D)NnJ NE|
O DI DN JnEl

le(J)NnJy N E]|
l _
=2p—1,
[L[(JHnJynE|
|Jy N E| = plJyl,

and |J;| > 0. Now we have an orthogonal decomposition
hy = hyens 1y Eas,

where h; pny, is orthogonal to 1. Thus because <I[1]E, hLEnJ”] < 0 we have

<1 by pns] < <[1e hy gl (117)
Claim.
|yl < [l
Proof.
[y nEl _|E|
|E] < plI] : | = ——<— =11,
p 4
I\ El 1] - |E]
|E| = p|1] : |yl = 1 < = 1]
p l-p
]

By the claim we may take D C E \ J; such that

Iyl 1yl
|[E\ DI |EI

Note that the definition of most antiparallel implies that I(I})) C E. So

HnanEl TV T )0 Bl
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and we have by Lemma that

<I[“E\D’ hJ,EnJ”] = <I[T]EH’hI”,E”]- (118)

Now because (I18) < 0 and 15 = Tpg\p + 1p is an orthogonal decomposition and
1pl hJ’EnJ” we get

<1, hJ,EnJ”] > <[1p\ps hJ,EnJ”]' (119)

(T17), (118) and (I19) prove the second inequality in (IT6). O

Lemma A.14. Let E C [0, 1) and .S be a compatible E-dominant sequence with
[—1,1) € I(S). Then there is an E’ C [0, 1) and a compatible E’-dominant sequence
S’ with [—1,1) ¢ 1(.S) and

Bg/(S")  By(S)

Ap/(S")  Ag(S)
Proof. By rescaling it suffices to consider the case that the coefficient in front of [—1, 1)
is 1. Then let E| be E translated and dilated to [0, %) and £, = E| + % Define S, S,
similarly, applied to S\ {[—1, 1)}. Further define E' = E, U E, and S’ = {[0,1)} U
(=S87)U.S,. Then

AR(S) = SAL(S) + 3 AE(S)

= 115,115+ Ag, (S + 15,115+ A, (Sy)

=l =15, + 15,15+ A, (=S) + Ag,(S)

= Ap/(S")

Bi(S) = 3B(S) + 3 Be(S)

=115, + Fg,(SDI5 + 115, + F,(SHII3

= = 1g, — Fg,(SDI5 + g, + Fe (Sl3

== Vg, — Fg,(SD) + Vg, + Fp,(SH)lI3

= Bp/(S")
Also, [0, 1), 1(S)), I(S,) are all E’-dominant. [l
Remark. The proof shows that if 1(.S) C 9 then we can also take I(S’) C 9.
Lemma A.15. Let p € [0,1]. Fori = 1,2,... let E; C [0,1) and let [; consist of

hy E;
A gl
with maximal constant at most % Then there is an E C [0, 1) and a compatible E, p-

compatible E;, p-dominant intervals so that {

| I €1,} is a Riesz basic sequence

hr g

dominant [ C & such that {
7y Ell2

| I €1} is not a Riesz basic sequence.
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Proof. By Lemma|A.14|it suffices to consider the case [—1, 1) € [; so that all intervals in
I; are contained in [0, 1). Then let E and [ be a disjoint union of translates and dilates of
E, E,,...and [, ],, ... respectively. For example work with dyadic numbers and define

E= ] 0L.1+27E,

i=1,2,... i — 1 times
1= 0.1..1+27,
i=1,2,... i — 1 times

Then [ is compatible and E, p-dominant, and for all i = 1,2, ... the maximal constant

h ) i )
of {” h"E” | I € I]} can be at most %, because it contains a translate and dilate of
1,EII2

hy g . . .
{ T [‘E’” | I € I]i}. Hence the maximal constant has to be zero which means that it is
1,E;112

no Riesz basic sequence. O]

Lemma A.16. Let I be an interval, 0 < by, b, < 1, b:= 22 and E ¢ I with [[(]) n

E| =b{|l(D)|, |x(I) N E| = by|x(I)|. Then the infimum over a € R of
||1]E+ahI,E”%

is attained at

by — by
a = Quip = T
Furthermore if b > 2 then for all |a] <1 and
{ I =x(I) and 1 =)
there is an a’ with the same sign as a and |a| < |a’| < 1 and
10+ ahy gl 3o, S We+ahy gl (120)
11+ ahy g3 = 11p+d Ay gll5. (121)

Proof. By translation and dilation it suffices to consider I = [0, 1). Then the value for
a where the infimum is attained follows Lemma[A.4l and

||h[0,1),E||% = |E| = b,

by — b,
(Mg, hjo1ye) = T

For the second part, the changes I; < I,, a = —a and b; < b, all have the same
effect. Hence it suffices to consider the case I} = (), I, = (/) and a > 0.
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If b; < b, then (120) and (I21)) hold for a’ = a. It remains to consider b; > b,.
Rewrite a = a,,;, + € and @’ = a;,, + 6. Then

|11+ a,h[o,l),EHZLz([%’])) —|[Tg+ ah[O,l),Ellsz([o’%))
= %[1 +an, + 617 — %[1 T
_ by(2b+ by — by +2b6)° by (2b— by + by — 2be)?
) (2b)2 2 (2b)2
by (2b; +2b5)* by (2b, — 2be)?
T2 @bh?2 2 (2b)?
(by = by)b by + 2b,byb(6 + €) + b*(b, 6% — by€?)
= s (122)

We set 6 := |g|. Then (121) holds because x — || 1 g+xh;, E||§ is a quadratic polynomial
with minimum x = a,;,. Also a’ > a,,;, > 0. Fore > 0wehavea’ =a < 1. Fore <0
we still have a > O i.e. € > —a,,;, so that 6 < a,;, and

by
b, —b b, —b T b
a’SZamm:ZI 2 _,217 % by
2b b1+b2 1+ﬁ
by
1
1 _ B B 2

< (2b 1):22 2b:21 bszi_l.
1+2b-1) 2b b 2
3

Because b; > b, the choice § = |e¢| makes (122) a quadratic polynomial in € with
negative leading coefficient, in the domains € > 0 and € < 0 each. Thus in order to
ensure its positivity we only need to check it at the boundaries of the domains, which

are at e = —a,,;,, € = 0 and € = a,,;,. Of the three summands in (122)) the first does
not depend on ¢, 6. The second one vanishes for 6 = € = 0 and 6 = —¢ = qa,;, and is

positive for 6 = € = a,;,,. The last one vanishes for 6 = € = 0 and is equal and negative

for6 = € = a,;,, and 6 = —¢ = a,;,,. Thus it suffices to consider 6 = —¢ = a,;,, because
(122) is minimal there. If b; = b, then (122 = 0. Otherwise

2 2
2b° 122) 2 2 (b —by)? 3 BB
by — b, :blbz_bamin:blbz—T=§b1bz—Z_Z
3 1b b
=bb - (= 4+ —
bl = 3G, )
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. . . b b by . .
and since 0 = %(i +x)= —% + 1 < 0for x < 1 we maximize b—l + -2 for b—2 minimal.

2 by 1

Sosince%22b—l>§—1=%weget
1

3 1 1
Z blbz[z - 1(3 + g)] = blb2 - = ——] = b1b2

]

Lemma A.17. Let p > %, E C I be intervals with the same left boundary, |E| = p|[|
and J C I with |J n E| = p|J| and a,a;,a; > 0. Now if

) 2
lashy gl = llarhr gll;

then
2
L2(x(J))

2

||a1]E+aJhJ,E” Lz(r(l))

<llalg+azh; gll
Proof. The assumption |J N E |a3 =|INE |a§ implies
|J a5 = |I|a3
which by |J| < |I] also implies |J|*a5 < |I|*a7 and thus
|Jlay < [1lay.

Therefore

2

_ 1 2
llal g + aJhJ,E”Lz(r(J)) =|J|(p - 5)(0 +ay)

1

=(p- E)(|J|a2 + 2|J|aa; + |J|a3)
1

<(p- 5>(|I|a2 +2|Iaa; + |I|a7)

= |lalg + arhy gll 20y
OJ

Lemma A.18. Let E C J C [ be three intervals with the same left boundary and

|E] > %lIl. Let 0 < a < ay. Then there is an (a,,,,, /) Where a < a.,. < ap,

J C J. C 1, and J,, also has the same left boundary as I and with

2

2
”aOﬂ E + amaxh.f L2(x(D))

maX’E”Lz(r(I)) = ||aOﬂE + ahJ,E”

and
||00“ E + amath

max>
=1

2 2
ell; < llaglg +ahy gll;

and where a,,, = ag or J .«
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Proof. If ay = 0 we may just keep a,,, = a =0, J .,

rescaling it suffices to consider a, = 1. Then note that

:= J. Otherwise if a; > 0 by

/] 2
L2(x(1)) = (- 2|E|)(1+ a°,

/] /]

||1]E+ahJE||2 2|E|( —a)’ +(1—TE|)(1+ a)’.

|E|”" £+ ahy gl

IEI

Now Lemma allows us to increase a and extend J to the right in such a way that
I1g+ahy E”L2 () ST constant and || 15 + ahJ’Ellg decreases. We do this until one
of the bounds a = 1, J = I is reached. [

A.3 Calculations

Some statements in this thesis can be seen as results of simple calculations. We list most
of these calculations in this subsubsection.

Lemma A.19. Let f : [0,1] — R be continuous and midpoint convex, i.e. for all
x,y € [0, 1) we have

FO+ Q) <x+y>

— 2 2 f

Then f is also convex, i.e. for all x, y,t € [0, 1] we have

tf)+A=0f(y) 2 fx+ 1 -Dy).

Proof. Assume f is not convex. Then there are x, y,t € [0, 1] with

tf)+ A =0f() < ftx+ (1 =Dy).

Since both sides are continuous in ¢, there is an interval I > ¢ such that for all s € I the
above strict inequality holds for s instead of 7. Let J be the union of all such intervals
1. Jis also an interval. At the endpoints of J the strict inequality cannot hold anymore,
for then we could extend it even further by continuity. Hence we may write J = (¢y, #1).
Since for s = 0, 1 the inequality does not hold, we have {f,,#,} C [0, 1]. By continuity
we must have equality for s = ¢, ;. Therefore

Jox+ A =19)y) + fx + (1 = 11)y)
2
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. to+t
and since % € J we have

th+1t fn+1
<f<02 Sx (1= 02 l)y)

_ f(tox +A=t)y+t;x+(1 - tl)y)

2

which means that f is not midpoint convex.

Lemma A.20. For c_ + ¢, > 2 and ¢ € R we have

Lm0 o () s cotey 1 (ep—c)

_ C cC— X = - =
xeR 2 2 +

2 2c,te -2
_2c+c_—(l+c)(c++c_)+20
B c,+e_—2 '
Proof.
1-x)? 1+ x)°
( 2x> o +2x> e
c, +c_ c, +c_
= (= —1)x2+(c+—c_)x+(+ -c)
2 2
2
c,+c_ c, —cC_ c, —cC_ c_+c
= (F——-D(x+— )2—1(+ L~ *
2 c_+c -2 2¢, +c_—2 2

whose minimum is

c_tey 1 (c+—c_)2

2 _§c++c_—2_c'
Now multiplying this by ¢, + c¢_ — 2 yields

%(c_+c+)(c++c_—2)— %(c+—c_)2—c(c++c_ -2)
=2c,c_— (1 +c)ep +c_)+2c.

]
Lemma A.21. Let 1 < b < a. Then for all x € R and ¢q;,¢9, € [0, 1] and q := % we
have
(1-x’a-q  (+x°a-g a-q_ ,
2 b-gq 2 b-q b-q”
Proof. Abbreviate
ap=a—q B =a—q
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by =b-q by=b-q,
Then we have to check that
1-x)* 2 +
d-x7a d+x)7a 4 2 _2s0
2 b 2 b, b +b
Since a; > by > 0 and a, > b, > 0 we may invoke Lemma[A.20] for that, which implies
that it suffices to confirm the positivity of
+a +a
2 aap _ ( ap 2)(_ _) ap 2
b,b, by + b, by bl + b,
_ 2a1a2(b1 + bz) - (bl + b2 + a + az)(albz + azbl) + 2b1b2(a1 + az)
biby(by + by)
alaz(bl + bz) + blbz(al + az) - a1b2(01 + bz) - a2b1(02 + bl)
biby(by + b,)
a]azb] + alazbz - ala]bz - azazbl + alblb2 + azblbz - alb2b2 - azb] b]
b1by(by + b,)
(al - az)azb] + a](az - a])b2 + al(bl - bz)bz + azb] (b2 - b])
b1by(by + b,)

which since a; —a, =q; — g, = b; — b, is

=0
]
Lemma A.22. Lete > 0and p = % + €. Then the infimum of
a—1
b—1
under the conditions
a>b>1, (123)
2p—1la- -2p-1
p—la-p_a 2p-1) (124)

p b—p  b-(02p-1)
is
8 1

ﬁ_z_i_@( )

Furthermore

27¢ 9
b=1+%s

satisfy (123)), (124) and = . 1 81 2 +@( ).
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Proof. First we check that it suffices to consider the case of equality in (124)): Increasing

b decreases the right hand side of (I24)) less than the left hand side because p > 2p — 1.

At the same time it decreases g. Hence if the inequality in (124) is strict then we can

just increase b until it is not strict anymore. This will happen for some b < a, since for
a = b the inequality is reversed as 2p — 1 < p.
Now ((124)) holds with equality if and only if

(p—d-p)a-p a-p+l-p
p(b—p) b—p+1-p
= 0=p-U0-p)a-pb—p+1-p)—(a—p+1-p)p(b—p)
= p(a—p)(b—p) + pla—p)(1 — p) — (1 — p)a— p)(b— p) — (1 — p)*(a — p)
— p(b — p)(a—p) — p(b — p)(1 — p)
= p(1 —p)a—p)— (1 = p)a - p)(b—p) — (1 — p)*(a — p) — p(1 — p)(b— p)

dividing by (1 — p) implies

0=

— O0=pla-—p)—(a—p)b—p)—U—-p)a—p) —pb-p)
=pla—b)—(a—p)(1—p+b-p)
=—-ab+(2p—(1-p)a+p((l-p) —p)

2 .5 2
_(1_ S+ e+ 2¢

4= pPp—(-p) _3573
2p—(1—=p)—»b 1+3ec—-b

Thus having a > 0 requires b < 1 + 3¢. Plugging the result into % yields

a—1 s+3E+27-1-3c+b b—i-3e+2e
b—1  (b-D1+3e-b  (b-D1A+3e-b)

If € is small, and since we already know 1 < b < 1 + 3¢, we cannot influence the
nominator a lot by our choice of . Hence we minimize the fraction about where we
maximize the denominator, i.e. for

b=1+ %e + O(£?),
That means

2
a-1_ 5+0@© g1

- = G @(_)’
b—1 9.2 3 81 2 €
yiaias O(e’) €

2 5 2
—+§E+26 41

° = —~+0(1).

qg= —=
2e+ 062 e
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If we instead take

b=1+%s

we get the same result for Z:—i up to another O (%) and

_41.10 4
T 27¢ 9 3
and 4 1 1 1 4 1 11 8+2-1 1
—b=——-F+—-———€>—-34+—-——-== ——=—=>0
¢ 27¢ 797 6°727 779 63 18 2=
Lemma A.23. Forall x € [\/5, 2) we have
Z_XS2+X.
x—1 x+1
Proof.
2+x_2—x_(2+x)(x—1)—(2—x)(x+l)_2x2—4>0

x+1 x—-1 x2 -1 x2 -1

Lemma[A.24]is used here to prove Lemmal[A.9 and in similar situations.

Lemma A.24. Let a;,a; > 0, by, b, > 0and 7 < 22. Then
1 2

a a+a a
1.4 7h %

by ~ by+by ~ by

Proof. We have
(al + az)bl - (b] + bz)al = a2b1 - b2a1 Z 0

and thus
al + az a]
by+b, b
Similarly
((1] + az)bz - (b] + bz)az = a]b2 - b]az < 0
and thus

a1+a2 < a,

by+by, ~ by
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Lemma is the calculation that leads to Lemma

Lemma A.25. For R > 0 fixed, define

R
(1 +a)?

c(a):=1-

i.e. s.t. for all a > —1 we have
R=(1-c(a)+a)>
Then for all 0 < a < 1 with % < c(a) < 1 we have

4

» [c(a)(1 — a)? + (1 — c(a))(1 + a)*] < 0.

Proof. c(a) > Lis equivalent to
R 1

— < -,
(1+a)? ™ 2
2R < (1 +a)*.

Now

4

- [c(a)(l —a? + (1 — (@)1 + a)z] - d% [c(a)(l —a?+ R]

d%c(a)(l —a)?

=c'(a)(1 = a)* = 2¢(a)(1 — a)
=(1—a)[2 R R ]

Qrapl ~ 972 207
_ 1—61 [ _ _ 3
=25 s [RU-a-(+a +R(1+a)]
_ l—a T _ 3
=255 2R (1+a)]

1—a

(1+a)3
<0.

(14221 -1 +a))]
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B Notation

Fora € Nand b € NU {oo} a tuple (Fi)f:a we denote
{Fa’Fa+1""} = {Fg9-'-’Fb} = {E | a S l S b}

That means that even if { F; | a < i < b} is finite we sometimes write

{F,, F,.1,...}. In fact, most of our tuples will be finite but we usually don’t care
about how many members they have exactly, only that they are finite. For some
elements x, y, z, ... we write

x,y,z,... F, Fyrq, ...} ={x,y,2, ...} U{F, F,q,...}.

Similarly we write
Fa+Fa+1 +...= ZFI’

F,uF,u..=JF.

We do that so that we don’t have to introduce a variable for the length of a sequence
even though we don’t actually care about its value.

We write *positive’ when we mean 'nonnegative’ and ’strictly positive’ when we
mean "positive’. Similarly for ’smaller, greater,... .

’C’ means the same as 'C’

Whenever we assume a set E to be a subset of R we implicitly assume it to be Le-
besgue measurable. Since usually we only care about how E effects (h; g, h; )
for I, J belonging to a finite set of intervals [, by Lemma[A.12] we could even as-
sume E to be a finite union of intervals without reducing the strength of statements.

For a subset E C R we denotes its Lebesgue measure by | E]|.

Since we only care about subsets of real numbers in terms of integrals, we do not
care about measure zero sets. That means whenever we write words like “subset’
or ’disjoint’ we mean ’subset/disjoint up to measure zero’.

f(x) = O6(g(x)) means
f(x)

limsup | —=| < 0.
=0 &)
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Index

(E, p)-dominant, 3|

Ag(S),[6l 22
A, (r),[23]
A,.[23
By(5).[1 22
B,(r),[23
B,..23|
Fp(S),[6l22)
H(),[62

S, 6 22]

S, (), 23]
Se (M), 23]
U(s).33
2,3

(), [
r(1),[3]
arl[6]

f (), 0} [11]
£, 23
g(q).[7]
hy.[

hi e

p(D),

I](S)’

17, 23]

I,
MP,@

Hns 9]

Bessel sequence, [2]

compatible, [3]
convex, [7§|

frame, 2]

Haar function, 3]

midpoint convex, [7§|

most p-antiparallel interval to I w.r.t. E,[22]
nested, [34]

restricted Haar function, 3]
Riesz basic sequence, 2]
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