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Abstract

We consider the set of Haar functions {ℎ𝐼 | 𝐼 dyadic, 𝐼 ⊂ [0, 1)} restricted
to sets 𝐸 ⊂ [0, 1). We show that if 𝑝 > 2

3 and 𝐸 ⊂ [0, 1) then the set of all
functions ℎ𝐼𝟙𝐸 with |𝐼 ∩ 𝐸| ≥ 𝑝|𝐼| is a Riesz basic sequence. The proof can be
seen as an instance of the Bellman function technique. For 𝑝 ≤ 2

3 we provide a
counterexample. We further extend this result to a slightly more general setting
where for each 𝑝 we additionally formulate a guess for the optimal constant that
holds for all Riesz basic sequences. For certain sequences we prove this constant.
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1 Introduction

1.1 Setting
Riesz basic sequences Let 𝐻 be a Hilbert space and 𝑉 a set of vectors. Then 𝑉 is
called a Bessel sequence if there is a 𝐶 such that for all finite subsets 𝑈 ⊂ 𝑉 and 𝑢 ∈ 𝐻
we have

∑
𝑣∈𝑈

|⟨𝑢, 𝑣⟩|2 ≤ 𝐶‖𝑣‖2. (1)

Note that this is equivalent to asking (1) to hold for at most countable subsets. This in
turn is the definition of the analysis operator

𝑢 ↦ (⟨𝑢, 𝑣⟩)𝑣∈𝑈

being a map 𝐻 → 𝑙2 with bound 𝐶. This is the case if and only if the synthesis operator

(𝑎𝑣)𝑣∈𝑈 ↦ ∑
𝑣∈𝑈

𝑎𝑣𝑣,

the dual of the analysis operator, has bound 𝐶 as an operator 𝑙2 → 𝐻. This means that
the condition given by (1) is equivalent to

‖ ∑
𝑣∈𝑈

𝑎𝑣𝑣‖2 ≤ 𝐶 ∑
𝑣∈𝑈

|𝑎𝑣|2 (2)

If (1) and for some 𝑐 its reverse inequality

‖𝑣‖2 ≤ 𝑐 ∑
𝑘

|⟨𝑣, 𝑣𝑘⟩|2 (3)

holds, the vectors are called frame. If instead the reverse inequality of (2)

∑
𝑣∈𝑈

|𝑎𝑣|2 ≤ 𝑐‖ ∑
𝑣∈𝑢

𝑎𝑣𝑣‖2 (4)

holds in addition to (1), they are called Riesz basic sequence.

Example. Consider the case that 𝑉 is finite. Then

• 𝑉 is a Bessel sequence.

• 𝑉 is a frame if and only if it is spanning.

• 𝑉 is a Riesz basic sequence if and only if it is linearly independent.

Hence neither of the conditions given by (3) and (4) imply the respective other.
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Restricted Haar functions For an interval 𝐼 ≔ [𝑎, 𝑏) we write 𝔩(𝐼) ≔ [𝑎, 𝑎+𝑏
2 ) and

𝔯(𝐼) ≔ [𝑎+𝑏
2 , 𝑏). We denote by ℎ𝐼 the Haar function of 𝐼,

ℎ𝐼 ≔ −𝟙𝔩(𝐼) + 𝟙𝔯(𝐼)

and further denote
ℎ𝐼,𝐸 ≔ ℎ𝐼𝟙𝐸.

We call the latter a restricted Haar function.
We call two intervals 𝐼1, 𝐼2 compatible if they are disjoint or one is contained in one

half of the other. We call a set of intervals 𝕀 compatible if all 𝐼, 𝐽 ∈ 𝕀 with 𝐼 ≠ 𝐽 are
compatible. For example the set of dyadic intervals contained in [0, 1), which we denote
by 𝒟, is compatible. We will be mostly interested in the case of dyadic intervals, but
the compatibility of intervals is actually the only property we need. Note that for a set
of compatible intervals 𝕀, {

ℎ𝐼
‖ℎ𝐼‖2

| 𝐼 ∈ 𝕀} is an orthogonal subset of 𝐿2([0, 1)). A few
questions are even more easily answered in the setting of compatible intervals than in
the dyadic setting.

Let 𝑝 ∈ [0, 1] and 𝐸 ⊂ ℝ. An interval 𝐼 is called (𝐸, 𝑝)-dominant if |𝐼 ∩ 𝐸| ≥ 𝑝|𝐼|.

1.2 Main Result
The main result of this work is the following Theorem 1.1.

Theorem 1.1. 𝑝 > 2
3 if and only if for all 𝐸 ⊂ [0, 1) and compatible sets 𝕀 of (𝐸, 𝑝)-

dominant intervals,

{
ℎ𝐼,𝐸

‖ℎ𝐼,𝐸‖2
| 𝐼 ∈ 𝕀} (5)

is a Riesz basic sequence.

Proof. The theorem will be a consequence of Theorem 2.1 and Theorem 2.3.

For the reverse direction of the theorem we show that for 𝕀 = 𝒟, 𝑝 = 2
3 , 𝐸 = [0, 2

3 ),
(5) is not a Riesz basic sequence.

For every 𝑝 > 2
3 we also compute a constant 𝑐(𝑝) with respect to which all (5) are

Riesz basic sequences; see Theorem 2.1. Then in Section 3 we compute the optimal
constant for 𝐸 = [0, 𝑝) and a certain Riesz sequence; see Theorem 3.1 and Proposition
3.2. For 𝑝 close to 2

3 it is by a factor 8
3 greater than the constant we find for the general

case in Theorem 2.1. In Section 4 we show that the constant for that special case is
actually valid for certain types of Riesz basic sequences; see Theorem 4.1 and Theorem
4.7. We currently believe that this constant is actually also the optimal constant for the
general case, i.e. that Theorem 2.1 still holds with this constant.

3



Remark. It can also be proven directly from Theorem 1.1 that the constant of the Riesz
basic sequence (5) can be chosen to only depend on 𝑝; see Lemma A.15.

Remark. The statements and constants do not change if we also allow the function 𝟙𝐸
‖𝟙𝐸‖2

to be in (5). We may also express this by allowing the interval [−1, 1) to be in 𝕀, even
though [−1, 1) is never 𝐸-dominant for 𝑝 > 1

2 . For a proof; see Lemma A.14.
Note that any 𝐼 ⊂ [0, 1) is compatible to [−1, 1). Allowing [−1, 1) ∈ 𝕀 simplifies the

arguments in Sections 3 and 4.

1.3 Related Topics
The initial question of the thesis was the following:

Question 1. Let 𝒟 be the set of dyadic intervals of [0, 1). Let [0, 1) = 𝐸0 ∪ 𝐸1 be a
partition. Is there a partition 𝒟 = 𝒟0 ∪ 𝒟1 such that for 𝑖 = 0, 1

{
ℎ𝐼,𝐸𝑖

‖ℎ𝐼,𝐸𝑖
‖2

| 𝐼 ∈ 𝒟𝑖} (6)

is a Riesz basic sequence?

By this we mean that if |𝐼 ∩ 𝐸𝑖| = 0 then we must put 𝐼 into 𝒟1−𝑖. We were not able
to answer this question. However in Section 5 we prove a first result.

An initial approach to Question 1 could be to construct a partition by a majority
decision: For 𝑖 = 0, 1 take 𝒟𝑖 s.t. for all 𝐼 ∈ 𝒟𝑖 we have

|𝐼 ∩ 𝐸𝑖| ≥ 1
2

|𝐼|. (7)

However by Theorem 1.1 with 𝑝 = 1
2 this strategy does not produce Riesz basic se-

quences for all 𝐸. It even fails if we take some 𝑝 ≤ 2
3 and don’t assign the intervals

with |𝐼 ∩ 𝐸| < 𝑝|𝐼| to either of 𝒟1 and 𝒟2.1 What the majority decision (7) does
achieve however, is that (6) is a Bessel sequence: For 𝑖 = 0, 1 let (𝑎𝐼)𝐼∈𝒟𝑖

∈ 𝑙2(𝒟𝑖).

Define ̃𝑎𝐼 = ( |𝐼|
|𝐼∩𝐸𝑖|

)
1
2 𝑎𝐼. Then

‖ ∑
𝐼∈𝒟𝑖

𝑎𝐼
ℎ𝐼,𝐸𝑖

‖ℎ𝐼,𝐸𝑖
‖2

‖
2

2
= ‖ ∑

𝐼∈𝒟𝑖

̃𝑎𝐼
ℎ𝐼,𝐸𝑖

|𝐼|
1
2

‖
2

2
= ‖ ∑

𝐼∈𝒟𝑖

̃𝑎𝐼
ℎ𝐼

|𝐼|
1
2

𝟙𝐸𝑖‖
2

2

1In the particular counterexample 𝐸 = [0, 2
3
) in Theorem 2.3 we actually assign all intervals. However

the proof idea still works for 𝐸 = [ 1
4
, 2

3
) where the dyadic interval [0, 1

2
) lies in 𝐸 and 𝐸∁ with a portion

of only 1
2
each and hence is not assigned.
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≤ ‖ ∑
𝐼∈𝒟𝑖

̃𝑎𝐼
ℎ𝐼

|𝐼|
1
2

‖
2

2
= ∑

𝐼∈𝒟𝑖

| ̃𝑎𝐼|2 ≤ 2 ∑
𝐼∈𝒟𝑖

|𝑎𝐼|2

By the same argument, actually for any 𝑝 > 0 and any set of compatible (𝐸, 𝑝)-dominant
intervals 𝕀, (5) is a Bessel sequence with constant 1

𝑝 .
In [1] Bownik, Casazza, Marcus and Speegle proved the following Theorem 1.2,

based on the resolution of the Kadison-Singer problem byMarcus, Spielman and Srivast-
ava in [3]. It directly implies Corollary 1.3, a weaker version of Theorem 1.1.

Theorem 1.2 (Corollary 6.5 in [1]). Let 0 < 𝛿0 < 1
4 , 𝜀0 = 1

2 − √2𝛿0(1 − 2𝛿0). Let Φ
be a finite Bessel sequence with bound 1 where for all 𝜑 ∈ Φ we have ‖𝜑‖2

2 ≥ 1 − 𝛿0.
Then there is a partition Φ = Φ0 ∪ Φ1 such that Φ0 and Φ1 are Riesz sequences with
constant 𝜀0.

As they note in [1], it can be extended to countable sequences.

Corollary 1.3. Let 𝑝 > 3
4 and 𝐸 ⊂ [0, 1). Then

{
ℎ𝐼,𝐸0

‖ℎ𝐼,𝐸0
‖2

| 𝐼 ∈ 𝒟, |𝐼 ∩ 𝐸0| ≥ 𝑝|𝐼|} (8)

∪{
ℎ𝐼,𝐸1

‖ℎ𝐼,𝐸1
‖2

| 𝐼 ∈ 𝒟, |𝐼 ∩ 𝐸1| ≥ 𝑝|𝐼|} (9)

can be partitioned into two Riesz sequences with lower bound 1
2 − √2(1 − 𝑝)(2𝑝 − 1).

Note that Theorem 1.1 says, that (8) and (9) are already Riesz basic sequences. And
since they are orthogonal to one another, by Lemma A.2 also their union is already a
Riesz basic sequence prior to partitioning. Also this already holds for 𝑝 > 2

3 .

Proof of Corollary 1.3. Let 𝛿0 = 1 − 𝑝 ∈ (0, 1
4 ). For 𝑖 = 0, 1 consider

𝐻𝑖 ≔ {
ℎ𝐼,𝐸𝑖

‖ℎ𝐼‖2
| 𝐼 ∈ 𝒟, |𝐼 ∩ 𝐸𝑖| ≥ 𝑝|𝐼|}

Similarly to what we already discussed above, 𝐻0 and 𝐻1 are Bessel sequences with
bound 1. And because 𝐻0 and 𝐻1 are orthogonal to one another, by Lemma A.3 also
𝐻0 ∪ 𝐻1 is a Bessel sequence. Furthermore for 𝐼 ∈ 𝒟 and 𝑖 = 0, 1 with |𝐼 ∩ 𝐸𝑖| ≥ 𝑝|𝐼|
we have

‖ℎ𝐼,𝐸𝑖
‖2

2 = |𝐼 ∩ 𝐸𝑖| ≥ 𝑝|𝐼| = 𝑝‖ℎ𝐼|2
2 = (1 − 𝛿0)‖ℎ𝐼‖2

2.
Hence we can apply Theorem 1.2 and obtain that 𝐻0 ∪ 𝐻1 can be partitioned into two
Riesz basic sequences with constant 1

2 − √2(1 − 𝑝)(2𝑝 − 1). Now for each 𝐼 with the

corresponding 𝑖 replace
ℎ𝐼,𝐸𝑖
‖ℎ𝐼‖2

by
ℎ𝐼,𝐸𝑖

‖ℎ𝐼,𝐸𝑖‖2
. This only increases the norm of the vectors

and hence conserves the constant of the Riesz sequence.
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The advantage of Corollary 1.3 over Theorem 1.1 is that the former still has the
chance to be strengthened to 𝑝 ≤ 2

3 . Assume that we can apply Corollary 1.3 to (8)∪(9)
with 𝑝 = 1

2 and obtain a partition Φ0 ∪ Φ1. Now for all 𝐼 ∈ 𝒟 there is an 𝑖 ∈ {0, 1} such
that |𝐼 ∩ 𝐸𝑖| ≥ 1

2 |𝐼|, which means ℎ𝐼,𝐸0
or ℎ𝐼,𝐸1

appears in Φ0 ∪ Φ1. Unfortunately
this kind of partition might still not be the partition we are looking for in Question 1:
Φ0 and Φ1 might each contain some restricted Haar functions of 𝐸0-dominant intervals
and some of 𝐸1-dominant ones. In fact, it is even somewhat likely that they do, because
we might also prove Corollary 1.3 as follows: Use Theorem 1.2 to show that (8) and (9)
can separately be partitioned into two Riesz basic sequences each. The partition of (8)
is orthogonal to the partition of (9). That means by Lemma A.2 we can combine these
two partitions to one partition of (8)∪(9) into two Riesz basic sequences.

Theorem 1.1 is not a consequence of the fact that {ℎ𝐼,𝐸 | 𝐼 ∈ 𝕀} is only a small
perturbation of the orthogonal set {ℎ𝐼 | 𝐼 ∈ 𝕀}, in the sense that ‖ℎ𝐼 − ℎ𝐼,𝐸‖2

2 ≤
(1 − 𝑝)‖ℎ𝐼‖2

2 < 1
3‖ℎ𝐼‖2

2. Take the following example: Assume that 𝑢1, …, 𝑢𝑛 are or-
thonormal. Abbreviate 𝑢 ≔ 𝑢1 + … + 𝑢𝑛 and for 𝑖 = 1, …, 𝑛 set

𝑢′
𝑖 ≔ 𝑢𝑖 − 1

𝑛
𝑢.

Then

‖𝑢𝑖 − 𝑢′
𝑖 ‖

2 = 1
𝑛2 ‖𝑢‖2 = 1

𝑛2

𝑛

∑
𝑖=1

‖𝑢𝑖‖2 = 1
𝑛

.

but
𝑢′

1 + … + 𝑢′
𝑛 = 𝑢 − 𝑢 = 0,

i.e. {𝑢′
1, …, 𝑢′

𝑛} is an arbitrarily small perturbation of {𝑢1, …, 𝑢𝑛} but is no Riesz basic
sequence.

2 Proof of Theorem 1.1

2.1 The Case 𝑝 > 2
3

First we introduce some notation: Let 𝕀 be a set of intervals and 𝑆 = {(𝑎𝐼, 𝐼) | 𝐼 ∈ 𝕀}
be a set of pairs of real numbers and intervals. In order to reduce the number of symbols
we will usually omit the (, ) and write 𝑆 = {𝑎𝐼𝐼 ∣ 𝐼 ∈ 𝕀}.

Let 𝐸 ⊂ [0, 1). Then define

𝐹𝐸(𝑆) ≔ ∑
𝑎𝐼∈𝑆

𝑎ℎ𝐼,𝐸,

𝐴𝐸(𝑆) ≔ ∑
𝑎𝐼∈𝑆

‖𝑎ℎ𝐼,𝐸‖2
2,
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𝐵𝐸(𝑆) ≔ ‖ ∑
𝑎𝐼∈𝑆

𝑎ℎ𝐼,𝐸‖2
2.

In order to reduce the number of symbols we will also write 𝐹𝐸(𝑎1𝐼1, 𝑎2𝐼2, …) for
𝐹𝐸({𝑎1𝐼1, 𝑎2𝐼2, …}).

For any set 𝑆 of pairs of coefficients and intervals we will denote the set of intervals
by 𝕀(𝑆).

Now one direction of Theorem 1.1 reads as follows:

Theorem 2.1. Let 2
3 < 𝑝 ≤ 1. Then there is a 𝑐(𝑝) > 0 s.t. for all 𝐸 ⊂ [0, 1) and for all

𝑆 where 𝕀(𝑆) is compatible and consists of (𝐸, 𝑝)-dominant intervals, we have

𝐵𝐸(𝑆)
𝐴𝐸(𝑆)

≥ 𝑐(𝑝)

with
𝑐(𝑝) = 81

8
(𝑝 − 2

3
)2 + 𝒪(𝑝 − 2

3
)3.

We first introduce a function 𝑔 that we need for the proof of Theorem 2.1.

Definition. For 𝑝 > 2
3 define 𝜀 ≔ 𝑝 − 2

3 ,

𝑎 ≔ 4
27

1
𝜀

+ 10
9

+ 4
3

𝜀,

𝑏 ≔ 1 + 3
2

𝜀

and 𝑔 ∶ [0, 1) → ℝ by

𝑔(𝑞) ≔
{

𝑎−𝑞
𝑏−𝑞 𝑞 ≥ 𝑝
𝑔(𝑝) 𝑞

𝑝 𝑞 ≤ 𝑝
(10)

This definition makes sense because 𝑏 > 1. Also 𝑔 is continuous. Proposition 2.2
lists all the properties of 𝑔 that we use in the proof of Theorem 2.1.

Proposition 2.2. 𝑔 as defined above has the following properties:

1. For all 𝑞 ∈ (0, 1] we have

1 ≤ 1
𝑝

≤
𝑔(𝑞)

𝑞
≤ 𝑔(1) (11)

and
𝑔(1) = 8

81
1
𝜀2 + 𝒪(1

𝜀
).
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2. For all 𝑞1, 𝑞2 ∈ [0, 1] with 𝑞1+𝑞2
2 ≕ 𝑞 ∈ [𝑝, 1] and 𝑥 ∈ ℝ we have

𝐺(𝑥, 𝑞1, 𝑞2) ≔ (1 − 𝑥)2

2
𝑔(𝑞1) + (1 + 𝑥)2

2
𝑔(𝑞2) − 𝑔(𝑞) ≥ 𝑥2 ≥ 𝑞𝑥2. (12)

For 𝑞 ∈ [0, 1], 𝑔 is convex.

Remark. Note that (12) for 𝑞 ∈ [0, 1] and 𝑥 = 0 would be midpoint convexity of 𝑔. In
order to prove Theorem 2.1 for the case 𝕀(𝑆) ⊂ 𝒟 we will in fact only use midpoint
convexity and not convexity. However we get convexity from midpoint convexity by
Lemma A.19 anyways.

Remark. We do not actually need 𝑔(𝑞)
𝑞 ≥ 1

𝑝 and 𝐺(𝑥, 𝑞1, 𝑞2) ≥ 𝑥2: For the proof of

Theorem 2.1 𝑔(𝑞)
𝑞 ≥ 1 and 𝐺(𝑥, 𝑞1, 𝑞2) ≥ 𝑞𝑥2 suffice. However the 𝑔 we found also

happens to satisfy the stronger bounds. 𝐺(𝑥, 𝑞1, 𝑞2) ≥ 𝑥2 probably comes from the
fact that we actually found 𝑔 by solving the ODE that arises when sending 𝑞1 → 𝑞2 in
𝐺(𝑥, 𝑞1, 𝑞2) ≥ 𝑥2. We did this because we could not solve the corresponding ODE for
𝐺(𝑥, 𝑞1, 𝑞2) ≥ 𝑞𝑥2. Details on how we came up with the explicit function 𝑔 can be found
in subsubsection 2.1.4.

The constant in Theorem 2.1 which we find is

[ sup
𝑞∈(0,1]

𝑔(𝑞)
𝑞 ]

−1, (13)

otherwise the value of 𝑔(1) is not important. Hence if there is another 𝑔 that also satisfies
Proposition 2.2 but with an even smaller upper bound for 𝑔(𝑞)

𝑞 , then Theorem 2.1 can
be proven with a greater constant. However we will show later that if we minimize
𝑔(1) over all 𝑎, 𝑏 and 𝑔 given by (10) under which the other statements of Proposition
2.2 hold, then we get 8

81
1
𝜀2 + 𝒪(1

𝜀 ) as the minimal value. Since by (11) we have

𝑔(1)
1

≤ sup
𝑞∈(0,1]

𝑔(𝑞)
𝑞

≤ 𝑔(1)

this means that 81
8 𝜀2 + 𝒪(𝜀3) is the maximal value for (13) among all such 𝑔. That

means the choice of 𝑎, 𝑏 in the definition of 𝑔 is optimal for 𝑝 close to 2
3 . It is not clear

however if the function with the minimal value for 𝑔(1) that satisfies the other properties
of Proposition 2.2 has to be of the form (10). It actually seems rather unlikely, since as
remarked above, the 𝑔 we found satisfies stronger conditions than necessary for the proof
of Theorem 2.1.

Before we prove Proposition 2.2 we use it to prove Theorem 2.1.
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2.1.1 Proof of Theorem 2.1

We start with the proof for the special case 𝕀(𝑆) ⊂ 𝒟 ∪ {[−1, 1)} which is a bit easier to
understand but already showcases the central idea used in the proof for a general 𝑆.

For each 𝑛 denote by 𝒟𝑛 the set of dyadic intervals of length between 2−𝑛 and 1 plus
the interval [−1, 1).

Proof of Theorem 2.1 for 𝕀(𝑆) ⊂ 𝒟 ∪ {[−1, 1)}. We only need to prove the theorem for
finite 𝑆. That means there is an 𝑛 with 𝕀(𝑆) ⊂ 𝒟𝑛. It suffices to consider the case
𝕀(𝑆) = 𝒟𝑛 since adding intervals with coefficient zero does not change 𝐴 or 𝐵, also if
the intervals are not 𝐸-dominant.

Let 𝑔 be given by Proposition 2.2. Then define 𝑓 ∶ [0, 1] → ℝ on (0, 1] by

𝑓(𝑞) ≔
𝑔(𝑞)

𝑞

and 𝑓(0) ≔ 𝑓(𝑝).2 Then for each 𝑛, 𝐼 ∈ 𝒟𝑛+1 and 𝑋 ⊂ 𝐼 ∩ 𝐸 set

𝜇𝑛(𝑋) ≔ 𝑓(
|𝐸 ∩ 𝐼|

|𝐼| )|𝑋|

This defines a measure 𝜇𝑛 on 𝐸. 3

Claim. For each 𝑛 and 𝑆 with 𝕀(𝑆) = 𝒟𝑛 we have

‖𝐹𝐸(𝑆)‖2
𝐿2(𝜇𝑛) ≥ 𝐴𝐸(𝑆).

By Proposition 2.2 we have for all 𝑞 ∈ [0, 1] that

𝑓(𝑞) ≤ 𝑔(1)

and thus by the claim

𝐵𝐸(𝑆) = ‖𝐹𝐸(𝑆)‖2
2 ≥ 1

𝑔(1)
‖𝐹𝐸(𝑆)‖𝐿2(𝜇𝑛) ≥ 1

𝑔(1)
𝐴𝐸(𝑆)

which implies the theorem.

Proof of claim. We proceed by induction on 𝑛. If 𝑛 = 1 then ̃𝑆 = {𝑎[−1, 1)}. By
Proposition 2.2 we have 𝑓(|𝐸|) ≥ 1

𝑝 ≥ 1 and thus 𝜇0(|𝐸|) ≥ |𝐸| so that

‖𝐹𝐸( ̃𝑆)‖2
𝐿2(𝜇0) = 𝑎2𝜇0(|𝐸|) ≥ 𝑎2|𝐸| = 𝐴𝐸( ̃𝑆).

2Note that this makes 𝑓 constant on [0, 𝑝] by (10). We don’t use this fact though. Also, the value of 𝑓
at 0 does not actually matter.

3We don’t actually need the 𝜎-properties of the measure 𝜇𝑛 because we will only integrate simple
functions w.r.t. {𝐼 ∩ 𝐸 ∣ 𝐼 ∈ 𝒟𝑛+1}.
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Now let 𝑛 ≥ 0, 𝕀(𝑆) = 𝒟𝑛+1. Define ̃𝑆 = {𝑎𝐼 ∣ 𝑎𝐼 ∈ 𝑆, 𝐼 ∈ 𝒟𝑛}. Then we may
apply the inductive hypothesis to ̃𝑆. Since

𝐴𝐸(𝑆) = 𝐴𝐸( ̃𝑆) + ∑
𝐼∈𝒟𝑛+1⧵𝒟𝑛, 𝑎𝐼∈𝑆

𝑎2‖ℎ𝐼,𝐸‖2
2

it suffices to show that

‖𝐹𝐸(𝑆)‖𝐿2(𝜇𝑛+1) ≥ ‖𝐹𝐸( ̃𝑆)‖𝐿2(𝜇𝑛) + ∑
𝐼∈𝒟𝑛+1⧵𝒟𝑛, 𝑎𝐼∈𝑆

𝑎2‖ℎ𝐼,𝐸‖2
2 (14)

in order to prove the induction hypothesis for 𝑆. For that in turn it suffices to prove for
all 𝐼 ∈ 𝒟𝑛+1 ⧵ 𝒟𝑛 that

‖𝐹𝐸(𝑆)‖𝐿2(𝜇𝑛+1,𝐼) ≥ ‖𝐹𝐸( ̃𝑆)‖𝐿2(𝜇𝑛,𝐼) + 𝑎2‖ℎ𝐼,𝐸‖2
2 (15)

because then summing over 𝐼 ∈ 𝒟𝑛+1 ⧵ 𝒟𝑛 will lead to (14). Now we write (15) out

∫𝐼
[𝐹𝐸( ̃𝑆) + 𝑎ℎ𝐼,𝐸]2 d𝜇𝑛+1 ≥ ∫𝐼

𝐹𝐸( ̃𝑆)2 d𝜇𝑛 + 𝑎2‖ℎ𝐼,𝐸‖2
2. (16)

𝐹𝐸( ̃𝑆) is constant on 𝐼. If 𝐹𝐸( ̃𝑆) is zero on 𝐼 then (16) follows from 𝑓 ≥ 1, similarly to
the case 𝑛 = 0. Otherwise we divide everything by 𝐹𝐼( ̃𝑆)2. After renaming 𝑎 we then
only have to show

∫𝐼
[1 + 𝑎ℎ𝐼,𝐸]2 d𝜇𝑛+1 ≥ 𝜇𝑛(𝐼) + 𝑎2‖ℎ𝐼,𝐸‖2

2.

Written out, this is

(1 − 𝑎)2|𝔩(𝐼) ∩ 𝐸|𝑓(
|𝔩(𝐼) ∩ 𝐸|

|𝔩(𝐼)| ) + (1 + 𝑎)2|𝔯(𝐼) ∩ 𝐸|𝑓(
|𝔯(𝐼) ∩ 𝐸|

|𝔯(𝐼)| )

≥ |𝐼 ∩ 𝐸|𝑓(
|𝐼 ∩ 𝐸|

|𝐼| ) + 𝑎2|𝐼 ∩ 𝐸|.

Now we divide by |𝐼| and call

𝑞1 = 2
|𝔩(𝐼) ∩ 𝐸|

|𝐼|
=

|𝔩(𝐼) ∩ 𝐸|
|𝔩(𝐼)|

,

𝑞2 = 2
|𝔯(𝐼) ∩ 𝐸|

|𝐼|
=

|𝔯(𝐼) ∩ 𝐸|
|𝔯(𝐼)|

,

𝑥 = 𝑎,

so that
𝑞1 + 𝑞2

2
=

|𝐼 ∩ 𝐸|
|𝐼|

.

Then we obtain exactly (12). Now there are two cases to consider. If 𝐼 is 𝐸-dominant,
then 𝑞1+𝑞2

2 ≥ 𝑝 and 𝑞1, 𝑞2 ∈ [2𝑝 − 1, 1], where (12) is valid. If 𝐼 is not 𝐸-dominant, then
we assumed 𝑥 = 𝑎 = 0 where (12) is also valid since 𝑔 is convex.
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Now the claim is proven and hence so is Theorem 2.1 for the case 𝕀( ̃𝑆) ⊂ 𝒟 ∪
{[−1, 1)}.

Proof of Theorem 2.1. First we need to establish a few notions. For a finite set of inter-
vals 𝕀 that contains [0, 1) and subintervals of [0, 1) such that for all 𝐼, 𝐽 ∈ 𝕀 𝐼 ∩ 𝐽 ∈
{∅, 𝐼, 𝐽} define

leaves(𝕀) ≔ {𝐼 ∈ 𝕀 ∣ ∀𝐽 ∈ 𝕀, 𝐽 ≠ 𝐼 ∶ 𝐽 ⊄ 𝐼}

For 𝑛 = 0, 1, … define
𝕀𝑛 ≔ leaves(𝕀 ⧵ ⋃

𝑖<𝑛
𝕀𝑖).

Note, that 𝕀0, 𝕀1, … is a partition of 𝕀. Define inductively for 𝑛 = 0, 1, …

̃𝕀𝑛 ≔ ⋃
𝑛=0,1,…

{𝐼 ⧵ ⋃
𝑖<𝑛

⋃
̃𝕀𝑖 | 𝐼 ∈ 𝕀𝑛}

and
𝑝(𝕀) ≔ ̃𝕀0 ∪ ̃𝕀1 ∪ ….

Note that 𝑝(𝕀) is a partition of [0, 1).
Let 𝑔 be given by Proposition 2.2. Then define 𝑓 ∶ [0, 1] → ℝ on (0, 1] by

𝑓(𝑞) ≔
𝑔(𝑞)

𝑞

and 𝑓(0) ≔ 𝑓(𝑝).4 Now assume that 𝑃 is a partition of [0, 1) and 𝐸 ⊂ [0, 1). Then for
each 𝑀 ∈ 𝑃 and 𝑋 ⊂ 𝑀 ∩ 𝐸 set

𝜇𝑃(𝑋) ≔ 𝑓(
|𝑀 ∩ 𝐸|

|𝑀| )|𝑋|. (17)

This defines a measure 𝜇𝑃 on 𝐸.
Let 𝑆 be a compatible sequence of intervals. If [−1, 1) is not already in 𝕀(𝑆) we may

add it to 𝑆 with coefficient 0. Then with

ℎ(𝑆) ≔ {𝔩(𝐼), 𝔯(𝐼) | 𝐼 ∈ 𝕀(𝑆)} ⧵ {[−1, 0)}

wemay define 𝑝(ℎ(𝑆)) and 𝜇𝑝(ℎ(𝑆)). Note that for each 𝑀 ∈ 𝑝(ℎ(𝑆)) we have that 𝐹𝐸(𝑆)
is constant on 𝐸 ∩ 𝑀.

4Note that this make 𝑓 constant on [0, 𝑝] by (10). We don’t use this fact though. Also, the value of 𝑓
at 0 does not matter actually.
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Claim. For each 𝑆 we have

‖𝐹𝐸(𝑆)‖2
𝐿2(𝜇𝑝(ℎ(𝑆)))

≥ 𝐴𝐸(𝑆).

By Proposition 2.2 we have for all 𝑞 ∈ [0, 1] that

𝑓(𝑞) ≤ 𝑔(1)

and thus by the claim

𝐵𝐸(𝑆) = ‖𝐹𝐸(𝑆)‖2
2 ≥ 1

𝑔(1)
‖𝐹𝐸(𝑆)‖𝐿2(𝜇𝑝(ℎ(𝑆))) ≥ 1

𝑔(1)
𝐴𝐸(𝑆)

which implies the theorem.

Proof of claim. We proceed by induction on 𝑛. If 𝑛 = 1 then 𝑆 = {𝑎[−1, 1)} and
𝑝(ℎ(𝑆)) = {[−1, 0), [0, 1)}. By Proposition 2.2 we have 𝑓(|𝐸|) ≥ 1

𝑝 ≥ 1 and thus
𝜇𝑆(|𝐸|) ≥ |𝐸| so that

‖𝐹𝐸(𝑆)‖2
𝐿2(𝜇𝑝(ℎ(𝑆)))

= 𝑎2𝜇𝑆(|𝐸|) ≥ 𝑎2|𝐸| = 𝐴𝐸(𝑆).

So assume it holds for 𝑛 ≥ 1 and let |𝑆| = 𝑛 + 1. Then there is an 𝐼 ∈ leaves(𝕀(𝑆))
and 𝑎𝐼 ∈ 𝑆. Define ̃𝑆 = 𝑆 ⧵ {𝑎𝐼}. Then there is a set 𝑀 ∈ 𝑝(ℎ( ̃𝑆)) which contains 𝐼.
Then note that

𝑝(ℎ( ̃𝑆) ∪ {𝐼}) = 𝑝(ℎ( ̃𝑆)) ⧵ {𝑀} ∪ {𝑀 ⧵ 𝐼, 𝐼}

𝑝(ℎ( ̃𝑆 ∪ {𝑎𝐼})) = 𝑝(ℎ( ̃𝑆) ∪ {𝔩(𝐼), 𝔯(𝐼)})

= 𝑝(ℎ( ̃𝑆) ∪ {𝐼}) ⧵ {𝐼} ∪ {𝔩(𝐼), 𝔯(𝐼)}

= 𝑝(ℎ( ̃𝑆)) ⧵ {𝑀} ∪ {𝑀 ⧵ 𝐼, 𝔩(𝐼), 𝔯(𝐼)}.

𝐹𝐸( ̃𝑆) and 𝐹𝐸( ̃𝑆 ∪ {𝑎𝐼}), and 𝜇𝑝(ℎ( ̃𝑆∪{𝑎𝐼})) and 𝜇𝑝(ℎ( ̃𝑆)) are equal on the complement of
𝑀 ∩ 𝐸. Hence it suffices to show

∫𝑀
(𝐹𝐸( ̃𝑆) + 𝑎ℎ𝐼,𝐸)2 d𝜇𝑝(ℎ( ̃𝑆∪{𝑎𝐼})) − ∫𝑀

𝐹𝐸( ̃𝑆)2 d𝜇𝑝(ℎ( ̃𝑆)) ≥ 𝑎2‖ℎ𝐼,𝐸‖2
2

in order to conclude (17) for 𝑆 from the inductive hypothesis (17) for ̃𝑆. 𝐹𝐸( ̃𝑆) is con-
stant on 𝑀. If 𝐹𝐸( ̃𝑆) is zero on 𝐼 then (16) follows from 𝑓 ≥ 1, similarly to the case
𝑛 = 0. Otherwise we divide everything by 𝐹𝐼( ̃𝑆)2. After renaming 𝑎 we then only have
to show

∫𝑀
(1 + 𝑎ℎ𝐼,𝐸)2 d𝜇𝑝(ℎ( ̃𝑆∪{𝑎𝐼})) − 𝜇𝑝(ℎ( ̃𝑆))(𝑀) ≥ 𝑎2‖ℎ𝐼,𝐸‖2

2. (18)
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Firstly take 𝑡 ≔ |𝐼|
|𝑀| so that 1 − 𝑡 = |𝑀⧵𝐼|

|𝑀| and

𝑡
|𝐼 ∩ 𝐸|

|𝐼|
+ (1 − 𝑡)

|(𝑀 ⧵ 𝐼) ∩ 𝐸|
|𝑀 ⧵ 𝐼|

=
|𝑀 ∩ 𝐸|

|𝑀|
.

Then we get by the convexity of 𝑔 that

1
|𝑀|

𝜇𝑝(ℎ( ̃𝑆))(𝑀) =
|𝑀 ∩ 𝐸|

|𝑀|
𝑓(

|𝑀 ∩ 𝐸|
|𝑀| ) = 𝑔(

|𝑀 ∩ 𝐸|
|𝑀| )

≤ 𝑡𝑔(
|𝐼 ∩ 𝐸|

|𝐼| ) + (1 − 𝑡)𝑔(
|(𝑀 ⧵ 𝐼) ∩ 𝐸|

|𝑀 ⧵ 𝐼| )

≤
|𝐼 ∩ 𝐸|

|𝑀|
𝑓(

|𝐼 ∩ 𝐸|
|𝐼| ) +

|(𝑀 ⧵ 𝐼) ∩ 𝐸|
|𝑀|

𝑓(
|(𝑀 ⧵ 𝐼) ∩ 𝐸|

|𝑀 ⧵ 𝐼| )

= 1
|𝑀|

𝜇𝑝(ℎ( ̃𝑆)∪{𝐼})(𝑀). (19)

𝜇𝑝(ℎ( ̃𝑆∪{𝑎𝐼})) equals 𝜇𝑝(ℎ( ̃𝑆)∪{𝐼}) on 𝐼∁ and 𝑎ℎ𝐼,𝐸 is 0 on 𝐼∁ so that

∫𝑀
(1 + 𝑎ℎ𝐼,𝐸)2 d𝜇𝑝(ℎ( ̃𝑆∪{𝑎𝐼})) = ∫𝐼

(1 + 𝑎ℎ𝐼,𝐸)2 d𝜇𝑝(ℎ( ̃𝑆∪{𝑎𝐼})) + 𝜇𝑝(ℎ( ̃𝑆)∪{𝐼})(𝑀 ⧵ 𝐼).

This means by (19) it suffices to prove

∫𝐼
(1 + 𝑎ℎ𝐼,𝐸)2 d𝜇𝑝(ℎ( ̃𝑆∪{𝑎𝐼})) ≥ 𝜇𝑝(ℎ( ̃𝑆)∪{𝐼})(𝐼) + 𝑎2‖ℎ𝐼,𝐸‖2

2

to get (18). Calculating both sides this means

(1 − 𝑎)2|𝔩(𝐼) ∩ 𝐸|𝑓(
|𝔩(𝐼) ∩ 𝐸|

|𝔩(𝐼)| ) + (1 + 𝑎)2|𝔯(𝐼) ∩ 𝐸|𝑓(
|𝔯(𝐼) ∩ 𝐸|

|𝔯(𝐼)| )

≥ 𝐼 ∩ 𝐸|𝑓(
|𝐼 ∩ 𝐸|

|𝐼| ) + 𝑎2|𝐼 ∩ 𝐸|

or equivalently

(1 − 𝑎)2

2
|𝔩(𝐼) ∩ 𝐸|

|𝔩(𝐼)|
𝑓(

|𝔩(𝐼) ∩ 𝐸|
|𝔩(𝐼)| ) + (1 + 𝑎)2

2
|𝔯(𝐼) ∩ 𝐸|

|𝔯(𝐼)|
𝑓(

|𝔯(𝐼) ∩ 𝐸|
|𝔯(𝐼)| )

≥
|𝐼 ∩ 𝐸|

|𝐼|
𝑓(

|𝐼 ∩ 𝐸|
|𝐼| ) + 𝑎2 |𝐼 ∩ 𝐸|

|𝐼|
. (20)

Now since |𝐼∩𝐸|
|𝐼| ≥ 𝑝 and |𝔩(𝐼)∩𝐸|

|𝔩(𝐼)| , |𝔯(𝐼)∩𝐸|
|𝔯(𝐼)| ≥ 2𝑝 − 1 and

1
2

|𝔩(𝐼) ∩ 𝐸|
|𝔩(𝐼)|

+ 1
2

|𝔯(𝐼) ∩ 𝐸|
|𝔯(𝐼)|

=
|𝐼 ∩ 𝐸|

|𝐼|
we may invoke (12) in order to conclude (20).

Now the claim is proven and hence so is Theorem 2.1.
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2.1.2 Idea of the Proof of Theorem 2.1

If one wants to prove that { ℎ𝐼
‖ℎ𝐼‖2

∣ 𝐼 ∈ 𝒟} is a Riesz basic sequence, one could proceed
as follows: First sort 𝒟 decreasing in scale. Then assume we have already linearly com-
bined the first 𝑛 − 1 Haar functions to the function 𝐹𝑛−1. Now check, that after adding
𝑎ℎ𝐼𝑛

, the increase of ∫𝐼𝑛
𝐹 2

𝑛−1 to ∫𝐼𝑛
𝐹 2

𝑛 is just ‖𝑎ℎ𝐼𝑛
‖2

2.
This strategy is not going to work for restricted Haar functions as 𝐹𝑛 might even

have a smaller 𝐿2-norm on 𝐼𝑛 than 𝐹𝑛−1. We can however make the strategy work again
by integrating 𝐹 2

𝑛−1 and 𝐹 2
𝑛 with respect to weights. The corresponding measures will

nevertheless be comparable to the Lebesgue measure. Consider for example the case
|𝐼𝑛 ∩ 𝐸| = 𝑝|𝐼|, |𝔩(𝐼𝑛) ∩ 𝐸| = |𝔩(𝐼𝑛)|. Then the interesting case is 𝑎 ≥ 0. After
having added 𝑎ℎ𝐼𝑛

it does not make any sense to add any more Haar functions with
support intersecting 𝔩(𝐼𝑛) because they are orthogonal to 𝐹𝑘 for each 𝑘 ≥ 𝑛; 𝔩(𝐼𝑛) is
”used up” now. That means that 𝐹𝑘 and 𝐹𝑛 agree on 𝔩(𝐼𝑛). On 𝔯(𝐼𝑛) it is different: Many
more functions with support in 𝔯(𝐼𝑛) may be added to 𝐹𝑛 that might reduce ∫𝔯(𝐼𝑛) 𝐹 2

𝑛 and
contribute to 𝐴𝑘. Hence it is reasonable to weigh the 𝐿2-norm of 𝐹𝑛 less on 𝔯(𝐼𝑛) than
on 𝔩(𝐼𝑛). 𝑔(𝑞)

𝑞 plays the role of such a weight where here 𝑞 = |𝔯(𝐼𝑛)∩𝐸|
|𝔯(𝐼𝑛)| . Note that 𝑔(𝑞)

𝑞
is constant on [0, 𝑝] and increasing on [0, 1]. In the case of 𝑝 = 1 we could choose the
weight to be constantly 1.

2.1.3 Proof of Proposition 2.2

Proof of Proposition 2.2. Lemma A.21 with 𝑥 = 0 implies that 𝑎−𝑞
𝑏−𝑞 is midpoint convex

and thus convex by Lemma A.19. By definition, on [2𝑝 − 1, 𝑝] 𝑔 is just the linear inter-
polation between 𝑔(2𝑝 − 1) and 𝑔(𝑝). Furthermore 𝑔(𝑝) = 𝑎−𝑝

𝑏−𝑝 and by Lemma A.22 we

have 𝑔(2𝑝 − 1) ≥ 𝑎−(2𝑝−1)
𝑏−(2𝑝−1) . Therefore for all 𝑞 ∈ [2𝑝 − 1, 𝑝] we have

𝑔(𝑞) ≥
𝑎 − 𝑞
𝑏 − 𝑞

.

By Lemma A.21 this implies (12) for 𝑞 ≔ 𝑞1+𝑞2
2 ≥ 𝑝 as

𝐺(𝑞1, 𝑞2, 𝑥) ≥ (1 − 𝑥)2

2
𝑎 − 𝑞1
𝑏 − 𝑞1

+ (1 + 𝑥)2

2
𝑎 − 𝑞2
𝑏 − 𝑞2

−
𝑎 − 𝑞
𝑏 − 𝑞

≥ 𝑥2.

Now we prove that 𝑔 is convex on [0, 1]. Since 𝑔 is continuous, by Lemma A.19 it
suffices to show that 𝑔 is midpoint convex, i.e. that for all 𝑞1, 𝑞2 ∈ 𝐷 we have

1
2

𝑔(𝑞1) + 1
2

𝑔(𝑞2) ≥ 𝑔(
𝑞1 + 𝑞2

2
). (21)
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For 𝑞1, 𝑞2 ≤ 𝑝 this is true since 𝑔 is linear there and for 𝑞1+𝑞2
2 ≥ 𝑝 we just showed it.

Hence it remains to consider the case 𝑞1+𝑞2
2 ≤ 𝑝, 𝑞2 ≥ 𝑝 upon renaming. Then

1
2

𝑔(𝑞1) − 𝑔(
𝑞1 + 𝑞2

2
) =

𝑔(𝑝)
𝑝

(
𝑞1
2

−
𝑞1 + 𝑞2

2
)

=
𝑔(𝑝)

𝑝
(−

𝑞2
2

)

Now take 2𝑝 − 1 ≤ ̃𝑞1 ≤ 𝑝 s.t. ̃𝑞1+𝑞2
2 = 𝑝 and

=
𝑔(𝑝)

𝑝
(

̃𝑞1
2

−
̃𝑞1 + 𝑞2

2
)

= 1
2

𝑔( ̃𝑞1) − 𝑔(
̃𝑞1 + 𝑞2

2
)

and since we already proved (12) for ̃𝑞1+𝑞2
2 = 𝑝 we have

≥ −1
2

𝑔(𝑞2)

Now it remains to prove that for all 𝑞 ∈ [0, 1]
𝑞
𝑝

≤ 𝑔(𝑞) ≤ 𝑔(1)𝑞.

Since 𝑔 is convex and 𝑔(0) = 0 we already get the upper bound. Since 1 ≤ 𝑏 ≤ 𝑎 we
have 𝑔(𝑝) ≥ 1 = 𝑝

𝑝 . Because for 𝑞 ∈ [0, 𝑝] 𝑔 is linear we also get 𝑔(𝑞) ≥ 𝑞
𝑝 there. Now

by convexity we may extend this to [0, 1].

Remark. Lemma A.22 says that our choice of 𝑎, 𝑏 is even optimal for 𝑝 close to 2
3 .

2.1.4 Motivation for the Choice of 𝑔

First we motivate why it is reasonable to choose 𝑔 linear on [0, 𝑝]. Let 𝑆 be compatible
and 𝐸-dominant and 𝑆0 ⊂ 𝑆 and 𝑀 ∈ 𝑝(ℎ(𝑆0)) with |𝑀 ∩ 𝐸| ≤ 𝑝|𝑀|. Then the union
of all intervals 𝕀(𝑆) ⧵ 𝕀(𝑆0) can only cover a part of 𝑀 of size 1

𝑝 |𝑀 ∩ 𝐸| ≤ |𝑀|. This

means the uncovered empty space of size 1
𝑝 |𝑀 ∩𝐸|−|𝑀| in 𝑀 does not have any effect.

The measures given by (17) reflect this, because if we remove that uncovered part, i.e.
take some 𝑀′ ∈ 𝑃 ′ with 𝐸 ⊂ 𝑀′ ⊂ 𝑀 and |𝑀′ ∩ 𝐸′| = 𝑝|𝑀′|, then 𝑔 being linear
on [0, 𝑝] means that with 𝑞 ≔ |𝑀∩𝐸|

|𝑀| ≤ 𝑝 = |𝑀′∩𝐸|
|𝑀′| we have

𝜇𝑝(ℎ(𝑆0))(𝑀 ∩ 𝐸) =
𝑔(𝑞)

𝑞
|𝑀 ∩ 𝐸| =

𝑔(𝑝)
𝑝

|𝑀 ∩ 𝐸| = 𝑓(𝑝)|𝑀′ ∩ 𝐸| = 𝜇𝑃 ′(𝑀′ ∩ 𝐸).
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It also seems reasonable to take 𝑔 linear on [0, 𝑝] from the point of view of Proposition
2.2, because we mainly want 𝑔 to be convex on [0, 𝑝], with 𝑔(𝑞)

𝑞 having the smallest
possible maximum, while 𝑔 should still be somewhat large on [2𝑝 − 1, 𝑝]. A linear
increasing function likely could have these properties.

Nowwemotivate howwe chose 𝑔 on [𝑝, 1]. By LemmaA.20we have for any function
𝑔 ∶ (0, 1) → (1, ∞) and any 𝑞1, 𝑞2 ∈ (0, 1) that

inf
𝑥

[𝑔(𝑞1) + 𝑔(𝑞2) − 2][𝐺(𝑞1, 𝑞2, 𝑥) − 𝑥2]

= −[𝑔(𝑞1) + 𝑔(𝑞2)]𝑔(
𝑞1 + 𝑞2

2
) + 2𝑔(𝑞1)𝑔(𝑞2) − 𝑔(𝑞1) − 𝑔(𝑞2) + 2𝑔(

𝑞1 + 𝑞2
2

). (22)

Claim. Letting 𝑞1, 𝑞2 → 𝑞 in (22) ≥ 0 we obtain the ODE

𝑔″(𝑔 − 1) − 2(𝑔′)2 ≥ 0. (23)

Proof. We do a Taylor expansion of (22) around 𝑞1+𝑞2
2 . Abbreviate 𝑔(𝑞1+𝑞2

2 ) = 𝑦 and
Δ𝑞 = 𝑞2 − 𝑞1+𝑞2

2 = −[𝑞1 − 𝑞1+𝑞2
2 ]. The terms constant in Δ𝑞 vanish. The terms linear in

Δ𝑞 are

−[𝑦′(−Δ𝑞) + 𝑦′Δ𝑞]𝑦 + 2𝑦𝑦′(−Δ𝑞) + 2𝑦𝑦′Δ𝑞 − 𝑦′(−Δ𝑞) − 𝑦′Δ𝑞 = 0

The quadratic terms are

− [1
2

𝑦″Δ𝑞2 + 1
2

𝑦″Δ𝑞2]𝑦 + 21
2

𝑦″𝑦Δ𝑞2 − 41
2

𝑦′𝑦′Δ𝑞2 + 21
2

𝑦𝑦″Δ𝑞2

− 1
2

𝑦″Δ𝑞2 − 1
2

𝑦″Δ𝑞2

= [𝑦″(𝑦 − 1) − 2(𝑦′)2]Δ𝑞2

Hence dividing (22) ≥ 0 by Δ𝑞2 and letting Δ𝑞 → 0, all terms vanish except (23).

All functions of the form
𝑞 ↦

𝑎 − 𝑞
𝑏 − 𝑞

are solutions of (23) = 0. Interestingly we have shown in the proof of Proposition 2.2
that they also satisfy (22) = 0, even though the calculation above shows only the reverse
direction (22) = 0 ⟹ (23) = 0.

Now we want to find 𝑎, 𝑏 such that 𝑔 satisfies all the properties of Proposition 2.2
with 𝑔(1) as small as possible. 𝑞 ≤ 𝑔(𝑞) ≤ 𝑔(1)𝑞 implies 𝑔 to be bounded and positive.
This requires 𝑎, 𝑏 ≥ 1 or 𝑎, 𝑏 ≤ 0. Since in the proof of the claim we used 𝑔(𝑞) ≥ 1 the
cases 𝑎 ≥ 𝑏 ≥ 1 and 𝑎 ≤ 𝑏 ≤ 0 remain. Now

𝑎 − 𝑞
𝑏 − 𝑞

= 1 + 𝑎 − 𝑏
𝑏 − 𝑞
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d
d𝑞

𝑎 − 𝑞
𝑏 − 𝑞

= 𝑎 − 𝑏
(𝑏 − 𝑞)2

d2

d𝑞2
𝑎 − 𝑞
𝑏 − 𝑞

= 2 𝑎 − 𝑏
(𝑏 − 𝑞)3

Note, that the functions 𝑞 ↦ 𝑎−𝑞
𝑏−𝑞 arising from 𝑎, 𝑏 ≤ 0 are just the ones arising from

𝑎, 𝑏 ≥ 1, mirrored at 𝑞 = 1
2 . Now since we want 𝑞 ≤ 𝑔(𝑞) ≤ 𝑔(1)𝑞 we are rather looking

for functions with positive derivatives, i.e. those with 𝑎 ≥ 𝑏. Actually when looking at
the idea of the proof of Theorem 2.1, subsubsection 2.1.2, we even expect 𝑔(𝑞)

𝑞 to have
a positive derivative. Since we also want 𝑔 to be convex, 𝑎 ≥ 𝑏 requires 𝑏 ≥ 𝑞. And
since we want it to be well defined at 𝑞 = 1 we actually need 𝑏 > 1. That means it is
reasonable to consider only

1 < 𝑏 ≤ 𝑎.

We calculated in Lemma A.22 how we should choose 𝑎, 𝑏 in detail. The other properties
of 𝑔 then follow as presented in the proof of Proposition 2.2, subsubsection 2.1.3.

2.1.5 Bellman Function Interpretation

There are strong parallels between the proof of Theorem 2.1 for the case 𝕀(𝑆) ⊂ 𝒟, and
the strategy of the following instances of the Bellman function technique: Lemma 3.3,
(5.1) and Theorem 9.1 in [4]. Note that by Lemma A.14 the case 𝕀(𝑆) ⊂ 𝒟 ∪ {[−1, 1)}
is already a consequence of the case 𝕀(𝑆) ⊂ 𝒟.

In what follows the two strategies are reformulated and written in one go. At the
places where the strategies differ, this is how we mark the
Bellman function technique in [4] and the proof of Theorem 2.1 for 𝕀(𝑆) ⊂ 𝒟 .

The goal is for some 𝑐 > 0, 𝑁, (𝑥𝐼)𝐼∈𝒟𝑁
and

|𝑋[0,1)| ∈ [0, ∞) (|𝑋𝐼|)𝐼∈𝒟𝑁+1⧵𝒟𝑁
⊂ [0, ∞)

to establish a bound

𝑐 ∑
𝐼∈𝒟𝑁

𝑥𝐼|𝐼| ≤ |𝑋[0,1)| 𝑐 ∑
𝐼∈𝒟𝑁

𝑥𝐼|𝐼| ≤ ∑
𝐼∈𝒟𝑁+1⧵𝒟𝑁

|𝐼||𝑋𝐼| . (24)

We will see later how 𝑥𝐼, |𝑋𝐼| can be chosen such that (24) becomes Theorem 2.1. Note
that usually the sum on the left hand side of (24) is over all 𝐼 ∈ 𝒟 but it suffices to obtain
a uniform bound for all 𝑁. As you can see on the right hand sides, the number 𝑁 is a
bit more important in our technique than in the Bellman function technique. In order to
prove (24) they come up with a positive function 𝐵 with arguments 𝐼 ∈ 𝒟 and a tuple
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of parameters 𝑋. Here | ⋅ | denotes just denotes a function from the parameter space to
[0, ∞). 𝐵 satisfies a concavity convexity condition: For all 𝐼 ∈ 𝒟 and 𝑋, 𝑋1, 𝑋2 ∈ ℝ
such that in some sense 𝑋 = 𝑋1+𝑋2

2 , we have

𝐵𝐼(𝑋) −
𝐵𝔩(𝐼)(𝑋1) + 𝐵𝔯(𝐼)(𝑋2)

2
≥ 𝑥𝐼

𝐵𝔩(𝐼)(𝑋1) + 𝐵𝔯(𝐼)(𝑋2)
2

− 𝐵𝐼(𝑋) ≥ 𝑥𝐼 .

(25)

Furthermore
𝑐𝐵𝐼(𝑋) ≤ |𝑋𝐼|. (26)

That way for each 𝑛 and 𝑋 = 2−(𝑛+1) ∑𝐼∈𝒟𝑛+1⧵𝒟𝑛
𝑋𝐼 by induction

∑
𝐼∈𝒟𝑛

𝑥𝐼|𝐼| ≤ 𝐵[0,1)(𝑋) − ∑
𝐼∈𝒟𝑛+1⧵𝐷𝑛

|𝐼|𝐵𝐼(𝑋𝐼)

∑
𝐼∈𝒟𝑛

𝑥𝐼|𝐼| ≤ ∑
𝐼∈𝒟𝑛+1⧵𝒟𝑛

|𝐼|𝐵𝐼(𝑋𝐼) − 𝐵[0,1)(𝑋) .

This implies

∑
𝐼∈𝒟𝑁

𝑥𝐼|𝐼| ≤ 𝐵[0,1)(𝑋) ∑
𝐼∈𝒟𝑁

𝑥𝐼|𝐼| ≤ ∑
𝐼∈𝒟𝑁+1⧵𝒟𝑁

|𝐼|𝐵𝐼(𝑋𝐼)

and by (26) we are done.
Now we show how to choose 𝑥𝐼, 𝑋𝐼, | ⋅ | in order to get Theorem 2.1 using

this strategy from above. Recall that Theorem 2.1 states

𝑐 ∑
𝐼∈𝒟𝑁

𝑎2
𝐼‖ℎ𝐼,𝐸‖2

2 ≤ ‖ ∑
𝐼∈𝒟𝑁

𝑎𝐼ℎ𝐼,𝐸‖2
2.

Here 𝑋 is of the form

𝑋 = (𝑞, 𝑠), 𝑞 ∈ [0, 1], 𝑠 ∈ [0, ∞)

For the interval 𝐼 we will have the interpretation

𝑞 =
|𝐼 ∩ 𝐸|

|𝐼|
,
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𝑠 = ∑
𝐼⊂𝔯(𝐽)

𝑎𝐽 − ∑
𝐼⊂𝔩(𝐽)

𝑎𝐽

We further have
𝑥𝐼 = 𝑞𝐼(

𝑠𝔯(𝐼) − 𝑠𝔩(𝐼)

2
)2 = 𝑞𝐼𝑎2

𝐼

and
|𝑋| = 𝑞𝑠2.

This means

∑
𝐼∈𝒟𝑁

𝑥𝐼|𝐼| = ∑
𝐼∈𝒟𝑁

𝑞𝐼𝑎2
𝐼|𝐼| = ∑

𝐼∈𝒟𝑁

|𝐸 ∩ 𝐼|𝑎2
𝐼 = ∑

𝐼∈𝒟𝑁

‖𝑎𝐼ℎ𝐼,𝐸‖2
2

and

∑
𝐼∈𝒟𝑁+1⧵𝒟𝑁

|𝐼||𝑋𝐼| = ∑
𝐼∈𝒟𝑁+1⧵𝒟𝑁

|𝐸 ∩ 𝐼|( ∑
𝐼⊂𝔯(𝐽)

𝑎𝐽 − ∑
𝐼⊂𝔩(𝐽)

𝑎𝐽)2

= ∑
𝐼∈𝒟𝑁+1⧵𝒟𝑁

∫𝐸
𝟙𝐼( ∑

𝐼⊂𝔯(𝐽)
𝑎𝐽 − ∑

𝐼⊂𝔩(𝐽)
𝑎𝐽)2

= ∫𝐸 ∑
𝐼∈𝒟𝑁+1⧵𝒟𝑁

( ∑
𝐼⊂𝔯(𝐽)

𝟙𝐼∩𝔯(𝐽)𝑎𝐽 − ∑
𝐼⊂𝔩(𝐽)

𝟙𝐼∩𝔩(𝐽)𝑎𝐽)2

= ∫𝐸 ∑
𝐼∈𝒟𝑁+1⧵𝒟𝑁

( ∑
𝐽∈𝒟𝑁

𝟙𝐼∩𝔯(𝐽)𝑎𝐽 − ∑
𝐽∈𝒟𝑁

𝟙𝐼∩𝔩(𝐽)𝑎𝐽)2

= ∫𝐸 ∑
𝐼∈𝒟𝑁+1⧵𝒟𝑁

( ∑
𝐽∈𝒟𝑁

𝟙𝐼𝑎𝐽ℎ𝐽)2

= ∫𝐸 ∑
𝐼∈𝒟𝑁+1⧵𝒟𝑁

𝟙𝐼( ∑
𝐽∈𝒟𝑁

𝑎𝐽ℎ𝐽)2

= ∫𝐸
( ∑
𝐽∈𝒟𝑁

𝑎𝐽ℎ𝐽)2

= ‖ ∑
𝐽∈𝒟𝑁

𝑎𝐽ℎ𝐽 ,𝐸‖2
2

That means (24) reads

‖ ∑
𝐼∈𝒟𝑁

𝑎𝐼ℎ𝐼,𝐸‖2
2 ≥ 𝑐 ∑

𝐼∈𝒟𝑁

‖𝑎𝐼ℎ𝐼,𝐸‖2
2.

which is what we want to show.
As for an idea why our technique uses equalities that are somehow converse to

those of the Bellman function technique , note that Lemma 3.3, (5.1) and Theorem 9.1
in [4] resemble operator bounds from above, while Theorem 2.1 is an operator bound
from below.
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2.2 The Case 𝑝 ≤ 2
3

The remaining direction of Theorem 1.1 follows from the following Theorem 2.3.

Theorem 2.3. For 𝐸 = [0, 2
3 ),

{
ℎ𝐼,𝐸

‖ℎ𝐼,𝐸‖2
| 𝐼 ∈ 𝒟, |𝐼 ∩ 𝐸| = 2

3
|𝐼|} (27)

is no Riesz basic sequence.

Proof. In this proof we denote numbers by their binary representation instead of their
decimal representation.

Let 𝐼𝑖 be the dyadic interval with |𝐼𝑖| = 2−𝑖 which contains 2
3 = .1010 ⋯. For any

dyadic 𝐼 with |𝐼| = 2−𝑖 there is a sequence of binary digits 𝑠 of length 𝑖 − 1 such that

ℎ𝐼 ∶ 𝑥 ↦
⎧⎪
⎨
⎪⎩

−1 𝑥 ∈ [.𝑠00, .𝑠01),
1 𝑥 ∈ [.𝑠01, .𝑠10),
0 else

For 𝑖 = 0 this is ment in such a way that 𝑠 is empty and everything that comes after
𝑠 is moved one place further to the left. For ℎ𝐼2𝑖

, 𝑠 consists of the sequence of digits
101010 ⋯ of length 2𝑖 − 1. Note, that the sequence starts and ends with the digit 1.
Since .1010 ⋯ is between .1010 ⋯⏟

2𝑖−1
01 and .1010 ⋯⏟

2𝑖−1
10 this means

ℎ𝐼2𝑖,𝐸 ∶ 𝑥 ↦

⎧⎪
⎪
⎨
⎪
⎪⎩

−1 𝑥 ∈ [.1010 ⋯⏟
2𝑖−1

00, .1010 ⋯⏟
2𝑖−1

01),

1 𝑥 ∈ [.1010 ⋯⏟
2𝑖−1

01, .1010 ⋯),

0 else

=

⎧⎪
⎪
⎨
⎪
⎪⎩

−1 𝑥 ∈ [.1010 ⋯⏟
2𝑖

0, .1010 ⋯⏟
2𝑖

1),

1 𝑥 ∈ [.1010 ⋯⏟
2𝑖

1, .1010 ⋯),

0 else

.

Thus
|𝐼𝑖 ∩ 𝐸| = .1010 ⋯ − .1010 ⋯⏟

2𝑖
= .00 ⋯⏟

2𝑖
101 ⋯ = 2−2𝑖 2

3
= 2

3
|𝐼𝑖|

which means that 𝐼𝑖 is selected in (27).
For each 𝐼 denote by 𝑎𝐼 the coefficient in front ℎ𝐼,𝐸. Set

𝑎𝐼0
≔ 1,
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𝑖 ≥ 1 ∶ 𝑎𝐼2𝑖
≔ 2𝑖−1

and abbreviate

𝐹𝑛 =
𝑛

∑
𝑖=0

𝑎𝐼2𝑖
ℎ𝐼2𝑖,𝐸.

Claim. For all 𝑛

𝐹𝑛(𝑥) =

⎧⎪
⎪
⎨
⎪
⎪⎩

−1 𝑥 ∈ [0, .1),
0 𝑥 ∈ [.1, .10 ⋯⏟

2𝑛+1
),

2𝑛 𝑥 ∈ [.10 ⋯⏟
2𝑛+1

, .1010 ⋯).

Proof. We proceed by induction on 𝑛. The claim is clear for 𝑛 = 0. Assume the claim
holds for 𝑛. When adding 𝑎𝐼2(𝑛+1)

ℎ𝐼2(𝑛+1)
the domain [0, .1010 ⋯⏟

2(𝑛+1)
) remains unchanged.

On the domain [0, .1010 ⋯⏟
2(𝑛+1)

0, .1010 ⋯⏟
2(𝑛+1)

1), 𝐹𝑛+1 is zeroed. On the domain

[.1010 ⋯⏟
2(𝑛+1)

1, 1010 ⋯), 𝐹𝑛+1 is increased by 2𝑛 to 2𝑛+1. This proves the claim for 𝑛+1.

The next claim clearly implies the statement of the theorem:

Claim. For all 𝑛 we have
𝑛

∑
𝑖=0

‖𝑎𝐼2𝑖
ℎ𝐼2𝑖,𝐸‖2

2 = 2
3

+ 𝑛
6

,

‖𝐹𝑛‖2
2 = 2

3
Proof. For each 𝑖 we have

|𝔩(𝐼2(𝑖+1)) ∩ 𝐸| = 1
4

|𝔩(𝐼2𝑖) ∩ 𝐸|,

|𝔯(𝐼2(𝑖+1)) ∩ 𝐸| = 1
4

|𝔯(𝐼2𝑖) ∩ 𝐸|.

So by the choice of the coefficients we get

‖𝑎𝐼0
ℎ0,𝐸‖2

2 = 2
3

,

𝑖 ≥ 1 ∶ ‖𝑎𝐼2𝑖
ℎ𝐼2𝑖,𝐸‖2

2 = 1
6

.

The size of the domain where 𝐹𝑛(𝑥) = 2𝑛 is .00 ⋯⏟
2𝑛+1

0101 ⋯ = 1
3 (1

2 )2𝑛+1. So

‖𝐹𝑛‖2
2 = 1

2
⋅ 1 + 1

3
(1
2

)2𝑛+122𝑛 = 2
3

.
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The claim is proven and hence so is the theorem.

3 Explicit Optimum for a Special Case
We first introduce a few notions: We extend the definition of 𝐴, 𝐵, 𝐹, because in the
following sections we will not exclusively be dealing with restricted Haar functions any-
more but with slightly more general functions. So if 𝑆 is a finite set of functions in 𝐿2(ℝ)
we write

𝐹𝐸(𝑆) ≔ ∑
𝑓∈𝑆

𝑓𝟙𝐸,

𝐴𝐸(𝑆) ≔ ∑
𝑓∈𝑆

‖𝑓𝟙𝐸‖2
2,

𝐵𝐸(𝑆) ≔ ‖ ∑
𝑓∈𝑆

𝑓𝟙𝐸‖2
2.

For a set of pairs of numbers and intervals 𝑆 we identify (𝑎, 𝐼) with 𝑎ℎ𝐼 so that this
definition agrees with the original one.

Definition. Let 𝑝 ∈ [1
2 , 1)5. Let 𝐸 ⊂ 𝐼 be two intervals with the same left boundary. An

interval 𝐽 ⊂ 𝐼 with

|𝐸 ∩ 𝐽| = 𝑝|𝐽|,

|𝐽 | =
{

|𝐸|
𝑝 |𝐸| ≤ 𝑝|𝐼|

|𝐼|−|𝐸|
1−𝑝 |𝐸| ≥ 𝑝|𝐼|

is called a most 𝑝-antiparallel interval to 𝐼 w.r.t. 𝐸.
If 𝐸 is not contained in 𝐼 we say that 𝐽 most antiparallel to 𝐼 w.r.t. 𝐸 if it is most

antiparallel to 𝐼 w.r.t. 𝐸 ∩ 𝐼. We sometimes leave 𝑝 and 𝐸 away if it is clear what they
are.

Lemma A.13 provides a characterisation of this notion.
Fix 2

3 < 𝑝 ≤ 1. From now on throughout this entire section we will have 𝐸 = [0, 𝑝).
We define (𝐼𝑝

𝑛 )𝑛 inductively as follows: Set 𝐼𝑝
0 ≔ [−1, 1) and for 𝐼𝑝

𝑛 given let 𝐼𝑝
𝑛+1 be the

most antiparallel interval to 𝔯(𝐼𝑝
𝑛 ). Now define6

𝕀𝑝
𝑛 ≔ {𝐼𝑝

0 , …, 𝐼𝑝
𝑛 },

5If 𝑝 = 1 we may call every interval 𝐽 with |𝐸 ∩ 𝐽| = |𝐽| most 𝑝-antiparallel. The case 𝑝 = 1
is never interesting in this work though. Also we could obviously extend this definition to 𝑝 ∈ (0, 1

2
).

However there the notion does not reflect the intended meaning anymore, as Lemma A.13 does not hold
for 𝑝 ∈ (0, 1

2
). And we will never consider the case 𝑝 ∈ (0, 1

2
) anyways.

6We don’t mention the parameter 𝑝 in 𝑆𝑛(𝑟) because 𝑝 is fixed in this section anyways. 𝕀𝑝
𝑛, 𝕀𝑝 will also

be used outside this section though.
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𝕀𝑝 ≔ {𝐼𝑝
0 , 𝐼𝑝

1 , …},

𝑆𝑛(𝑟) ≔ {𝐼𝑝
0 } ∪ {𝑟(1 + 𝑟)𝑘−1𝐼𝑝

𝑘 | 1 ≤ 𝑘 ≤ 𝑛},

𝑆∞(𝑟) ≔ 𝑆0(𝑟) ∪ 𝑆1(𝑟) ∪ ….

Further define

𝐴𝑛(𝑟) ≔ 𝐴(𝑆𝑛(𝑟)),
𝐵𝑛(𝑟) ≔ 𝐵(𝑆𝑛(𝑟)),

𝐴∞ ≔ lim
𝑛→∞

𝐴𝑛(𝑟),

𝐵∞ ≔ lim
𝑛→∞

𝐵𝑛(𝑟).

The main result of this section is the following Theorem 3.1:

Theorem 3.1. Let 𝑝 ≥ 2
3 . Then

inf{
𝐵(𝑆)
𝐴(𝑆) | 𝕀(𝑆) = 𝕀𝑝

} = inf
𝑟∈ℝ

𝐵∞(𝑟)
𝐴∞(𝑟)

. (28)

We believe that the left hand side in (28) can actually be replaced by

inf{
𝐵𝐸(𝑆)
𝐴𝐸(𝑆) | 𝐸 ⊂ [0, 1), 𝑆 compatible and (𝐸, 𝑝)-dominant}.

We couldn’t prove that though. But in the next section 4 we will show some reductions
that allow to enlarge the domain of the infimum in (28) a bit, see Theorem 4.1 and
Theorem 4.7.

Furthermore, we will compute the right hand side in (28):

Proposition 3.2. Abbreviate 2𝑝
2𝑝−1 = (2𝑝)′. Then

inf
𝑟∈ℝ

𝐵∞(𝑟)
𝐴∞(𝑟)

= 1
2𝑝

(2 − √(2𝑝)′)2

(1 − √(2𝑝)′)2
= 27(𝑝 − 2

3
)2 + 𝒪(𝑝 − 2

3
)3

Because this term will appear quite often, abbreviate

𝑓(𝑟) = 1
1 − (1 − 1

2𝑝 )(1 + 𝑟)2
.

Note that 𝐼𝑝
1 , 𝐼𝑝

2 , … all satisfy the first case |𝐼𝑝
𝑛+1| = |𝔯(𝐼𝑝

𝑛 )∩𝐸|
𝑝 in the definition of ’most

antiparallel’. Thus for 𝑛 ≥ 1 we have

|𝐼𝑝
𝑛 | = (1 − 1

2𝑝
)𝑛−1.
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Therefore

𝐴𝑛(𝑟) = |𝐸 ∩ 𝐼𝑝
0 | +

𝑛−1

∑
𝑘=0

(1 + 𝑟)2𝑘𝑟2|𝐸 ∩ 𝐼𝑝
𝑘+1|

= 𝑝 + 𝑝𝑟2
𝑛−1

∑
𝑘=0

[(1 + 𝑟)2(1 − 1
2𝑝

)]𝑘

= 𝑝 + 𝑝𝑟2
{

{1 − [(1 − 1
2𝑝 )(1 + 𝑟)2]

𝑛
}𝑓(𝑟) (1 − 1

2𝑝 )(1 + 𝑟)2 ≠ 1
𝑛 (1 − 1

2𝑝 )(1 + 𝑟)2 = 1

This converges for 𝑛 → ∞ if and only if

(1 − 1
2𝑝

)(1 + 𝑟)2 < 1

|1 + 𝑟| <
√2𝑝

√2𝑝 − 1
= √(2𝑝)′.

Hence

𝐴∞(𝑟) =
{

𝑝 + 𝑝𝑟2𝑓(𝑟) 𝑟 ∈ (−√(2𝑝)′ − 1, √(2𝑝)′ − 1))
∞ else

Now to 𝐵𝑛(𝑟). First, by the definition of 𝑆𝑘(𝑟) it can be checked inductively that for
0 ≤ 𝑘 ≤ 𝑛 on 𝔯(𝐼𝑝

𝑘 ∩ 𝐸) the function 𝐹𝑘(𝑟) attains the value

(1 + 𝑟)𝑘−1 + 𝑟(1 + 𝑟)𝑘−1 = (1 + 𝑟)𝑘

and for 𝑘 ≥ 1 on 𝔩(𝐼𝑝
𝑘 ∩ 𝐸) it attains the value

(1 + 𝑟)𝑘−1 − 𝑟(1 + 𝑟)𝑘−1 = (1 − 𝑟)(1 + 𝑟)𝑘−1.

The latter is also the value that 𝐹𝑛(𝑟) attains on 𝔩(𝐼𝑝
𝑘 ∩ 𝐸). Furthermore

|𝔯(𝐼𝑝
𝑘 ∩ 𝐸)| = (𝑝 − 1

2
)|𝐼𝑝

𝑘| = 𝑝(1 − 1
2𝑝

)𝑘,

|𝔩(𝐼𝑝
𝑘 ∩ 𝐸)| = |𝔩(𝐼𝑝

𝑘)| = 1
2

(1 − 1
2𝑝

)𝑘−1.

Now as 𝔩(𝐼𝑝
1 ) ∪ … ∪ 𝔩(𝐼𝑝

𝑛 ) ∪ 𝔯(𝐼𝑝
𝑛 ∩ 𝐸) is a partition of 𝐸 this means

𝐵𝑛(𝑟) =
𝑛−1

∑
𝑘=0

1
2

(1 − 1
2𝑝

)𝑘(1 − 𝑟)2(1 + 𝑟)2𝑘 + 𝑝(1 − 1
2𝑝

)𝑛(1 + 𝑟)2𝑛 (29)
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= 1
2

(1 − 𝑟)2
{

{1 − [(1 − 1
2𝑝 )(1 + 𝑟)2]

𝑛
}𝑓(𝑟) (1 − 1

2𝑝 )(1 + 𝑟)2 ≠ 1
𝑛 (1 − 1

2𝑝 )(1 + 𝑟)2 = 1

+ 𝑝[(1 − 1
2𝑝

)(1 + 𝑟)2]
𝑛

=
⎧
⎪
⎨
⎪
⎩

1
2 (1 − 𝑟)2{1 − [(1 − 1

2𝑝 )(1 + 𝑟)2]
𝑛
}𝑓(𝑟)

+𝑝[(1 − 1
2𝑝 )(1 + 𝑟)2]

𝑛 (1 − 1
2𝑝 )(1 + 𝑟)2 ≠ 1

1
2 (1 − 𝑟)2𝑛 + 𝑝 (1 − 1

2𝑝 )(1 + 𝑟)2 = 1

Hence just like for 𝐴∞(𝑟) we get

𝐵∞(𝑟) =
{

1
2 (1 − 𝑟)2𝑓(𝑟) 𝑟 ∈ (−√(2𝑝)′ − 1, √(2𝑝)′ − 1),
∞ else

. (30)

Lemma 3.3. The allowed range of 𝑟, (−√(2𝑝)′ − 1, √(2𝑝)′ − 1), lies left of the point
1.

Proof. Since 2𝑝 > 4
3 we have

(2𝑝)′ < (4
3

)′ =
4
3

4
3 − 1

=
4
3
1
3

= 4 (31)

so that √(2𝑝)′ − 1 < 2 − 1 = 1.

Proof of Proposition 3.2.

𝐵∞(𝑟)
𝐴∞(𝑟)

=
1
2 (1 − 𝑟)2𝑓(𝑟)

𝑝 + 𝑝𝑟2𝑓(𝑟)
= 1

2𝑝
(1 − 𝑟)2

1 − (1 − 1
2𝑝 )(1 + 𝑟)2 + 𝑟2

.

This means

𝑝[1 − (1 − 1
2𝑝

)(1 + 𝑟)2 + 𝑟2]
2 d
d𝑟

𝐵∞(𝑟)
𝐴∞(𝑟)

= −(1 − 𝑟)[1 − (1 − 1
2𝑝

)(1 + 𝑟)2 + 𝑟2] − (1 − 𝑟)2[−(1 − 1
2𝑝

)(1 + 𝑟) + 𝑟]

= −1 + 𝑟 − 𝑟2 + 𝑟3 − 𝑟 + 2𝑟2 − 𝑟3 + (1 − 1
2𝑝

)(1 − 𝑟2)[1 + 𝑟 + 1 − 𝑟]

= −1 + 𝑟2 + (1 − 1
2𝑝

)(1 − 𝑟2)2
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= (1 − 𝑟2)[1 − 1
𝑝

]. (32)

By Lemma 3.3 in the allowed range of 𝑟, (32) is positive for 𝑟 ≤ −1 and negative for
𝑟 ≥ −1. Thus the infimum of 𝐵∞(𝑟)

𝐴∞(𝑟) will be approached at the boundaries, where (1 −
1
2𝑝 )(1 + 𝑟)2 = 1 so that

𝐵∞(𝑟)
𝐴∞(𝑟)

→ 1
2𝑝

(1 − 𝑟)2

𝑟2

and thus

𝑟 → −√(2𝑝)′ − 1 ∶
𝐵∞(𝑟)
𝐴∞(𝑟)

→ 1
2𝑝

(2 + √(2𝑝)′)2

(1 + √(2𝑝)′)2
,

𝑟 → √(2𝑝)′ − 1 ∶
𝐵∞(𝑟)
𝐴∞(𝑟)

→ 1
2𝑝

(2 − √(2𝑝)′)2

(1 − √(2𝑝)′)2
.

Now note that 2𝑝 ≤ 2 so that (2𝑝)′ ≥ 2′ = 2 so that together with (31), Lemma A.23
says that the smaller of the two limits is

1
2𝑝

(2 − √(2𝑝)′)2

(1 − √(2𝑝)′)2
(33)

which thus is the global infimum of 𝐵∞(𝑟)
𝐴∞(𝑟) .

It remains to compute (33) for 𝑝 close to 2
3 . First note that if 𝑎 > 0 and 𝑓 ≥ 0, 𝑓(𝑥) =

𝒪(𝑥) then
1

𝑎 + 𝑓(𝑥)
= 1

𝑎
+ 𝒪(𝑥). (34)

Thus since 2𝑝 − 1 = 1
3 + 2(𝑝 − 2

3 ) we have

1
2𝑝 − 1

= 3 + 𝒪(𝑝 − 2
3

)

and

(2𝑝)′ − 4 =
2𝑝 − 8𝑝 + 4

2𝑝 − 1
= − 6

2𝑝 − 1
(𝑝 − 2

3
) = −18(𝑝 − 2

3
) + 𝒪(𝑝 − 2

3
)2.

Therefore by √4 + 𝑥 = 2 + 1
4𝑥 + 𝒪(𝑥2) and with 𝑥 = (2𝑝)′ − 4 we get

√(2𝑝)′ − 2 = 1
4

[(2𝑝)′ − 4] + 𝒪[(2𝑝) − 4]2 = −9
2

(𝑝 − 2
3

) + 𝒪(𝑝 − 2
3

)2. (35)
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Invoking (34) once more and 2𝑝 = 4
3 + 2(𝑝 − 2

3 ) we get

1
2𝑝

= 4
3

+ 𝒪(𝑝 − 2
3

),

and by (34) and (35)
1

√(2𝑝)′ − 1
= 1 + 𝒪(𝑝 − 2

3
).

Altogether this implies

1
2𝑝

(2 − √(2𝑝)′)2

(1 − √(2𝑝)′)2
= 4

3
92

22 (𝑝 − 2
3

)2 + 𝒪(𝑝 − 2
3

)3 = 27(𝑝 − 2
3

)2 + 𝒪(𝑝 − 2
3

)3.

Lemma 3.4. There is a 𝑟min ≥ 0 such that

𝐵∞(𝑟min) = inf{𝐵𝐸(𝑆) ∣ 1𝟙𝐸 ∈ 𝑆, 𝕀(𝑆) = 𝕀𝑝}. (36)

Proof. Let 𝑚 be the infimum on the right hand side of (36). By Theorem 2.1 we have
𝑚 > 0. Applying the minimization to the interval [1

2 , 𝑝) instead of [0, 𝑝) we obtain

𝑚 = inf
𝑟∈ℝ

1
2

(1 − 𝑟)2 +
(𝑝 − 1

2 )

𝑝
(1 + 𝑎)2𝑚.

Since the right hand side is a quadratic polynomial, the infimum is attained for some
𝑟min, i.e.

𝑚 = 1
2

(1 − 𝑟min)2 + (1 − 1
2𝑝

)(1 + 𝑟min)2𝑚. (37)

First note that we can’t have 𝑟min = 1 because then by Lemma 3.3 we’d have (1− 1
2𝑝 )(1+

𝑟min)2 > 1, and together with 𝑚 > 0 this would contradict (37). Thus 1
2 (1 − 𝑟min)2 > 0

so that (37) and 𝑚 > 0 give

(1 − 1
2𝑝

)(1 + 𝑟min)2 < 1. (38)

Now we insert (37) for 𝑚 in the right hand side of (37) 𝑛 times and get

𝑚 =
𝑛

∑
𝑘=0

1
2

(1 − 1
2𝑝

)𝑘(1 + 𝑟min)2𝑘(1 − 𝑟min)2 + [(1 − 1
2𝑝

)(1 + 𝑟min)2]
𝑛+1𝑚. (39)

Comparing this with (29) we see that the right hand side of (39) tends to 𝐵∞(𝑟min) for
𝑛 → ∞ because the second summand in (39) tends to 0 by (38).
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Remark. Another way to prove Lemma 3.4 is to compute the left hand side of (36) using
(30), and to compute the right hand side of (36) by induction on 𝑛 where we only take
the infimum over 𝑆 with |𝑆| = 𝑛. This way we could also avoid the use of Theorem 2.1.

Lemma 3.5. For 𝑟 > 𝑟min in the allowed range of 𝑟 we have

𝜕
𝜕𝑟

𝐵∞(𝑟) > 0.

Proof.
𝜕
𝜕𝑟

𝑓(𝑟) = 2(1 − 1
2𝑝

)(1 + 𝑟)𝑓(𝑟)2

𝜕
𝜕𝑟

𝐵∞(𝑟) = −(1 − 𝑟)𝑓(𝑟) + 1
2

(1 − 𝑟)2 𝜕
𝜕𝑟

𝑓(𝑟)

= 𝑓(𝑟)2(1 − 𝑟)[−[1 − (1 − 1
2𝑝

)(1 + 𝑟)2] + (1 − 𝑟)(1 − 1
2𝑝

)(1 + 𝑟)]

= 𝑓(𝑟)2(1 − 𝑟)[−1 + 2(1 − 1
2𝑝

)(1 + 𝑟)]

The first two factors are strictly greater than zero by Lemma 3.3. Since we know by
Lemma 3.4 that 𝐵∞(𝑟) has a minimum at 𝑟min, the third factor must be zero at 𝑟min.
Since the third factor is a first order polynomial in 𝑟 with strictly positive derivative, it
will be positive for all 𝑟 > 𝑟min. Hence such will be the entire product.

Proof of Theorem 3.1. We only have to consider finite 𝑆 on the left hand side of (28).
By Lemma A.1 it suffices to consider the case that all coefficients in 𝑆 are nonnegative.
Now let 𝐼𝑝

𝑛 be the largest interval in 𝑆 with nonzero coefficient. By scaling we may
assume that the coefficient is 1. Orthogonally split

ℎ𝐼𝑝
𝑛 ,𝐸 = −𝟙𝔩(𝐼𝑝

𝑛 )∩𝐸 + 𝟙𝔯(𝐼𝑝
𝑛 )∩𝐸.

We apply Lemma A.8 with 𝑢 = −𝟙𝔩(𝐼𝑝
𝑛 )∩𝐸, 𝑣 = 𝟙𝔯(𝐼𝑝

𝑛 )∩𝐸 and then apply Lemma A.10.
The validity of the hypothesis of Lemma A.10 can be seen when looking at the calcu-
lations of the proof of Lemma A.1. So this means it suffices to consider 𝑆 ⧵ {ℎ𝐼𝑝

𝑛 ,𝐸} ∪
{𝟙𝔯(𝐼𝑝

𝑛 )∩𝐸}. Then by dilating and translating from 𝔯(𝐼𝑝
𝑛 ) to [0, 1), we may pass to an 𝑆

with 𝕀(𝑆) ⊂ 𝕀𝑝, 1 ⋅ [−1, 1) ∈ 𝑆. Since we may furthermore always add intervals with
coefficients 0, it suffices to consider the case that for some 𝑛, 𝕀(𝑆) = 𝕀𝑝

𝑛.
So we have shown that it remains to prove that for all 𝑛 and 𝑆 with 𝕀(𝑆) = 𝕀𝑝

𝑛, 1 ⋅
[−1, 1) ∈ 𝑆 there is an 𝑟 ≥ 0 with (1 − 1

2𝑝 )(1 + 𝑟)2 < 1 such that

𝐴𝐸(𝑆∞(𝑟)) ≥ 𝐴𝐸(𝑆),
𝐵𝐸(𝑆∞(𝑟)) ≤ 𝐵𝐸(𝑆).
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We proceed by induction on 𝑛.
The case 𝑛 = 0 works with 𝑟 = 0. Now assume it holds for 𝑛 and let 𝑆 be a sequence

with 𝕀(𝑆) = 𝕀𝑝
𝑛+1, 1 ⋅ [−1, 1) ∈ 𝑆. Again by Lemma A.1 it suffices to consider the case

that all coefficients are positive. Denote the coefficient in front of 𝐼𝑝
1 by 𝑟1. Now set

𝑇 ≔ 𝑆 ⧵ {𝐼𝑝
0 , 𝑟1𝐼𝑝

1 } ∪ {(1 + 𝑟1)𝟙𝐼𝑝
2 ∩𝐸}.

Then by the inductive hypothesis translated and dilated to 𝐼𝑝
2 instead of [0, 1) and with

the coefficients scaled by (1 + 𝑟1), there is an 𝑟2 ≥ 0 with (1 − 1
2𝑝 )(1 + 𝑟2)2 < 1 such that

𝑇 ′ ≔ {(1 + 𝑟1)𝟙𝐼𝑝
2 ∩𝐸, (1 + 𝑟1)𝑟2𝐼𝑝

2 , (1 + 𝑟1)(1 + 𝑟2)𝑟2𝐼𝑝
3 , (1 + 𝑟1)(1 + 𝑟2)2𝑟2𝐼𝑝

4 , …}

satisfies

𝐴𝐸(𝑇 ′) ≥ 𝐴𝐸(𝑇 ),
𝐵𝐸(𝑇 ′) ≤ 𝐵𝐸(𝑇 ).

Now with
𝑆′ ≔ 𝑇 ′ ⧵ {(1 + 𝑟1)𝟙𝐼𝑝

2 ∩𝐸} ∪ {𝐼𝑝
0 , 𝑟1𝐼𝑝

1 }

we have

𝐴𝐸(𝑆′) = 𝐴𝐸(𝑇 ′) − ‖(1 + 𝑟1)𝟙𝐼𝑝
2 ∩𝐸‖2

2 + ‖ℎ𝐼𝑝
0 ,𝐸‖2

2 + ‖𝑟1ℎ𝐼𝑝
1 ,𝐸‖2

2

≥ 𝐴𝐸(𝑇 ) − ‖(1 + 𝑟1)𝟙𝐼𝑝
2 ∩𝐸‖2

2 + ‖ℎ𝐼𝑝
0 ,𝐸‖2

2 + ‖𝑟1ℎ𝐼𝑝
1 ,𝐸‖2

2

= 𝐴𝐸(𝑆),
𝐵𝐸(𝑆′) = ‖𝐹𝐸(𝑆′)‖2

𝐿2([0, 1
2 ))

+ ‖𝐹𝐸(𝑆′)‖𝐿2([ 1
2 ,1))

= ‖ℎ𝐼𝑝
0 ,𝐸 + 𝑟1ℎ𝐼𝑝

1 ,𝐸‖2
𝐿2([0, 1

2 ))
+ ‖𝐹𝐸(𝑇 ′)‖2

𝐿2([ 1
2 ,1))

≤ ‖ℎ𝐼𝑝
0 ,𝐸 + 𝑟1ℎ𝐼𝑝

1 ,𝐸‖2
𝐿2([0, 1

2 ))
+ ‖𝐹𝐸(𝑇 )‖2

𝐿2([ 1
2 ,1))

= 𝐵𝐸(𝑆).

So if we can show that we may now pass to 𝑟 = 𝑟1 = 𝑟2 while further increasing 𝐴 and
decreasing 𝐵, then note that we have transformed 𝑆′ into the form 𝑆∞(𝑟) needed for the
induction step. Denote

𝐴(𝑟1, 𝑟2) ≔ 𝐴𝐸(𝑆′),
𝐵(𝑟1, 𝑟2) ≔ 𝐵𝐸(𝑆′).

Then

𝐴(𝑟1, 𝑟2) = 𝑝 + 𝑝𝑟2
1 + (1 − 1

2𝑝
)(1 + 𝑟1)2(𝐴∞(𝑟2) − 𝑝)
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= 𝑝 + 𝑝𝑟2
1 + (1 − 1

2𝑝
)(1 + 𝑟1)2𝑝𝑟2

2𝑓(𝑟2),

𝐵(𝑟1, 𝑟2) = 1
2

(1 − 𝑟1)2 + (1 − 1
2𝑝

)(1 + 𝑟1)2𝐵∞(𝑟2)

= 1
2

(1 − 𝑟1)2 + (1 − 1
2𝑝

)(1 + 𝑟1)2 1
2

(1 − 𝑟2)2𝑓(𝑟2).

It remains to show that there is an 𝑟 ≥ 0 with (1 − 1
2𝑝 )(1 + 𝑟)2 < 1 such that 𝐴∞(𝑟) ≥

𝐴(𝑟1, 𝑟2) and 𝐵∞(𝑟) ≤ 𝐵(𝑟1, 𝑟2). If with 𝑟min from Lemma 3.4 we have 𝐴(𝑟1, 𝑟2) ≤
𝐴(𝑟min), then by Lemma 3.4 𝑟 ≔ 𝑟min already does the job. So it suffices to show that
for each 𝑐 > 𝐴∞(𝑟min)

inf{𝐵(𝑟1, 𝑟2) | 𝑟1 ≥ 0, 𝑟2 ≥ 0, (1 − 1
2𝑝

)(1 + 𝑟2)2 < 1, 𝐴(𝑟1, 𝑟2) = 𝑐}

is attained on the diagonal 𝑟1 = 𝑟2. Denote the strip

𝐷 ≔ {(𝑟1, 𝑟2) | (1 − 1
2𝑝

)(1 + 𝑟2)2 < 1}

and for 𝑐 > 𝐴∞(𝑟min) denote

𝐷𝑐 ≔ {(𝑟1, 𝑟2) ∈ 𝐷 | 𝐴(𝑟1, 𝑟2) = 𝑐}.

Then on 𝐷 ∩ {𝑟1 ≥ 0}, 𝐴 is smooth and increases with 𝑟1 and 𝑟2, i.e. ∇𝐴 points into
the upper right quadrant. Furthermore on 𝐷 ∩ {𝑟1 ≥ 0}, 𝐴 tends to ∞ whenever (𝑟1, 𝑟2)
approaches the boundary of 𝐷, while 𝐴(0, 0) ≤ 𝐴∞(𝑟min) < 𝑐. That means𝐷𝑐∩{𝑟1, 𝑟2 ≥
0} is a smooth curve of finite length that starts and ends somewhere on 𝑟1 = 0. In order
to get the infimum of 𝐵 on 𝐷𝑐 ∩ {𝑟1, 𝑟2 ≥ 0}, we look for the points where ∇𝐴 and ∇𝐵
are parallel.

𝜕1𝐴(𝑟1, 𝑟2) = 2𝑝𝑟1 + 2(1 − 1
2𝑝

)(1 + 𝑟1)𝑝𝑟2
2𝑓(𝑟2)

= 𝑓(𝑟2){2𝑝𝑟1[1 − (1 − 1
2𝑝

)(1 + 𝑟2)2] + 2(1 − 1
2𝑝

)(1 + 𝑟1)𝑝𝑟2
2}

= 𝑓(𝑟2){2𝑝𝑟1 + (2𝑝 − 1)[−𝑟1(1 + 𝑟2)2 + (1 + 𝑟1)𝑟2
2]}

= 𝑓(𝑟2){2𝑝𝑟1 + (2𝑝 − 1)[−𝑟1 − 2𝑟1𝑟2 + 𝑟2
2]}

= 𝑓(𝑟2){𝑟1 + (2𝑝 − 1)𝑟2(−2𝑟1 + 𝑟2)}

𝜕2𝐴(𝑟1, 𝑟2) = (1 − 1
2𝑝

)(1 + 𝑟1)2𝑝{2𝑟2𝑓(𝑟2) + 𝑟2
2(1 − 1

2𝑝
)2(1 + 𝑟2)𝑓 (𝑟2)2

}
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= (1 − 1
2𝑝

)(1 + 𝑟1)2𝑝𝑓(𝑟2)2
{2𝑟2[1 − (1 − 1

2𝑝
)(1 + 𝑟2)2]

+ 𝑟2
2(1 − 1

2𝑝
)2(1 + 𝑟2)}

= (1 − 1
2𝑝

)(1 + 𝑟1)2𝑝𝑓(𝑟2)2
{𝑟2(1 − 1

2𝑝
)(1 + 𝑟2)[−2(1 + 𝑟2) + 2𝑟2]

+ 2𝑟2}

= (1 − 1
2𝑝

)(1 + 𝑟1)2𝑝𝑓(𝑟2)2
{−2𝑟2(1 − 1

2𝑝
)(1 + 𝑟2) + 2𝑟2}

= (1 − 1
2𝑝

)(1 + 𝑟1)22𝑝𝑟2[1 − (1 − 1
2𝑝

)(1 + 𝑟2)]𝑓 (𝑟2)2

= (1 − 1
2𝑝

)(1 + 𝑟1)2𝑟2[1 − (2𝑝 − 1)𝑟2]𝑓(𝑟2)2

𝜕1𝐵(𝑟1, 𝑟2) = −(1 − 𝑟1) + (1 − 1
2𝑝

)(1 + 𝑟1)(1 − 𝑟2)2𝑓(𝑟2)

= 𝑓(𝑟2){−(1 − 𝑟1)[1 − (1 − 1
2𝑝

)(1 + 𝑟2)2] + (1 − 1
2𝑝

)(1 + 𝑟1)(1 − 𝑟2)2
}

= 𝑓(𝑟2){−(1 − 𝑟1) + (1 − 1
2𝑝

)[(1 − 𝑟1)(1 + 𝑟2)2 + (1 + 𝑟1)(1 − 𝑟2)2]}

= 𝑓(𝑟2){−(1 − 𝑟1) + (1 − 1
2𝑝

)2[1 + 𝑟2
2 − 2𝑟1𝑟2]}

𝜕2𝐵(𝑟1, 𝑟2) = (1 − 1
2𝑝

)(1 + 𝑟1)2
{−(1 − 𝑟2)𝑓 (𝑟2) + (1 − 𝑟2)2(1 − 1

2𝑝
)(1 + 𝑟2)𝑓 (𝑟2)2

}

= (1 − 1
2𝑝

)(1 + 𝑟1)2𝑓(𝑟2)2

⋅ {−(1 − 𝑟2)[1 − (1 − 1
2𝑝

)(1 + 𝑟2)2] + (1 − 𝑟2)2(1 − 1
2𝑝

)(1 + 𝑟2)}

= (1 − 1
2𝑝

)(1 + 𝑟1)2𝑓(𝑟2)2

⋅ {(1 − 𝑟2)(1 − 1
2𝑝

)(1 + 𝑟2)(1 + 𝑟2 + 1 − 𝑟2) − (1 − 𝑟2)}

= (1 − 1
2𝑝

)(1 + 𝑟1)22(1 − 𝑟2)[(1 − 1
2𝑝

)(1 + 𝑟2) − 1
2]𝑓(𝑟2)2

The gradients are parallel if and only if the following expression equals zero:

𝑓(𝑟2)−3 det(∇𝐴(𝑟1, 𝑟2) | ∇𝐵(𝑟1, 𝑟2))
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= [𝑟1 + (2𝑝 − 1)𝑟2(−2𝑟1 + 𝑟2)](1 − 1
2𝑝

)(1 + 𝑟1)22(1 − 𝑟2)[(1 − 1
2𝑝

)(1 + 𝑟2) − 1
2]

− (1 − 1
2𝑝

)(1 + 𝑟1)2𝑟2[1 − (2𝑝 − 1)𝑟2]{−(1 − 𝑟1) + (1 − 1
2𝑝

)2[1 + 𝑟2
2 − 2𝑟1𝑟2]}

= (1 − 1
2𝑝

)(1 + 𝑟1)2
{[𝑟1 + (2𝑝 − 1)𝑟2(−2𝑟1 + 𝑟2)]2(1 − 𝑟2)[(1 − 1

2𝑝
)(1 + 𝑟2) − 1

2]

− 𝑟2[1 − (2𝑝 − 1)𝑟2](−(1 − 𝑟1) + (1 − 1
2𝑝

)2[1 + 𝑟2
2 − 2𝑟1𝑟2])}

= (1 − 1
2𝑝

)(1 + 𝑟1)2

⋅{[(𝑟1 − 𝑟2) + 𝑟2 + (2𝑝 − 1)𝑟2(−2(𝑟1 − 𝑟2) − 𝑟2)]2(1 − 𝑟2)[(1 − 1
2𝑝

)(1 + 𝑟2) − 1
2]

− 𝑟2[1 − (2𝑝 − 1)𝑟2]

⋅ (−1 + (𝑟1 − 𝑟2) + 𝑟2 + (1 − 1
2𝑝

)2[1 − 𝑟2
2 − 2(𝑟1 − 𝑟2)𝑟2])}

= (1 − 1
2𝑝

)(1 + 𝑟1)2

⋅ {(𝑟1 − 𝑟2)([1 − 2(2𝑝 − 1)𝑟2]2(1 − 𝑟2)[(1 − 1
2𝑝

)(1 + 𝑟2) − 1
2]

− 𝑟2[1 − (2𝑝 − 1)𝑟2][1 − 4𝑟2(1 − 1
2𝑝

)])

+ (𝑟2[1 − (2𝑝 − 1)𝑟2]2(1 − 𝑟2)[(1 − 1
2𝑝

)(1 + 𝑟2) − 1
2]

− 𝑟2[1 − (2𝑝 − 1)𝑟2][−1 + 𝑟2 + (1 − 1
2𝑝

)2(1 − 𝑟2
2)])}

= (1 − 1
2𝑝

)(1 + 𝑟1)2(𝑟1 − 𝑟2)

⋅ {[1 − 2(2𝑝 − 1)((1 + 𝑟2) − 1)]2[2 − (1 + 𝑟2)][(1 − 1
2𝑝

)(1 + 𝑟2) − 1
2]

[−(1 + 𝑟2) + 1][2𝑝 − (2𝑝 − 1)(1 + 𝑟2)][5 − 2
𝑝

− 4(1 + 𝑟2)(1 − 1
2𝑝

)]}

= (1 − 1
2𝑝

)(1 + 𝑟1)2(𝑟1 − 𝑟2)

{(1 + 𝑟2)2
[−2(2𝑝 − 1) − 8(2𝑝 − 1)(1 − 1

2𝑝
) − [1 + 2(2𝑝 − 1)]2(1 − 1

2𝑝
)

+ (2𝑝 − 1)(5 − 2
𝑝

) + 4(2𝑝 − 1) + 4(2𝑝 − 1)(1 − 1
2𝑝

)]
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+ (1 + 𝑟2)[4(2𝑝 − 1) + [1 + 2(2𝑝 − 1)] + 4[1 + 2(2𝑝 − 1)](1 − 1
2𝑝

)

− 2𝑝(5 − 2
𝑝

) − (2𝑝 − 1)(5 − 2
𝑝

) − 4(2𝑝 − 1)]

+ [−2[1 + 2(2𝑝 − 1)] + 2𝑝(5 − 2
𝑝

)]}

= (1 − 1
2𝑝

)(1 + 𝑟1)2(𝑟1 − 𝑟2)

⋅ {(1 + 𝑟2)2(1 − 1
2𝑝

)[−4𝑝 − 8(2𝑝 − 1) − 2 − 4(2𝑝 − 1)

+ 2𝑝(5 − 2
𝑝

) + 8𝑝 + 4(2𝑝 − 1)]

+ (1 + 𝑟2)[𝑝(8 + 4 + 16 − 10 − 10 − 8)

+ (−4 − 1 + 4 − 8 − 8 + 4 + 5 + 4 + 4) + 1
𝑝

(2 − 2)]

+ [2𝑝 − 2]}

= (1 − 1
2𝑝

)(1 + 𝑟1)2(𝑟1 − 𝑟2){(1 + 𝑟2)2(1 − 1
2𝑝

)[−2𝑝 + 2] + [2𝑝 − 2]}

= −2(1 − 𝑝)(1 − 1
2𝑝

)(1 + 𝑟1)2(𝑟1 − 𝑟2) 1
𝑓(𝑟2)

This equals zero if and only if 𝑟1 = 𝑟2. Hence 𝐵(𝑟1, 𝑟2) has exactly one local extremum
on 𝐷𝑐 ∩ {𝑟1, 𝑟2 ≥ 0} that is not an endpoint, because 𝐴(𝑟, 𝑟) = 𝐴∞(𝑟) is strictly in-
creasing for 𝑟 ≥ 0. So let ( ̃𝑟, ̃𝑟) ∈ 𝐷𝑐 ∩ {𝑟1, 𝑟2 ≥ 0} be that unique extremum. If it
is a local mininmum, it is also the global minimum, because if there was another point
(𝑟1, 𝑟2) ∈ 𝐷𝑐 ∩ {𝑟1, 𝑟2 ≥ 0} with 𝐵(𝑟1, 𝑟2) < 𝐵( ̃𝑟, ̃𝑟), there would have to be a second
local extremum in between ( ̃𝑟, ̃𝑟) and (𝑟1, 𝑟2).

Since for 𝑟 ≥ 𝑟min we have
d
d𝑟𝐴(𝑟, 𝑟) > 0 and by Lemma 3.5 also d

d𝑟𝐵(𝑟, 𝑟) > 0, ∇𝐴
and ∇𝐵 must be parallel and not antiparallel at ( ̃𝑟, ̃𝑟). Further by our computation

sign det(∇𝐴(𝑟1, 𝑟2) | ∇𝐵(𝑟1, 𝑟2)) = sign(𝑟2 − 𝑟1).

That means that if we move from ( ̃𝑟, ̃𝑟) along 𝐷𝑐 ∩ {𝑟1, 𝑟2 ≥ 0} in the direction where
𝑟1 increases and 𝑟2 decreases, det(∇𝐴 ∣ ∇𝐵) becomes negative which means that ∇𝐵
bends into the direction of motion, implying that 𝐵 increases. Since it gets the other sign
if we move the other way, 𝐵 also increases in that direction. Thus our local extremum is
a minimum and we are done.
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4 Extensions of Theorem 3.1

4.1 The Case 𝐸 = [0, 𝑏)
The main result of this subsection is the following Theorem 4.1.

Theorem 4.1. Let 𝑝 > 2
3 , 𝐸 ⊂ [0, 1) and 𝑆 = {𝑎1𝐼1, 𝑎2𝐼2, …} be a set of compatible

𝐸-dominant intervals with some coefficients, where for 𝑖 = 1, 2… we have 𝐼𝑖+1 ⊂ 𝐼𝑖.
Then there is a 𝑇 with 𝕀(𝑇 ) = 𝕀𝑝 and such that

𝐵[0,𝑝)(𝑇 )
𝐴[0,𝑝)(𝑇 )

≤
𝐵𝐸(𝑆)
𝐴𝐸(𝑆)

.

Corollary 4.2. Let 𝑝 > 2
3 , 𝑏 ∈ [0, 1] and 𝐸 = [0, 𝑏) and 𝑆 be a set of compatible 𝐸-

dominant intervals with some coefficients. Then there is a 𝑇 with 𝕀(𝑇 ) = 𝕀𝑝 such that

𝐵[0,𝑝)(𝑇 )
𝐴[0,𝑝)(𝑇 )

≤
𝐵𝐸(𝑆)
𝐴𝐸(𝑆)

.

Proof of Corollary 4.2. By Lemma A.10 we may remove those intervals from 𝑆 that do
not contain 𝑏, since all their respective restricted Haar functions are orthogonal to all
other restricted Haar functions. Then call the remaining intervals 𝐼1, 𝐼2, …. Because
they are compatible and all contain 𝑏, they can be ordered in such a way such that for
𝑖 = 1, 2, … we have 𝐼𝑖+1 ⊂ 𝐼𝑖.

We first show a few lemmas and propositions that provide the steps in the proof of
Theorem 4.1.

Definition. For vectors 𝑢, 𝑣 ≠ 0 we define

∢[𝑢, 𝑣] ≔
⟨𝑢, 𝑣⟩

‖𝑢‖‖𝑣‖
.

If 0 ∈ {𝑢, 𝑣} we set
∢[𝑢, 𝑣] ≔ 0.

Definition. For 𝐸 ⊂ [0, 1), an ordered set of compatible intervals

𝕀 = {𝐼1, 𝐼2, …}

is called nested if for all 𝑖 = 1, 2, … we have

𝐼𝑖+1 ⊂ 𝔯(𝐼𝑖).
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Remark. Let 𝕀 be compatible and nested and for all 𝐼 ∈ 𝕀, 𝐼 ≠ [−1, 1) assume |𝔩(𝐼) ∩
𝐸| ≥ |𝔯(𝐼) ∩ 𝐸|. Then for any 𝐼, 𝐽 ∈ 𝕀 we have ∢[ℎ𝐼,𝐸, ℎ𝐽 ,𝐸] ≤ 0.

Definition. For a nested sequence 𝑆 = {𝑎0𝐼0, 𝑎1𝐼1, …} define

𝑈(𝑆) ≔ {𝑘 ≥ 1 | |𝑎𝑘| > |
𝑘−1

∑
𝑖=0

𝑎𝑖|}.

Proposition 4.3. Let 𝑝 > 2
3 , 𝐸 ⊂ [0, 1) and 𝑆 = {𝑎0𝐼0, …, 𝑎𝑛𝐼𝑛} be a nested sequence

of compatible 𝐸-dominant intervals. Then there is an 𝐸′ and a nested sequence 𝑇 of
compatible 𝐸′-dominant intervals with

𝐵𝐸′(𝑇 )
𝐴𝐸′(𝑇 )

≤
𝐵𝐸(𝑆)
𝐴𝐸(𝑆)

(40)

and 𝑈(𝑇 ) = ∅.

Proof. Assume 𝑈(𝑆) ≠ ∅ and take 𝑘 = min𝑈(𝑆). Abbreviate

𝑆0 ≔ {𝑎0𝐼0, …, 𝑎𝑘−1𝐼𝑘−1},
𝑆1 ≔ {𝑎𝑘𝐼𝑘, …, 𝑎𝑛𝐼𝑛}.

Wewill prove the proposition by induction on |𝑆1| = |𝑆|−min𝑈(𝑆). In case 𝑈(𝑆) = ∅
we set min𝑈(𝑆) = |𝑆|. This is the base case where there is nothing to be done. So
assume 𝑘 = min𝑈(𝑆) < |𝑆|.

If 𝐹𝐸(𝑆0)𝟙𝐼𝑘
= 0 then 𝐹𝐸(𝑆0) and 𝐹𝐸(𝑆1) are orthogonal so that by Lemma A.9,

(40) holds for 𝐸′ ≔ 𝐸 and 𝑇 ≔ 𝑆0 or 𝑇 ≔ 𝑆1. For the case 𝑇 = 𝑆0 we are done
because 𝑈(𝑆0) = ∅. Since 𝑆1 ≠ ∅ which by definition impliesmin𝑈(𝑆1) ≥ 1 we have
for the case 𝑇 = 𝑆1 that |𝑆1| − min𝑈(𝑆1) < |𝑆1| = |𝑆| − min𝑈(𝑆) so that we may
apply the inductive hypothesis to 𝑆1.

Thus it remains to consider 𝐹𝐸(𝑎0𝐼0, …, 𝑎𝑘−1𝐼𝑘−1)𝟙𝐼𝑘
≠ 0. Now for |𝔩(𝐼𝑘) ∩ 𝐸| ≷

|𝔯(𝐼𝑘) ∩ 𝐸| set

𝑢 ≔ 𝐹𝐸(𝑎0𝐼0, …, 𝑎𝑘−1𝐼𝑘)𝟙𝐼𝑘
= (

𝑘−1

∑
𝑖=0

𝑎𝑖)𝟙𝐼𝑘∩𝐸,

𝑣 ≔ ±(
𝑘−1

∑
𝑖=0

𝑎𝑖)ℎ𝐼𝑘,𝐸,

𝑎 ≔ ±
𝑎𝑘

∑𝑘−1
𝑖=0 𝑎𝑖

,

where we take (e.g.) the positive sign for the case of equality. Since 𝑝 > 1
2 we have

⟨𝑢, 𝑣⟩ > −‖𝑢‖‖𝑣‖ and by the choice of the signs also ⟨𝑢, 𝑣⟩ ≤ 0. Furthermore since
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𝐼𝑘 ∈ 𝑈(𝑆) we have |𝑎| > 1. Hence we may apply Lemma A.11. Replacing 𝑏 by
𝑏(∑𝑘−1

𝑖=0 𝑎𝑖)−1, (114) becomes

‖𝐹𝐸(𝑎0𝐼0, …, 𝑎𝑘𝐼𝑘)𝟙𝐼𝑘
‖2

2 = ‖𝐹𝐸(𝑎0𝐼0, …, 𝑎𝑘−1𝐼𝑘−1,
𝑘−1

∑
𝑖=0

𝑎𝑖𝐼𝑘)𝟙𝐼𝑘‖
2

2

+ ‖𝑏𝟙𝐼𝑘∩𝐸 ± 𝑏ℎ𝐼𝑘,𝐸‖2
2 (41)

holds.
Now define 𝐸⟂ as follows: If we are in the case |𝔩(𝐼𝑘) ∩ 𝐸| ≥ |𝔯(𝐼𝑘) ∩ 𝐸| simply set

𝐸⟂ ≔ 𝐸. For later use define 𝐽 ≔ 𝔯(𝐼𝑘).
In the other case |𝔩(𝐼𝑘) ∩ 𝐸| < |𝔯(𝐼𝑘) ∩ 𝐸| set 𝐸⟂ ⧵ 𝐼𝑘 ≔ 𝐸 ⧵ 𝐼𝑘. Set 𝐸⟂ ∩

𝔩(𝐼𝑘) ≔ 𝐸 ∩ 𝔯(𝐼𝑘) − 1
2 |𝐼𝑘|. Set 𝐽 to be the interval with the same left boundary as

𝔯(𝐼𝑘) but length |𝐸∩𝔩(𝐼𝑘)|
|𝐸∩𝔯(𝐼𝑘)| |𝔯(𝐼𝑘)| < |𝔯(𝐼𝑘)|. Then set 𝐸⟂ ∩ 𝔯(𝐼𝑘) to be a translated and

dilated version of 𝐸 ∩ 𝔯(𝐼𝑘) according to the transformation 𝔩(𝐼𝑘) → 𝐽. Then we have
|𝐸⟂ ∩ 𝔩(𝐼𝑘)| = |𝐸 ∩ 𝔯(𝐼𝑘)|, |𝐸⟂ ∩ 𝔯(𝐼𝑘)| = |𝐸 ∩ 𝔩(𝐼𝑘)|.

This means in both cases we have ‖𝑏𝟙𝐼𝑘∩𝐸 ± 𝑏ℎ𝐼𝑘,𝐸‖2
2 = ‖𝑏𝟙𝐼𝑘∩𝐸⟂ + 𝑏ℎ𝐼𝑘,𝐸⟂‖2

2 so
that we may rewrite (41) as

‖𝐹𝐸(𝑎0𝐼0, …, 𝑎𝑘𝐼𝑘)𝟙𝐼𝑘
‖2

2 = ‖𝐹𝐸(𝑎0𝐼0, …, 𝑎𝑘−1𝐼𝑘−1,
𝑘−1

∑
𝑖=0

𝑎𝑖𝐼𝑘)𝟙𝐼𝑘‖
2

2

+ ‖𝑏𝟙𝐼𝑘∩𝐸⟂ + 𝑏ℎ𝐼𝑘,𝐸⟂‖2
2. (42)

Now while the function on the left hand side of (42) also has mass on 𝔩(𝐼𝑘), both func-
tions on the right are only supported on 𝔯(𝐼𝑘). In particular
𝐹𝐸(𝑎0𝐼0, …, 𝑎𝑘−1𝐼𝑘−1, ∑𝑘−1

𝑖=0 𝑎𝑖𝐼𝑘)𝟙𝐼𝑘
is just a scaled version of 𝐹𝐸(𝑎0𝐼0, …, 𝑎𝑘𝐼𝑘)𝟙𝐼𝑘

and 𝑏𝟙𝐼𝑘∩𝐸⟂ +𝑏ℎ𝐼𝑘,𝐸⟂ is additionally dilated according to the transformation 𝔯(𝐼𝑘) → 𝐽.
This means that for

𝐹tail ≔ 𝐹𝐸(𝑎𝑘+1𝐼𝑘+1, …, 𝑎𝑛𝐼𝑛)

and 𝐹 ⟂
tail, which shall be 𝐹tail dilated according to the transformation 𝔯(𝐼𝑘) → 𝐽, and

𝑐∥, 𝑐⟂ with those signs such that the right hand sides of (43) are negative, we have7

∢[𝐹𝐸(𝑎0𝐼0, …, 𝑎𝑘𝐼𝑘)𝟙𝐼𝑘
, 𝐹tail] ≥ ∢[𝐹𝐸(𝑎0𝐼0, …, 𝑎𝑘−1𝐼𝑘−1,

𝑘−1

∑
𝑖=0

𝑎𝑖𝐼𝑘)𝟙𝐼𝑘
, 𝑐∥𝐹tail]

= ∢[𝑏𝟙𝐼𝑘∩𝐸⟂ + 𝑏ℎ𝐼𝑘,𝐸⟂, 𝑐⟂𝐹 ⟂
tail]. (43)

Also fix the absolute values of 𝑐∥, 𝑐⟂ such that

(𝑐∥)2|𝔯(𝐼𝑘)| + (𝑐⟂)2|𝐽 | = 𝔯(𝐼𝑘), (44)
7(43) also holds for any other function supported on 𝔯(𝐼𝑘) instead of 𝐹tail.
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(𝑐⟂)2|𝐽 |
(𝑐∥)2|𝔯(𝐼𝑘)|

=
‖𝑏𝟙𝐼𝑘∩𝐸⟂ + 𝑏ℎ𝐼𝑘,𝐸⟂‖2

2

‖𝐹𝐸(𝑎0𝐼0, …, 𝑎𝑘−1𝐼𝑘−1, ∑𝑘−1
𝑖=0 𝑎𝑖𝐼𝑘)𝟙𝐼𝑘‖

2
2

. (45)

Now we add dilated and scaled versions of 𝐹tail to both sides of (42) and get by (43),
(44), (45) that

‖𝐹𝐸(𝑆)𝟙𝐼𝑘
‖2

2 ≥ ‖𝐹𝐸(𝑎0𝐼0, …, 𝑎𝑘−1𝐼𝑘−1,
𝑘−1

∑
𝑖=0

𝑎𝑖𝐼𝑘)𝟙𝐼𝑘
+ 𝑐∥𝐹tail‖

2

2

+ ‖𝑏𝟙𝐼𝑘∩𝐸⟂ + 𝑏ℎ𝐼𝑘,𝐸⟂ + 𝑐⟂𝐹 ⟂
tail‖

2
2.

Adding ‖𝐹𝐸(𝑆)𝟙𝐼∁
𝑘
‖2

2 to both sides we get

‖𝐹𝐸(𝑆)‖2
2 ≥ ‖𝐹𝐸(𝑎0𝐼0, …, 𝑎𝑘−1𝐼𝑘−1,

𝑘−1

∑
𝑖=0

𝑎𝑖𝐼𝑘) + 𝑐∥𝐹tail‖
2

2

+ ‖𝑏𝟙𝐼𝑘∩𝐸⟂ + 𝑏ℎ𝐼𝑘,𝐸⟂ + 𝑐⟂𝐹 ⟂
tail‖

2
2. (46)

Furthermore by (115) we have

‖𝑎𝑘ℎ𝐼𝑘,𝐸‖2
2 ≤ ‖

𝑘−1

∑
𝑖=0

𝑎𝑖ℎ𝐼𝑘,𝐸‖2
2 + ‖𝑏𝟙𝐼𝑘∩𝐸‖2

2 + ‖𝑏ℎ𝐼𝑘,𝐸‖2
2

= ‖
𝑘−1

∑
𝑖=0

𝑎𝑖ℎ𝐼𝑘,𝐸‖2
2 + ‖𝑏𝟙𝐼𝑘∩𝐸⟂‖2

2 + ‖𝑏ℎ𝐼𝑘,𝐸⟂‖2
2. (47)

For 𝑖 = 𝑘 + 1, …, 𝑛 set 𝐼⟂
𝑖 to be the translate and dilate of 𝐼𝑖 according to the transform-

ation 𝔯(𝐼𝑘) → 𝐽. Then adding ∑𝑖≠𝑘 ‖𝑎𝑖ℎ𝐼𝑖,𝐸‖2
2 to both sides of (47) and applying (44)

we get

∞

∑
𝑖=0

‖𝑎𝑖ℎ𝐼𝑖,𝐸‖2
2 ≤

𝑘−1

∑
𝑖=0

‖𝑎𝑖ℎ𝐼𝑖,𝐸‖2
2 + ‖

𝑘−1

∑
𝑖=0

𝑎𝑖ℎ𝐼𝑘,𝐸‖2
2 +

∞

∑
𝑖=𝑘+1

‖𝑐∥ℎ𝐼𝑖,𝐸‖2
2

+ ‖𝑏𝟙𝐼𝑘∩𝐸⟂‖2
2 + ‖𝑏ℎ𝐼𝑘,𝐸⟂‖2

2 +
∞

∑
𝑖=𝑘+1

‖𝑐⟂𝑎𝑖ℎ𝐼⟂
𝑖 ,𝐸‖2

2. (48)

Now set

𝑇1 ≔ {𝑎0𝐼0, …, 𝑎𝑘−1𝐼𝑘−1, (
𝑘−1

∑
𝑖=0

𝑎𝑖)𝐼𝑘, 𝑐∥𝑎𝑘+1𝐼𝑘+1, …, 𝑐∥𝑎𝑛𝐼𝑛}, 𝐸1 ≔ 𝐸,

𝑇2 ≔ {𝑏𝟙𝐼𝑘
, 𝑏𝐼𝑘, 𝑐⟂𝑎𝑘+1𝐼⟂

𝑘+1, …, 𝑐⟂𝑎𝑛𝐼⟂
𝑛 }, 𝐸2 ≔ 𝐸⟂.

37



Then combining (46) and (48) we see that by Lemma A.24 there is an 𝑖 ∈ {1, 2} with

𝐵𝐸𝑖
(𝑇𝑖)

𝐴𝐸𝑖
(𝑇𝑖)

≤
𝐵𝐸(𝑆)
𝐴𝐸(𝑆)

.

Also we have

|𝑇𝑖| − min𝑈(𝑇𝑖) ≤ (𝑛 + 1) − (𝑘 + 1) < (𝑛 + 1) − 𝑘 = |𝑆| − min𝑈(𝑆)

so that we may apply the inductive hypothesis to 𝑇𝑖, 𝐸𝑖.

Proposition 4.4. Let 𝑝 > 2
3 . Let 𝐸 ⊂ [0, 1) and 𝑆 = {𝑎1𝐼1, 𝑎2𝐼2, …} be compatible,

𝐸-dominant and nested with 𝑈(𝑆) = ∅. Then there is an 𝐸′ ⊂ [0, 1) and a 𝑇 which is
compatible, 𝐸′-dominant and nested with 𝑈(𝑇 ) = ∅ and

𝐵𝐸′(𝑇 )
𝐴𝐸′(𝑇 )

≤
𝐵𝐸(𝑆)
𝐴𝐸(𝑆)

and where for each 𝐼 ∈ 𝕀(𝑇 ), 𝐼 ≠ [−1, 1) we have

|𝔩(𝐼) ∩ 𝐸′| ≥ |𝔯(𝐼) ∩ 𝐸′|. (49)

Proof. We prove the proposition by induction on the number of indices 𝑖 for which (49)
fails for 𝐼𝑖, 𝐸. In the base case there are no such indices so there is nothing to be done.
So assume such indices exist and let 𝑖 be the largest index for which (49) fails. Since
𝑈(𝑆) = ∅ we have |𝑎𝑖| ≤ | ∑𝑖−1

𝑗=1 𝑎𝑗|. Since we may simply remove 𝑎𝑖𝐼𝑖 from 𝑆 if 𝑎𝑖 = 0
it suffices to consider ∑𝑖−1

𝑗=1 𝑎𝑗 ≠ 0. Then by rescaling we may pass to ∑𝑖−1
𝑗=1 𝑎𝑗 = 1.

Abbreviate

𝑆0 ≔ {𝑎1𝐼1, …, 𝑎𝑖−1𝐼𝑖−1},
𝑆1 ≔ {𝑎𝑖+1𝐼𝑖+1, 𝑎𝑖+2𝐼𝑖+2, …}.

Then 𝐹𝐸(𝑆0)𝟙𝐼𝑖
= 𝟙𝐼𝑖∩𝐸. Now there are two cases to consider:

Case 𝑎𝑖 ≥ 0 Since (49) fails we have that ∢[𝟙𝐼𝑖∩𝐸, ℎ𝐼𝑖,𝐸] ≥ 0. Therefore there is an
𝑎 ≥ 𝑎𝑖 s.t.

‖𝟙𝐼𝑖∩𝐸 + 𝑎𝑖ℎ𝐼𝑖,𝐸‖2
2 = ‖𝟙𝐼𝑖∩𝐸‖2

2 + ‖𝑎ℎ𝐼𝑖,𝐸‖2
2 = ‖𝟙𝐼𝑖∩𝐸‖2

2 + ‖𝑎𝟙𝐼𝑖∩𝐸‖2
2. (50)

Now decompose 𝐼𝑖 into two intervals 𝐼∥ ∪ 𝐼⟂ = 𝐼𝑖 and take ̃𝐸 such that

• ̃𝐸 ⧵ 𝐼𝑖 = 𝐸 ⧵ 𝐼𝑖,
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• | ̃𝐸 ∩ 𝐼𝑖| = |𝐸 ∩ 𝐼𝑖|,

• 𝐼∥ ∩ ̃𝐸 is a dilate and translate of 𝔯(𝐼𝑖) ∩ 𝐸,

• ‖𝟙𝐼𝑖∩𝐸 + 𝑎𝑖ℎ𝐼𝑖,𝐸‖2
𝐿2(𝔯(𝐼𝑖))

= ‖𝟙𝐼𝑖∩ ̃𝐸‖2
𝐿2(𝐼∥) + ‖𝑎𝟙𝐼𝑖∩ ̃𝐸‖2

𝐿2(𝐼∥).

This is possible due to (50) and |𝔯(𝐼𝑖)∩𝐸|
|𝔯(𝐼𝑖)|

≥ |𝐼𝑖∩𝐸|
|𝐼𝑖|

. Now 𝟙𝐼∥∩ ̃𝐸 and 𝑎𝟙𝐼∥∩ ̃𝐸 are translated,

dilated and scaled versions of (𝟙𝐼𝑖∩𝐸+𝑎𝑖ℎ𝐼𝑖,𝐸)𝟙𝔯(𝐼𝑖). Take𝑆1
1 and𝑆2

1 to be their respective
corresponding translated, dilated and scaled versions of 𝑆1. Then

𝐴𝐸(𝑆1) = 𝐴 ̃𝐸(𝑆1
1 ) + 𝐴 ̃𝐸(𝑆2

1 ),
‖𝟙𝔯(𝐼𝑖)∩𝐸 + 𝑎𝑖ℎ𝐼𝑖,𝐸∩𝔯(𝐼𝑖) + 𝐹𝐸(𝑆1)‖2

2 = ‖𝟙𝐼∥∩ ̃𝐸 + 𝐹 ̃𝐸(𝑆1
1 )‖2

2 + ‖𝑎𝟙𝐼∥∩ ̃𝐸 + 𝐹 ̃𝐸(𝑆2
1 )‖2

2

and thus, recalling that 𝐹𝐸(𝑆0)𝟙𝐼𝑖
= 𝟙𝐼𝑖∩𝐸 and hence also 𝐹 ̃𝐸(𝑆0)𝟙𝐼𝑖

= 𝟙𝐼𝑖∩ ̃𝐸, we get

𝐴𝐸(𝑆) = 𝐴𝐸(𝑆0) + ‖𝑎𝑖ℎ𝐼𝑖,𝐸‖2
2 + 𝐴𝐸(𝑆1)

≤ 𝐴 ̃𝐸(𝑆0) + ‖𝑎𝟙𝐼𝑖∩ ̃𝐸‖2
2 + 𝐴 ̃𝐸(𝑆1

1 ) + 𝐴 ̃𝐸(𝑆2
1 )

= 𝐴 ̃𝐸(𝑆0 ∪ 𝑆1
1 ) + 𝐴 ̃𝐸({𝑎𝟙𝐼𝑖∩ ̃𝐸} ∪ 𝑆2

1 )
𝐵𝐸(𝑆) = ‖𝐹𝐸(𝑆0)‖2

𝐿2(𝐼∁
𝑖 )

+ ‖𝐹𝐸(𝑆0) + 𝑎𝑖ℎ𝐼𝑖,𝐸‖2
𝐿2(𝐼𝑖)

− ‖𝐹𝐸(𝑆0) + 𝑎𝑖ℎ𝐼𝑖,𝐸‖2
𝐿2(𝔯(𝐼𝑖))

+ ‖𝐹𝐸(𝑆)‖2
𝐿2(𝔯(𝐼𝑖))

= ‖𝐹 ̃𝐸(𝑆0)‖2
𝐿2(𝐼∁

𝑖 )

+ ‖𝐹𝐸(𝑆0)‖2
𝐿2(𝐼𝑖)

+ ‖𝑎𝟙𝐼𝑖∩𝐸‖2
2

− ‖𝐹 ̃𝐸(𝑆0)‖2
𝐿2(𝐼∥) − ‖𝑎𝟙𝐼∥∩ ̃𝐸‖2

2

+ ‖𝐹 ̃𝐸(𝑆0 ∪ 𝑆1
1 )‖2

𝐿2(𝐼∥) + ‖𝑎𝟙𝐼∥∩ ̃𝐸 + 𝐹 ̃𝐸(𝑆2
1 )‖2

2

= ‖𝐹 ̃𝐸(𝑆0)‖2
𝐿2(𝐼∁

𝑖 )
+ ‖𝐹 ̃𝐸(𝑆0)‖2

𝐿2(𝐼𝑖)
− ‖𝐹 ̃𝐸(𝑆0)‖2

𝐿2(𝐼∥) + ‖𝐹 ̃𝐸(𝑆0 ∪ 𝑆2
1 )‖2

𝐿2(𝐼∥)

+ ‖𝑎𝟙𝐼𝑖∩ ̃𝐸‖2
2 − ‖𝑎𝟙𝐼∥∩ ̃𝐸‖2

2 + ‖𝑎𝟙𝐼∥∩ ̃𝐸 + 𝐹 ̃𝐸(𝑆2
1 )‖2

2

= ‖𝐹 ̃𝐸(𝑆0 ∪ 𝑆1
1 )‖2

2 + ‖𝐹 ̃𝐸({𝑎𝟙𝐼𝑖∩ ̃𝐸} ∪ 𝑆2
1 )‖2

2

The way they were scaled, both 𝑆0 ∪ 𝑆1
1 and {𝑎𝟙𝐼𝑖∩ ̃𝐸} ∪ 𝑆2

1 still satisfy 𝑈 = ∅. They
also have at least one interval less that violates (49) w.r.t. ̃𝐸 than 𝑆 does w.r.t. 𝐸, and by
Lemma A.24 one of them has a smaller 𝐵

𝐴 than 𝑆. We apply the induction hypothesis to
this sequence and are done with the first case.
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Case 𝑎𝑖 ≤ 0 Since 𝑈(𝑆) = ∅ we have |𝑎𝑖| ≤ 1. Also, if 𝑎𝑖 = −1 then all coefficients
in 𝑆1 must be zero so that we may remove 𝑆1 completely. Then we can simply turn
|𝔩(𝐼𝑖) ∩ 𝐸| < |𝔯(𝐼𝑖) ∩ 𝐸| around while preserving 𝐴 and 𝐵, by swapping 𝔩(𝐼𝑖) ∩ 𝐸
and 𝔯(𝐼𝑖) ∩ 𝐸 and flipping the sign of 𝑎𝑖. That way all properties of the proposition are
preserved and also (49) holds for all intervals because we assumed that it already holds
for 𝐼1, …, 𝐼𝑖−1 anyways.

So it suffices to consider −1 < 𝑎𝑖 ≤ 0. Then by Lemma A.16 there is an 𝑎 with
|𝑎𝑖| ≤ |𝑎| ≤ 1 and

‖𝟙𝐼𝑖∩𝐸 + 𝑎𝑖ℎ𝐼𝑖,𝐸‖2
𝐿2(𝔯(𝐼𝑖))

≤ ‖𝟙𝐼𝑖∩𝐸 − 𝑎ℎ𝐼𝑖,𝐸‖2
𝐿2(𝔩(𝐼𝑖))

, (51)

‖𝟙𝐼𝑖∩𝐸 + 𝑎𝑖ℎ𝐼𝑖,𝐸‖2
2 = ‖𝟙𝐼𝑖∩𝐸 − 𝑎ℎ𝐼𝑖,𝐸‖2

2. (52)

Now decompose 𝔯(𝐼𝑖) into two intervals 𝐼∥ ∪ 𝐼⟂ = 𝔯(𝐼𝑖) and take ̃𝐸 such that

• ̃𝐸 ⧵ 𝐼𝑖 = 𝐸 ⧵ 𝐼𝑖,

• | ̃𝐸 ∩ 𝔩(𝐼𝑖)| = |𝐸 ∩ 𝔯(𝐼𝑖)|, | ̃𝐸 ∩ 𝔯(𝐼𝑖)| = |𝐸 ∩ 𝔩(𝐼𝑖)| which means

‖𝟙𝐼𝑖∩𝐸 − 𝑎ℎ𝐼𝑖,𝐸‖2
𝐿2(𝔩(𝐼𝑖))

= ‖𝟙𝐼𝑖∩ ̃𝐸 + 𝑎ℎ𝐼𝑖, ̃𝐸‖2
𝐿2(𝔯(𝐼𝑖))

,

‖𝟙𝐼𝑖∩𝐸 − 𝑎ℎ𝐼𝑖,𝐸‖2
𝐿2(𝔯(𝐼𝑖))

= ‖𝟙𝐼𝑖∩ ̃𝐸 + 𝑎ℎ𝐼𝑖, ̃𝐸‖2
𝐿2(𝔩(𝐼𝑖))

.

• 𝐼∥ ∩ ̃𝐸 is a dilate and translate of 𝔯(𝐼𝑖) ∩ 𝐸,

• ‖𝟙𝐼𝑖∩𝐸 + 𝑎𝑖ℎ𝐼𝑖,𝐸‖2
𝐿2(𝔯(𝐼𝑖))

= ‖𝟙𝐼𝑖∩ ̃𝐸 + 𝑎ℎ𝐼𝑖, ̃𝐸‖2
𝐿2(𝐼∥).

This is possible due to (51) and |𝔯(𝐼𝑖)∩𝐸|
|𝔯(𝐼𝑖)|

≥ |𝔩(𝐼𝑖)∩𝐸|
|𝔩(𝐼𝑖)|

= |𝔯(𝐼𝑖)∩ ̃𝐸|
|𝔯(𝐼𝑖)|

. Now let ̃𝑆1 be 𝑆1
translated and dilated according to 𝔯(𝐼𝑖) → 𝐼∥, and with coefficients scaled according to
1 + 𝑎𝑖 ↦ 1 + 𝑎. Then 𝐴 ̃𝐸( ̃𝑆1) = 𝐴𝐸(𝑆1) and

‖𝟙𝐼𝑖∩𝐸 + 𝑎𝑖ℎ𝐼𝑖,𝐸 + 𝐹𝐸(𝑆1)‖2
𝐿2(𝔯(𝐼𝑖))

= ‖𝟙𝐼𝑖∩ ̃𝐸 + 𝑎ℎ𝐼𝑖,𝐸 + 𝐹 ̃𝐸( ̃𝑆1)‖2
𝐿2(𝐼∥).

Therefore recalling that 𝐹𝐸(𝑆0)𝟙𝐼𝑖
= 𝟙𝐼𝑖∩𝐸 and 𝐹 ̃𝐸(𝑆0)𝟙𝐼𝑖

= 𝟙𝐼𝑖∩ ̃𝐸 we get

𝐴𝐸(𝑆) = 𝐴𝐸(𝑆0) + ‖𝑎𝑖ℎ𝐼𝑖,𝐸‖2
2 + 𝐴𝐸(𝑆1)

≤ 𝐴 ̃𝐸(𝑆0) + ‖𝑎ℎ𝐼𝑖, ̃𝐸‖2
2 + 𝐴 ̃𝐸( ̃𝑆1)

= 𝐴 ̃𝐸(𝑆0 ∪ {𝑎𝐼𝑖} ∪ ̃𝑆1),
𝐵𝐸(𝑆) = ‖𝐹𝐸(𝑆0)‖2

𝐿2(𝐼∁
𝑖 )

+ ‖𝐹𝐸(𝑆0) + 𝑎𝑖ℎ𝐼𝑖,𝐸‖2
𝐿2(𝐼𝑖)
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− ‖𝐹𝐸(𝑆0) + 𝑎𝑖ℎ𝐼𝑖,𝐸‖2
𝐿2(𝔯(𝐼𝑖))

+ ‖𝐹𝐸(𝑆0) + 𝑎𝑖ℎ𝐼𝑖,𝐸 + 𝐹𝐸(𝑆1)‖2
𝐿2(𝔯(𝐼𝑖))

= ‖𝐹 ̃𝐸(𝑆0)‖2
𝐿2(𝐼∁

𝑖 )

+ ‖𝐹𝐸(𝑆0) + 𝑎ℎ𝐼𝑖, ̃𝐸‖2
𝐿2(𝐼𝑖)

− ‖𝐹 ̃𝐸(𝑆0) + 𝑎ℎ𝐼𝑖, ̃𝐸‖2
𝐿2(𝐼∥)

+ ‖𝐹 ̃𝐸(𝑆0) + 𝑎ℎ𝐼𝑖, ̃𝐸 + 𝐹 ̃𝐸( ̃𝑆1)‖2
𝐿2(𝐼∥)

= ‖𝐹 ̃𝐸(𝑆0) ∪ {𝑎𝐼𝑖} ∪ ̃𝑆1)‖2
2

The way it is scaled, 𝑆0 ∪ {𝑎𝐼𝑖} ∪ ̃𝑆1 still satisfies 𝑈 = ∅. It also has one interval less
that violates (49) w.r.t. ̃𝐸 and a smaller 𝐵

𝐴 than 𝑆 w.r.t. 𝐸. So we may apply the induction
hypothesis to 𝑆0 ∪ {𝑎𝐼𝑖} ∪ ̃𝑆1 and are also done with the second case.

Lemma 4.5. Let 𝑝 ≥ 2
3 and 𝐸 ⊂ [0, 1). Assume 𝑛 ≥ 0 and 𝑎0, …, 𝑎𝑛−1, 𝑎 ≥ 0 and let

𝑆 = {𝑎0𝐼𝑝
0 , …, 𝑎𝑛−1𝐼𝑝

𝑛−1, 𝑎𝐼}

be compatible, 𝐸-dominant, with 𝐼 ⊂ 𝔯(𝐼𝑝
𝑛−1) and 𝑈(𝑆) = ∅ and where for all 𝐽 ∈

𝕀(𝑆), 𝐽 ≠ [−1, 1) we have |𝔩(𝐽 ) ∩ 𝐸| ≥ |𝔯(𝐽) ∩ 𝐸|. Furthermore assume 𝑛 = 0 or
𝐸 = [0, 𝑝). Then there are 𝑎′

0, …, 𝑎′
𝑛 ≥ 0 such that

𝑆′ = {𝑎′
0𝐼𝑝

0 , …, 𝑎′
𝑛𝐼𝑝

𝑛 }

satisfies

𝑈(𝑆′) = ∅,
𝐴[0,𝑝)(𝑆′) ≥ 𝐴𝐸(𝑆),
𝐵[0,𝑝)(𝑆′) ≤ 𝐵𝐸(𝑆),

‖𝐹[0,𝑝)(𝑆′)‖2
𝐿2(𝔯(𝐼𝑝

𝑛 ))
≥ ‖𝐹𝐸(𝑆)‖2

𝐿2(𝔯(𝐼)).

Proof. First consider 𝑛 = 0. Take 𝑎0 s.t.

‖𝑎′
0𝟙[0,𝑝)‖2

2 = ‖𝑎ℎ𝐼,𝐸‖2
2.

This is already the inequality for both 𝐴 and 𝐵. For the last one observe

‖𝑎′
0𝟙[0,𝑝)‖2

𝐿2(𝔯(𝐼𝑝
0 ))

= ‖𝑎′
0𝟙[0,𝑝)‖2

𝐿2([0,1)) = ‖𝑎ℎ𝐼,𝐸‖2
2 ≥ ‖𝑎ℎ𝐼,𝐸‖2

𝐿2(𝔯(𝐼)).

Also 𝑈({𝑎′
0𝐼𝑝

0 }) = ∅.
It remains to take care of the other case 𝑛 ≥ 1 and 𝐸 = [0, 𝑝). This goes in a couple

of steps.
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1. First enlarge 𝐼 while keeping |𝐼∩𝐸|
|𝐼| constant until 𝐼 ∩ 𝐸 = 𝔯(𝐼𝑝

𝑛−1) ∩ 𝐸. This is
possible because |𝔯(𝐼𝑝

𝑛−1) ∩ 𝐸| ≤ 𝑝|𝔯(𝐼𝑝
𝑛−1)| and |𝐼 ∩ 𝐸| ≥ 𝑝|𝐼|. At the same time

decrease 𝑎 so that ‖𝑎ℎ𝐼,𝐸‖2
2 stays constant. Then 𝐴𝐸(𝑆) stays constant. 𝐵𝐸(𝑆)

decreases because ℎ𝐼,𝐸 becomes more parallel to 𝟙𝐼∩𝐸, which can be seen as a
consequence of Lemma A.7. Furthermore by Lemma A.17, ‖𝐹𝐸(𝑆)‖2

𝐿2(𝔯(𝐼)) in-
creases. Since 𝑎 decreases also 𝑈(𝑆) stays empty.

2. Now we want to extend 𝐼 further to the right. We do this according to Lemma
A.18 applied to the intervals 𝐸 ∩ 𝐼𝑝

𝑛 ⊂ 𝐼 ⊂ 𝐼𝑝
𝑛 and coefficients 0 ≤ 𝑎 ≤ ∑𝑛−1

𝑖=0 𝑎𝑖.
If 𝐼 ends up being 𝐼𝑝

𝑛 then we are done.

3. Otherwise we obtain 𝑎 = ∑𝑛−1
𝑖=0 𝑎𝑖. That means that on 𝔩(𝐼) ∩ 𝐸 = 𝔩(𝐼) the

function 𝐹𝐸(𝑎0𝐼𝑝
0 , …, 𝑎𝑛−1𝐼𝑝

𝑛−1, 𝑎𝐼) vanishes. Now we keep extending 𝐼 to the
right. However this alone would decrease 𝐵 and also

‖𝐹[0,𝑝)(𝑎0𝐼𝑝
0 , …, 𝑎𝑛−1𝐼𝑝

𝑛−1, 𝑎𝐼)‖2
𝐿2(𝔯(𝐼)) (53)

because 𝔩(𝐼) ∩ 𝐸 grows and 𝔯(𝐼) ∩ 𝐸 shrinks. In order to compensate the loss in
(53) we additionally increase 𝑎𝑛−1 and 𝑎 by the same amount such that (53) stays
unchanged. That way 𝐹𝐸(𝑎0𝐼𝑝

0 , …, 𝑎𝑛−1𝐼𝑝
𝑛−1, 𝑎𝐼) stays zero on 𝔩(𝐼), decreases

on 𝔩(𝐼𝑝
𝑛−1) and remains unchanged on (𝐼𝑝

𝑛−1)∁, which means that 𝐵 decreases. 𝐴
increases due to the growth of 𝐼, 𝑎𝑛−1 and 𝑎. We want to do this until 𝐼 becomes
𝐼𝑝

𝑛 .
However if 𝑛 ≥ 2 we need to stop if 𝑎𝑛−1 reaches ∑𝑛−2

𝑖=0 𝑎𝑖 before that, so that we
don’t violate 𝑈(𝑆) = ∅. In that case 𝐹𝐸(𝑎0𝐼𝑝

0 , …, 𝑎𝑛−1𝐼𝑝
𝑛−1, 𝑎𝐼) becomes zero on

𝔩(𝐼𝑝
𝑛−1). Then we repeat this step by increasing 𝑎𝑛−2 and 𝑎𝑛−1 by the same amount,

and 𝑎 as much as 𝑎𝑛−2 + 𝑎𝑛−1. We further repeat this step for 𝑛 − 3, 𝑛 − 4, …
until either 𝐼 becomes 𝐼𝑝

𝑛 and we are done, or we arrive at the point where we
want to increase 𝑎0. In the latter case however, we may increase as long as we like
without ever violating 𝑈(𝑆) = ∅ so that eventually 𝐼 will become 𝐼𝑝

𝑛 and we are
done.

Proposition 4.6. Let 𝑝 ≥ 2
3 , 0 ≤ 𝑛 ≤ 𝑁, 𝐸 ⊂ [0, 1) and

𝑆 = {𝑎0𝐼𝑝
0 , …, 𝑎𝑛−1𝐼𝑝

𝑛−1, 𝑎𝑛𝐼𝑛, …, 𝑎𝑁𝐼𝑁}

be a compatible 𝐸-dominant nested sequence with positive coefficients and 𝑈(𝑆) = ∅
and such that for all 𝐽 ∈ 𝕀(𝑆), 𝐽 ≠ [−1, 1)we have |𝔩(𝐽 )∩𝐸| ≥ |𝔯(𝐽)∩𝐸|. Furthermore
assume that for 𝑖 = 0, …, 𝑛 − 1 we have 𝔩(𝐼𝑝

𝑖 ) ⊂ 𝐸. Let 𝑛 = 0 or |𝐸| = 𝑝. Then there is
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an 𝐸′ ⊂ [0, 1) with |𝐸′| = 𝑝 and where for 𝑖 = 0, …, 𝑛 we have 𝔩(𝐼𝑝
𝑖 ) ⊂ 𝐸′, and there is

a compatible nested 𝐸′-dominant sequence

𝑆′ = {𝑎′
0𝐼𝑝

0 , …, 𝑎′
𝑛𝐼𝑝

𝑛 , 𝑎′
𝑛+1𝐼′

𝑛+1, …, 𝑎′
𝑁𝐼′

𝑁}

with positive coefficients, 𝑈(𝑆′) = ∅ and s.t. for all 𝐽 ∈ 𝕀(𝑆′), 𝐽 ≠ [−1, 1) we have
|𝔩(𝐽 ) ∩ 𝐸′| ≥ |𝔯(𝐽 ) ∩ 𝐸′| and

𝐵𝐸′(𝑆′)
𝐴𝐸′(𝑆′)

≤
𝐵𝐸(𝑆)
𝐴𝐸(𝑆)

.

Proof. Set

𝑆0 ≔ {𝑎0𝐼𝑝
0 , …, 𝑎𝑛−1𝐼𝑝

𝑛−1, 𝑎𝑛𝐼𝑛},
𝑆1 ≔ {𝑎𝑛+1𝐼𝑛+1, …, 𝑎𝑁𝐼𝑁}.

First we would like to apply Lemma 4.5 to 𝐸, 𝑆0. We show that this is also possible
for 𝑛 ≥ 1 even though there Lemma 4.5 requires 𝐸 = [0, 𝑝): Recall that for any 𝑘
we have ⋃𝑘

𝑖=1 𝔩(𝐼𝑝
𝑖 ) ⊂ [0, 𝑝) and [0, 𝑝) ⧵ ⋃𝑘

𝑖=1 𝔩(𝐼𝑝
𝑖 ) ⊂ 𝔯(𝐼𝑝

𝑘) and |𝐼𝑝
𝑘 ∩ [0, 𝑝)| = 𝑝|𝐼𝑝

𝑘|.
Thus for any 𝐸 with |𝐸| = 𝑝 and ⋃𝑛−1

𝑖=1 𝔩(𝐼𝑝
𝑖 ) ⊂ 𝐸 and |𝐼𝑝

𝑛−1 ∩ 𝐸| ≥ 𝑝|𝐼𝑝
𝑛−1| must have

𝐸 ⧵ ⋃𝑛−1
𝑖=1 𝔩(𝐼𝑝

𝑖 ) ⊂ 𝔯(𝐼𝑝
𝑛−1). This means |𝔯(𝐼𝑝

𝑛−1) ∩ 𝐸| = |𝔯(𝐼𝑝
𝑛−1) ∩ [0, 𝑝)|. So instead of

𝐸 and 𝐼𝑛 we may take [0, 𝑝) and the interval ̃𝐼𝑛 which satisfies

|𝔩(𝐼𝑛) ∩ 𝐸| = |𝔩( ̃𝐼𝑛) ∩ [0, 𝑝)|,
|𝔯(𝐼𝑛) ∩ 𝐸| = |𝔯( ̃𝐼𝑛) ∩ [0, 𝑝)|.

Such ̃𝐼𝑛 exists by |𝔩(𝐼𝑛) ∩ 𝐸| ≥ |𝔯(𝐼𝑛) ∩ 𝐸|. Apply Lemma 4.5 to [0, 𝑝), 𝑆0 with ̃𝐼𝑛
instead of 𝐼𝑛. By Lemma A.12 the result of Lemma 4.5 also holds for 𝐸, 𝑆0.

So let 𝑆′
0 be given by Lemma 4.5. If 𝑆1 = ∅ we set 𝐸′ ≔ [0, 𝑝) and 𝑆′ ≔ 𝑆′

0 and
are done with the proof. Otherwise note that

𝐹𝐸(𝑆0)𝟙𝔯(𝐼𝑛) =
𝑛

∑
𝑖=0

𝑎𝑖𝟙𝔯(𝐼𝑛)∩𝐸 (54)

𝐹[0,𝑝)(𝑆′
0)𝟙𝔯(𝐼𝑝

𝑛 ) =
𝑛

∑
𝑖=0

𝑎′
𝑖 𝟙𝔯(𝐼𝑝

𝑛 )∩[0,𝑝) (55)

Since 𝑈(𝑆) ≠ ∅ and not all coefficients are zero we have 𝑎0 > 0, and since all coeffi-
cients are positive this means (55) is not zero. By Lemma 4.5 (55) has a greater 𝐿2-norm
than (54) and by the 𝐸-dominantness of 𝐼𝑛 we have

|𝔯(𝐼𝑝
𝑛 ) ∩ [0, 𝑝)|
|𝔯(𝐼𝑝

𝑛 )|
= 2𝑝 − 1 ≤

|𝔯(𝐼𝑛) ∩ 𝐸|
|𝔯(𝐼𝑛)|

.
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That means there is an interval 𝐼 ⊂ 𝔯(𝐼𝑝
𝑛 ) with

‖𝐹[0,𝑝)(𝑆′
0)𝟙𝐼‖2

2 = ‖𝐹𝐸(𝑆0)𝟙𝐼𝑛+1
‖2

2, (56)
|𝐼 ∩ [0, 𝑝)|

|𝐼|
=

|𝐼𝑛+1 ∩ 𝐸|
|𝐼𝑛+1|

.

Take 𝐸′ with 𝐸′ ⧵ 𝐼 = [0, 𝑝) ⧵ 𝐼 and s.t. 𝐸′ ∩ 𝐼 is the image of 𝐸 ∩ 𝐼𝑛+1 under the linear
transformation 𝐼𝑛+1 → 𝐼. Now denote

𝑆′
1 ≔ {𝑎′

𝑛+1𝐼′
𝑛+1, …, 𝑎′

𝑁𝐼′
𝑁}

where 𝕀(𝑆′
1) is the image of 𝕀(𝑆1) under 𝐼𝑛+1 → 𝐼 and 𝑎′

𝑛+1, 𝑎′
𝑛+2, … are 𝑎𝑛+1, 𝑎𝑛+2, …

multiplied by √|𝐼𝑛+1|
√|𝐼|

so that 𝐴𝐸′(𝑆′
1) = 𝐴𝐸(𝑆1) and with (56) we have

‖𝐹𝐸(𝑆)𝟙𝐼𝑛+1
‖2

2 = ‖𝐹𝐸′(𝑆′)𝟙𝐼‖2
2.

Define 𝑆′ = 𝑆′
0 ∪ 𝑆′

1. By the way 𝑎′
𝑛+1, 𝑎′

𝑛+2, … are scaled, 𝑈(𝑆′) stays just the same,
i.e. empty. Also |𝐸′| = 𝑝 and for 𝑖 = 0, …, 𝑛 we have 𝔩(𝐼𝑖) ⊂ 𝐸′. Then according to
Lemma 4.5 we have

𝐴𝐸(𝑆) = 𝐴𝐸(𝑆0) + 𝐴𝐸(𝑆1) ≤ 𝐴𝐸′(𝑆′
0) + 𝐴𝐸′(𝑆′

1).

Also by Lemma 4.5 we have

‖𝐹𝐸(𝑆0)‖2
2 ≥ ‖𝐹𝐸′(𝑆′

0)‖2
2

and by (56) and the choice of 𝐸’ we have

‖𝐹𝐸(𝑆0)𝟙𝐼𝑛+1
‖2

2 = ‖𝐹𝐸′(𝑆′
0)𝟙𝐼‖2

2.

Therefore eventually we get

‖𝐹𝐸(𝑆)‖2
2 = ‖𝐹𝐸(𝑆0)‖2

2 − ‖𝐹𝐸(𝑆0)𝟙𝐼𝑛+1
‖2

2 + ‖𝐹𝐸(𝑆)𝟙𝐼𝑛+1
‖2

2

≥ ‖𝐹𝐸′(𝑆′
0)‖2

2 − ‖𝐹𝐸′(𝑆′
0)𝟙𝐼‖2

2 + ‖𝐹𝐸′(𝑆′)𝟙𝐼‖2
2

= ‖𝐹𝐸′(𝑆′)‖2
2.

Proof of Theorem 4.1. First we want to pass to a nested 𝑆. We achieve this by go-
ing inductively through all 𝑖 = 1, 2, … with 𝕀𝑖+1 ⊂ 𝔩(𝐼𝑖) and reflecting the intervals
𝐼𝑖+1, 𝐼𝑖+2, … and 𝐸 ∩ 𝐼𝑖 around the midpoint of 𝐼𝑖. We also have to flip the signs of
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𝑎𝑖, 𝑎𝑖+1, … because a reflected Haar function is minus a Haar function. After that, 𝐴 and
𝐵 have not changed.

Now by Proposition 4.3 we may pass to a nested 𝑆 with 𝑈(𝑆) = ∅. Then by Pro-
position 4.4 we may additionally demand that for all 𝐼 ∈ 𝕀(𝑆), 𝐼 ≠ [−1, 1) we have
|𝔩(𝐼) ∩ 𝐸| ≥ |𝔯(𝐼) ∩ 𝐸|. Then for any two 𝐼, 𝐽 ∈ 𝕀(𝑆) we have ∢[ℎ𝐼,𝐸, ℎ𝐽 ,𝐸] ≤ 0,
so that by Lemma A.1 it suffices to consider the case that all coefficients are positive.
Further let 𝐼 be the largest interval in 𝕀(𝑆). If 𝐼 ≠ [−1, 1) then 𝐼 ⊂ [0, 1). Then translate
and dilate 𝑆 such that 𝐼 = [0, 1). Now we may replace 𝐼 by [−1, 1) because all other
intervals in 𝕀(𝑆) are contained in 𝔯(𝐼) by nestedness, and ℎ𝐼∩𝐸 equals 𝟙𝐸 on 𝔯(𝐼), and it
equals −𝟙𝐸 on 𝔩(𝐼). Thus 𝐴𝐸(𝑆) and 𝐵𝐸(𝑆) don’t change after the replacement.

Now we inductively apply Proposition 4.6 and eventually for some 𝑁 pass to an 𝐸
and an 𝑆 with 𝕀(𝑆) = 𝕀𝑝

𝑁 which is 𝐸-dominant and where for all 𝑛 = 1, …, 𝑁 we have
𝔩(𝐼𝑝

𝑛 ) ⊂ 𝐸 and |𝐸| = 𝑝. As we already argued in in beginning of the proof of Lemma
4.5, this already implies 𝐴𝐸(𝑆) = 𝐴[0,𝑝)(𝑆) and 𝐵𝐸(𝑆) = 𝐵[0,𝑝)(𝑆) by Lemma A.12.
Now we add the remaining intervals of 𝕀𝑝 with zero coefficients.

4.2 The Case of 4.5 Scales
The main statement in this section is the following Theorem 4.7.

Theorem 4.7. Let 𝑝 ≥ 2
3 , 𝐸 ⊂ [0, 1) and |𝐸 ∩ [0, 1

2 )| ≥ |𝐸 ∩ [1
2 , 1)|. Let 𝐼1, 𝐼2, … be

disjoint subintervals of [0, 1
2 ). Let 𝐽1, 𝐽2, … be disjoint subintervals of [1

2 , 1), 𝐼1, 𝐼2, ….
Let {𝐾𝑖𝑗 ∣ 𝑖, 𝑗 = 1, 2, …} be disjoint intervals so that for all 𝑖, 𝑗 we have 𝐾𝑖𝑗 ⊂ 𝐽𝑖.
Furthermore all intervals are assumed compatible and 𝐸, 𝑝-dominant. Let

𝑆 = {𝑎0[−1, 1), 𝑎[0, 1), 𝑎1𝐼1, 𝑎2𝐼2, …, 𝑏1𝐽1, 𝑏2𝐽2, …} ∪ {𝑐𝑖𝑗𝐾𝑖𝑗 ∣ 𝑖, 𝑗 ∈ ℕ}.

Then there is a 𝑇 with 𝕀(𝑇 ) = 𝕀𝑝 such that

𝐵[0,𝑝)(𝑇 )
𝐴[0,𝑝)(𝑇 )

≤
𝐵𝐸(𝑆)
𝐴𝐸(𝑆)

. (57)

Remark. If we only consider 𝑆 ⊂ 𝒟, then Theorem 4.7 states that (57) holds whenever
𝑆 contains only intervals of the scales 21, 20, 2−1, 2−2, and those intervals of scale 2−3

that are contained in [0, 1
2 ).

The propositions that follow provide the main steps of the proof of Theorem 4.7.
Most of them are also somehow special cases of Theorem 4.7 in that they reduce certain
compatible sets to a nested sequences. Theorem 4.7 can also be seen as the combination
of a few individual reductions to nested sequences which happen to work together.
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Proposition 4.8. Let 𝑝 ≥ 1
2 , 𝐸 ⊂ 𝐼 and 𝐽1, 𝐽2, … ⊂ 𝐼 be disjoint and 𝐸-dominant and

𝑎, 𝑎1, 𝑎2, … ∈ ℝ. Then there is an ̃𝐸 with | ̃𝐸| = |𝐸| and an ̃𝐸-dominant interval ̃𝐽 with

| ̃𝐽 ∩ ̃𝐸| ≤ ∑
𝑖=1,2,…

|𝐽𝑖 ∩ 𝐸|,

| ̃𝐽 ∩ ̃𝐸∁| ≤ ∑
𝑖=1,2,…

|𝐽𝑖 ∩ 𝐸∁|

and ̃𝑎 with

‖𝑎𝟙 ̃𝐸‖2
2 + ‖ ̃𝑎ℎ ̃𝐽 , ̃𝐸‖2

2 = ‖𝑎𝟙𝐸‖2
2 + ∑

𝑖=1,2,…
‖𝑎𝑖ℎ𝐽𝑖,𝐸‖2

2,

‖𝑎𝟙 ̃𝐸 + ̃𝑎ℎ ̃𝐽 , ̃𝐸‖2
2 ≤ ‖𝑎𝟙𝐸 + ∑

𝑖=1,2,…
𝑎𝑖ℎ𝐽𝑖,𝐸‖2

2.

Proof. By symmetry it suffices to consider the case that 𝑎 ≥ 0 and that for 𝑖 = 1, 2, …
we have |𝔩(𝐽𝑖) ∩ 𝐸| ≥ |𝔯(𝐽𝑖) ∩ 𝐸|. Then it suffices to consider 𝑎1, 𝑎2, … ≥ 0 which
follows from 𝑖 ≠ 𝑗 ∶ 𝐽𝑖 ∩ 𝐽𝑗 = ∅ for 𝑎 = 0 and from Lemma A.1 for 𝑎 > 0.

Now for each 𝑖 = 1, 2, … take 𝐸′
𝑖 ⊂ 𝐽𝑖 and 𝐽 ′

𝑖 so that |𝐸′
𝑖 | = |𝐸 ∩ 𝐽𝑖| and 𝐽 ′

𝑖 is most

antiparallel to 𝐼𝑖 w.r.t. 𝐸′
𝑖 . Further set 𝑎′

𝑖 = √
|𝐽𝑖∩𝐸|

|𝐽 ′
𝑖 ∩𝐸′|𝑎𝑖 and

𝐸′ ≔ ⋃
𝑖=1,2,…

𝐸′
𝑖 ∪ (𝐸 ⧵ ⋃

𝑖=1,2,…
𝐽𝑖).

Then

|𝐽 ′
𝑖 ∩ 𝐸′| ≤ |𝐽𝑖 ∩ 𝐸|, |𝐽 ′

𝑖 ∩ 𝐸′∁| ≤ |𝐽𝑖 ∩ 𝐸∁|, ‖𝑎′
𝑖 ℎ𝐽 ′

𝑖 ,𝐸′‖2
2 = ‖𝑎𝑖ℎ𝐽𝑖,𝐸‖2

2

and we have

‖𝑎𝟙𝐸′ + ∑
𝑖=1,2,…

𝑎′
𝑖 ℎ𝐽 ′

𝑖 ,𝐸‖2
2 ≤ ‖𝑎𝟙𝐸 + ∑

𝑖=1,2,…
𝑎𝑖ℎ𝐽𝑖,𝐸‖2

2

which follows from 𝑖 ≠ 𝑗 ∶ 𝐽𝑖 ∩ 𝐽𝑗 = ∅ for 𝑎 = 0 and from Lemma A.13 if 𝑎 > 0.
Furthermore all restricted Haar functions w.r.t. most antiparallel intervals are translates
and dilates of one another. Thus if we take ̃𝑎 in such a way that

∑
𝑖=1,2,…

‖ ̃𝑎ℎ𝐽 ′
𝑖 ,𝐸′‖2

2 = ∑
𝑖=1,2,…

‖𝑎′
𝑖 ℎ𝐽 ′

𝑖 ,𝐸′‖2
2,

then

‖𝑎𝟙𝐸′ + ∑
𝑖=1,2,…

̃𝑎ℎ𝐽 ′
𝑖 ,𝐸′‖2

2 ≤ ‖𝑎𝟙𝐸′ + ∑
𝑖=1,2,…

𝑎′
𝑖 ℎ𝐽 ′

𝑖 ,𝐸′‖2
2
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which follows from 𝑖 ≠ 𝑗 ∶ 𝐽𝑖 ∩ 𝐽𝑗 = ∅ for 𝑎 = 0, and from Lemma A.7 for 𝑎 > 0
because for all 𝑖 = 1, 2, … we have |𝐽 ′

𝑖 ∩ 𝐸′| = 𝑝|𝐽 ′
𝑖 | and 𝔩(𝐽 ′

𝑖 ) ⊂ 𝐸′. So we may take
an ̃𝐸 ⊂ 𝐼 and an interval ̃𝐽 ⊂ 𝐼 with

| ̃𝐸| = |𝐸′|,
| ̃𝐽 | = |𝐽 ′

1| + |𝐽 ′
2 | + …,

| ̃𝐽 ∩ ̃𝐸| = 𝑝| ̃𝐽 |,
𝔩( ̃𝐽 ) ⊂ ̃𝐸

so that

| ̃𝐽 ∩ ̃𝐸| = ∑
𝑖=1,2,…

|𝐽 ′
𝑖 ∩ 𝐸′| ≤ ∑

𝑖=1,2,…
|𝐽𝑖 ∩ 𝐸|,

| ̃𝐽 ∩ ̃𝐸∁| = ∑
𝑖=1,2,…

|𝐽 ′
𝑖 ∩ 𝐸′∁| ≤ ∑

𝑖=1,2,…
|𝐽𝑖 ∩ 𝐸∁|,

‖ ̃𝑎ℎ ̃𝐽 , ̃𝐸‖2
2 = ∑

𝑖=1,2,…
‖𝑎′

𝑖 ℎ𝐽 ′
𝑖 ,𝐸′‖2

2,

‖𝑎𝟙 ̃𝐸 + ̃𝑎ℎ ̃𝐽 , ̃𝐸‖2
2 = ‖𝑎𝟙𝐸′ + ∑

𝑖=1,2,…
𝑎′

𝑖 ℎ𝐽 ′
𝑖 ,𝐸‖2

2.

Proposition 4.9. Let 1 ≥ 𝑝1 ≥ 𝑝2 ≥ 0 and 𝑝 ≔ 𝑝1+𝑝2
2 ≥ 1

2 . Let 𝐸 = [0, 𝑝1
2 ) ∪ [1

2 , 1+𝑝2
2 )

and let 𝐼 be most 𝑝-antiparallel to [0, 1
2 ). Then for 𝑆 = {𝑎0[−1, 1), 𝑎[0, 1), 𝑎𝐼𝐼} we have

𝐵[0,𝑝)([−1, 1), [0, 1))
𝐴[0,𝑝)([−1, 1), [0, 1))

≤
𝐵𝐸(𝑆)
𝐴𝐸(𝑆)

.

Proof. For 𝑎0 = 0 we might as well consider {𝑎[−1, 1), 𝑎𝐼𝐼} instead of 𝑆, and then the
proposition follows from Lemma A.13. For 𝑎0 ≠ 0 it suffices to consider 𝑎0 = 1 after
rescaling. Then we split the proof into the cases 𝑎 ≤ 0, 𝑎 ≥ 1, 0 ≤ 𝑎 ≤ 1.

Case 𝑎 ≤ 0 Here it suffices to consider 𝑎𝐼 ≥ 0 because 𝟙𝐸 + 𝑎ℎ[0,1),𝐸 is positive on
𝐼 ∩ 𝐸. Set ̃𝐸 ≔ [0, 𝑝1

2 ) ∪ [1
2 , 1+𝑝1

2 ). Then

∢[ℎ[−1,1),𝐸, ℎ[0,1),𝐸] ≤ 0 = ∢[ℎ[−1,1), ̃𝐸, ℎ[0,1), ̃𝐸]. (58)

Now take ̃𝑎 ≥ 0 s.t.

‖ℎ[−1,1),𝐸 + 𝑎ℎ[0,1),𝐸‖2 = ‖ ̃𝑎ℎ[−1,1), ̃𝐸 + ̃𝑎ℎ[0,1), ̃𝐸‖2 = ‖2 ̃𝑎𝟙[0, 𝑝1
2 )‖

2
2. (59)
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Then by (58) and 𝑎 ≥ 0 we have

‖ℎ[−1,1),𝐸‖2
2 + ‖𝑎ℎ[0,1),𝐸‖2

2 ≤ ‖ ̃𝑎ℎ[−1,1), ̃𝐸‖2
2 + ‖ ̃𝑎ℎ[0,1), ̃𝐸‖2

2 = ‖2 ̃𝑎𝟙[0, 𝑝1
2 )‖

2
2. (60)

(59) reads 𝑝1
2 (1 + |𝑎|)2 + 𝑝2

2 (1 − |𝑎|)2 = 𝑝1
2 (2 ̃𝑎)2 which implies

1 + |𝑎| ≤ 2 ̃𝑎. (61)

Furthermore note that on [0, 1
2 ) the functions ℎ𝐼,𝐸 and ℎ𝐼, ̃𝐸 are equal, and ℎ[−1,1),𝐸 +

𝑎ℎ[0,1),𝐸 attains the value 1 + |𝑎|. Therefore using ⟨𝑎𝐼ℎ𝐼,𝐸, 𝟙[0, 𝑝1
2 )⟩ ≤ 0 and (61) we have

⟨𝑎𝐼ℎ𝐼,𝐸, ℎ[−1,1),𝐸 + 𝑎ℎ[0,1),𝐸⟩ = (1 + |𝑎|)⟨𝑎𝐼ℎ𝐼,𝐸, 𝟙[0, 𝑝1
2 )⟩ ≥ ⟨𝑎𝐼ℎ𝐼, ̃𝐸, 2 ̃𝑎𝟙[0, 𝑝1

2 )⟩. (62)

Now by (60) we get

𝐴𝐸(𝑆) = 𝐴[0, 𝑝1
2 )(2𝑎[−1, 1), 𝑎𝐼𝐼) (63)

and by (63), ⟨ℎ[−1,1),𝐸, 𝑎ℎ[0,1),𝐸⟩ ≥ 0 and (62) we get

𝐵𝐸(𝑆) ≥ 𝐵[0, 𝑝1
2 )(2𝑎[−1, 1), 𝑎𝐼𝐼).

Then the proposition for this case 𝑎 ≤ 0 follows by translation, dilation, scaling and
Lemma A.5 and Lemma A.13.

Case 𝑎 ≥ 1 Consider ̃𝑆 = {𝑎[−1, 1), [0, 1), −𝑎𝐼𝐼} instead. Then 𝐴𝐸(𝑆) = 𝐴𝐸( ̃𝑆)
since ‖ℎ[−1,1),𝐸‖2 = ‖ℎ[0,1),𝐸‖2. Also 𝐵𝐸(𝑆) = 𝐵𝐸( ̃𝑆) because ℎ[−1,1),𝐸 + 𝑎ℎ[0,1),𝐸 and
𝑎ℎ[−1,1),𝐸 + ℎ[0,1),𝐸 are equal on [1

2 , 1) and equal up to a factor −1 on [0, 1
2 ). Now 𝐵

𝐴 does
not change if we further pass to {[−1, 1), 1

𝑎 [0, 1), −𝑎𝐼
𝑎 𝐼}. Hence it suffices to consider

the case 0 ≤ 𝑎 ≤ 1.

Case 0 ≤ 𝑎 ≤ 1

⟨ℎ[−1,1),𝐸 + 𝑎ℎ[0,1),𝐸, ℎ𝐼,𝐸⟩ = ⟨(1 − 𝑎)𝟙𝐼∩𝐸, ℎ𝐼,𝐸⟩ = (1 − 𝑎)⟨𝟙𝐼∩𝐸, ℎ𝐼,𝐸⟩ ≤ 0.

Hence we may always pass to the case 𝑎𝐼 ≥ 0. Then

⟨𝑎ℎ[0,1),𝐸, 𝑎𝐼ℎ𝐼,𝐸⟩ = 𝑎𝑎𝐼⟨−𝟙𝐸∩𝐼, ℎ𝐼,𝐸⟩ ≥ 0

and thus

𝐵𝐸(𝑆)
𝐴𝐸(𝑆)

≥
𝐵𝐸(𝑆) − 2⟨𝑎ℎ[0,1),𝐸, 𝑎𝐼ℎ𝐼,𝐸⟩

𝐴𝐸(𝑆)
=

𝐴𝐸(𝑆) + 2⟨ℎ[−1,1),𝐸, 𝑎ℎ[0,1),𝐸 + 𝑎𝐼ℎ𝐼,𝐸⟩
𝐴𝐸(𝑆)

(64)
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Now for some 0 ≤ 𝑟 ≤ 𝑝1 to be chosen soon, set

𝐸∥ ≔ [0, 𝑟
2

) ∪ [1
2

,
1 + 𝑟(2𝑝 − 1)

2
),

𝐸⟂ ≔ [ 𝑟
2

,
𝑝1
2

) ∪ [
1 + 𝑟(2𝑝 − 1)

2
,

1 + 𝑝2
2

).

Note that 𝑟(2𝑝 − 1) = 𝑟(𝑝1 + 𝑝2 − 1) ≤ 𝑟𝑝2 ≤ 𝑝2. So 𝐸∥ ∪ 𝐸⟂ is a partition of 𝐸 which
means that

ℎ[0,1),𝐸 = ℎ[0,1),𝐸∥
+ ℎ[0,1),𝐸⟂

is an orthogonal decomposition and with

𝑆′ ≔ 𝑆 ⧵ {𝑎ℎ[0,1),𝐸} ∪ {𝑎ℎ[0,1),𝐸∥
}

we have 𝐴𝐸(𝑆) = 𝐴𝐸(𝑆′) + ‖𝑎ℎ[0,1),𝐸⟂
‖2

2 by Lemma A.8. Hence the right hand side of
(64) equals

𝐴𝐸(𝑆′) + ‖ℎ[0,1),𝐸∥
‖2

2 + 2⟨ℎ[−1,1),𝐸, 𝑎ℎ[0,1),𝐸 + 𝑎𝐼ℎ𝐼,𝐸⟩

𝐴𝐸(𝑆′) + ‖ℎ[0,1),𝐸∥
‖2

2

. (65)

Now since 𝑝1 ≥ 𝑝2 and 𝑎, 𝑎𝐼 ≥ 0 we have ⟨ℎ[−1,1),𝐸, 𝑎ℎ[0,1),𝐸 + 𝑎𝐼ℎ𝐼,𝐸⟩ ≤ 0 so that by
Lemma A.24, (65) is

≥
𝐴𝐸(𝑆′) + 2⟨ℎ[−1,1),𝐸, 𝑎ℎ[0,1),𝐸 + 𝑎𝐼ℎ𝐼,𝐸⟩

𝐴𝐸(𝑆′)
. (66)

Now we want to take 𝑟 s.t.

|𝐸⟂ ∩ [1
2

, 1)| = |𝐸⟂ ∩ [0, 1
2

)| (67)

⟺ 𝑝2 − 𝑟(2𝑝 − 1) = 𝑝1 − 𝑟

⟺ 𝑟 ≔
𝑝1 − 𝑝2
2(1 − 𝑝)

=
𝑝1 − 𝑝
1 − 𝑝

≥ 0,

⟺ 𝑝1 − 𝑟 =
𝑝1(1 − 𝑝) − (𝑝1 − 𝑝)

1 − 𝑝
=

𝑝(1 − 𝑝1)
1 − 𝑝

≥ 0

Note that for 𝑝 = 1 we may take 𝑟 arbitrarily in [0, 1]. (67) makes ℎ[0,1),𝐸⟂
orthogonal

to ℎ[−1,1),𝐸 so that (66) equals

𝐴𝐸(𝑆′) + 2⟨ℎ[−1,1),𝐸, 𝑎ℎ[0,1),𝐸∥
+ 𝑎𝐼ℎ𝐼,𝐸⟩

𝐴𝐸(𝑆′)
. (68)
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Further note that

|𝐸∥| = 𝑟
2

+
𝑟(2𝑝 − 1)

2
= 𝑟𝑝,

|𝐸∥ ∩ [1
2 , 1)|

|𝐸∥|
=

𝑝 − 1
2

𝑝
=

|[0, 𝑝) ∩ [1
2 , 1)|

|[0, 𝑝)|

and since 𝐼 is most antiparallel to [0, 1
2 ) w.r.t. [0, 𝑝1

2 ) we have

𝑟 + 2|𝐼| =
𝑝1 − 𝑝
1 − 𝑝

+ 2(1
2

−
𝑝1
2 − 𝑝1

2
1 − 𝑝

) = 1.

That means there are 𝐸1, 𝐸2 ⊂ [0, 1) such that 𝐸∥, 𝐸1, 𝐸2 are disjoint with

𝐸∥ ∪ 𝐸1 ∪ 𝐸2 = [0, 𝑝),

|𝐸1| = |𝐸2| = 𝑝|𝐼|,

|𝐸∥ ∩ [1
2 , 1)|

|𝐸∥|
=

|𝐸1 ∩ [1
2 , 1)|

|𝐸1|
=

|𝐸2 ∩ [1
2 , 1)|

|𝐸2|
=

|[0, 𝑝) ∩ [1
2 , 1)|

|[0, 𝑝)|
.

Then we have

‖ℎ[−1,1),[0,𝑝)‖2
2 = ‖ℎ[−1,1),𝐸‖2

2,
‖ℎ[0,1),𝐸1

‖2
2 = ‖ℎ𝐼,𝐸‖2

2,
⟨ℎ[−1,1),[0,𝑝), ℎ[0,1),𝐸∥

⟩ = ⟨ℎ[−1,1),𝐸, ℎ[0,1),𝐸∥
⟩,

⟨ℎ[−1,1),[0,𝑝), ℎ[0,1),𝐸1
⟩ = ⟨ℎ[−1,1),𝐸, ℎ𝐼,𝐸⟩.

Therefore with
̃𝑆 ≔ {ℎ[−1,1),[0,𝑝), 𝑎ℎ[0,1),𝐸∥

, 𝑎𝐼ℎ[0,1),𝐸1}

we can replace (68) summand for summand by

𝐴[0,𝑝)( ̃𝑆) + 2⟨ℎ[−1,1),[0,𝑝), 𝑎ℎ[0,1),𝐸∥
+ 𝑎𝐼ℎ[0,1),𝐸1

⟩

𝐴[0,𝑝)( ̃𝑆)

and since ℎ[0,1),𝐸∥
and ℎ[0,1),𝐸1

are orthogonal this equals

=
𝐵[0,𝑝)([−1, 1), 𝑎ℎ[0,1),𝐸∥

, 𝑎𝐼ℎ[0,1),𝐸1)

𝐴[0,𝑝)([−1, 1), 𝑎ℎ[0,1),𝐸∥
, 𝑎𝐼ℎ[0,1),𝐸1)
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=
𝐵[0,𝑝)([−1, 1), 𝑎ℎ[0,1),𝐸∥

, 𝑎𝐼ℎ[0,1),𝐸1
, 0ℎ[0,1),𝐸2)

𝐴[0,𝑝)([−1, 1), 𝑎ℎ[0,1),𝐸∥
, 𝑎𝐼ℎ[0,1),𝐸1

, 0ℎ[0,1),𝐸2)
. (69)

Since by Lemma A.12 the functions ℎ[0,1),𝐸∥
, ℎ[0,1),𝐸1

, ℎ[0,1),𝐸2
can be seen as translates

and dilates of one another, when we take ̃𝑎 ≥ 0 s.t.

‖𝑎ℎ[0,1),𝐸∥
‖2

2 + ‖𝑎𝐼ℎ[0,1),𝐸1
‖2

2 + ‖0ℎ[0,1),𝐸2
‖2

2 = ∑
𝑋∈{𝐸∥,𝐸1,𝐸2}

‖ ̃𝑎ℎ[0,1),𝑋‖2
2

then by Lemma A.7, (69) is greater than

𝐵[0,𝑝)([−1, 1), ̃𝑎ℎ[0,1),𝐸∥
, ̃𝑎ℎ[0,1),𝐸1

, ̃𝑎ℎ[0,1),𝐸2)

𝐴[0,𝑝)([−1, 1), ̃𝑎ℎ[0,1),𝐸∥
, ̃𝑎ℎ[0,1),𝐸1

, ̃𝑎ℎ[0,1),𝐸2)
.

By Lemma A.8 we have

=
𝐵[0,𝑝)([−1, 1), ̃𝑎[0, 1))
𝐴[0,𝑝)([−1, 1), ̃𝑎[0, 1))

and by Lemma A.5 we have

≥
𝐵[0,𝑝)([−1, 1), [0, 1))
𝐴[0,𝑝)([−1, 1), [0, 1))

.

Proposition 4.10. Let 1
2 ≤ 𝑝 ≤ 1 and 𝐸 ⊂ [0, 1) with [0, 1

2 ) ⊂ 𝐸 and |𝐸| ≥ 𝑝. Let
𝐼0, 𝐼1, … ⊂ [1

2 , 1) be disjoint 𝐸-dominant intervals and for 𝑖 = 0, 1, … let 𝑇𝑖 be a finite
subset of 𝐿2(𝐼𝑖). Assume

𝑆 = {ℎ[−1,1),𝐸, 𝑎ℎ[0,1),𝐸} ∪ 𝑇0 ∪ 𝑇1 ∪ ….

Then there is an 𝐸′ and a 𝑇 ′ which for some 𝑖 = 0, 1, … is a translated, dilated and
scaled version of 𝑇𝑖 such that

𝑆′ ≔ {ℎ[−1,1),𝐸′, 𝑎ℎ[0,1),𝐸′} ∪ 𝑇 ′ (70)

is 𝐸′-dominant and satisfies
𝐵𝐸′(𝑆′)
𝐴𝐸′(𝑆′)

≤
𝐵𝐸(𝑆)
𝐴𝐸(𝑆)

.
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Proof. We would like to redistribute 𝐸 ∩ [1
2 , 1) and translate 𝑇0, 𝑇1, … isometrically so

that there is an interval partition

[1
2

, 1) = 𝐿01 ∪ 𝐿11 ∪ 𝐿21 ∪ … (71)

such that for all 𝑖 = 0, 1, … we have 𝐼𝑖 ⊂ 𝐿𝑖1 and

|𝐸 ∩ 𝐿𝑖1|
|𝐿𝑖1|

≥ 2𝑝 − 1. (72)

This can be done as follows: For 𝑖 = 0, 1, … define 𝐿𝑖1 ≔ 𝐼𝑖. Then (72) holds. If (71)
holds or

|([
1
2 , 1) ⧵ ⋃𝑖=0,1,… 𝐿𝑖1) ∩ 𝐸|

|[
1
2 , 1) ⧵ ⋃𝑖=0,1,… 𝐿𝑖1|

≥ 2𝑝 − 1 (73)

add [1
2 , 1) ⧵ ⋃𝑖=0,1,… 𝐿𝑖1 to 𝐿01. Otherwise, since

|𝐸 ∩ [1
2 , 1)|

|[1
2 , 1)|

≥ 2𝑝 − 1

there must be a 𝑗 s.t. |𝐿𝑗1∩𝐸|
|𝐿𝑗1| > 2𝑝 − 1. Then add as much of [1

2 , 1) ⧵ ⋃𝑖=0,1,… 𝐿𝑖1 ⧵ 𝐸

to 𝐿𝑗1 so that (73) holds or |𝐿𝑗1∩𝐸|
|𝐿𝑗1| = 2𝑝 − 1. If (73) still doesn’t hold, then there

are 𝑗′, 𝑗″, … for which we can repeat the procedure until (73) holds. After that, add
[1

2 , 1)⧵⋃𝑖=0,1,… 𝐿𝑖1 to 𝐿01. Now redistribute and/or translate 𝐸 ∩[1
2 , 1) and 𝐿01, 𝐿11, …

and 𝑇0, 𝑇1, … isometrically so that 𝐿01, 𝐿11, … are intervals. Then (71) holds as an
interval partition and (72) holds.

Now for 𝑖 = 0, 1, … set

𝐿𝑖0 ≔ 𝐿𝑖1 − 1
2

,

𝐿𝑖 ≔ 𝐿𝑖0 ∪ 𝐿𝑖1,
𝐸𝑖 ≔ 𝐸 ∩ 𝐿𝑖.

Then

ℎ[−1,1),𝐸 = ∑
𝑖=0,1,…

ℎ[−1,1),𝐸𝑖
,

ℎ[0,1),𝐸 = ∑
𝑖=0,1,…

ℎ[0,1),𝐸𝑖
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are orthogonal decompositions. Now for 𝑖 = 0, 1, … define

𝑆′
𝑖 ≔ {ℎ[−1,1),𝐸𝑖

, 𝑎ℎ[0,1),𝐸𝑖
} ∪ 𝑇𝑖.

Then 𝑆′
0, 𝑆′

1, … are pairwise orthogonal and by Lemma A.8 we have

𝐴𝐸(𝑆) = 𝐴𝐸(𝑆′
0 ∪ 𝑆′

1 ∪ …),
𝐵𝐸(𝑆) = 𝐵𝐸(𝑆′

0 ∪ 𝑆′
1 ∪ …).

That means by Lemma A.9 there is an 𝑖 with

𝐵𝐸(𝑆′
𝑖 )

𝐴𝐸(𝑆′
𝑖 )

≤
𝐵𝐸(𝑆)
𝐴𝐸(𝑆)

.

Now translate and dilate 𝑆′
𝑖 , 𝐸𝑖 such that 𝐿𝑖0 = [0, 1

2 ), and then translate the right half

of 𝑆′
𝑖 , 𝐸𝑖 such that 𝐿𝑖1 = [1

2 , 1). This does not change
𝐵𝐸𝑖(𝑆

′
𝑖 )

𝐴𝐸𝑖(𝑆
′
𝑖 ) . Now 𝑆′

𝑖 is of the form

(70), and by 𝐿𝑖 ∩ [0, 1
2 ) = [0, 1

2 ) ⊂ 𝐸𝑖 and (72), 𝑆′
𝑖 is also 𝐸𝑖-dominant.

Proposition 4.11. Let 𝑝 ≥ 2
3 . Let 𝐼 be an interval, Let 1 ≥ 𝑏1 ≥ 𝑏2 ≥ 0, and with 𝑏 ≔

𝑏1+𝑏2
2 assume 𝑏 ≥ 𝑝. Let𝐸 ⊂ 𝐼with |𝔩(𝐼)∩𝐸| = 𝑏1|𝔩(𝐼)|, |𝔯(𝐼)∩𝐸| = 𝑏2|𝔯(𝐼)|. Further

assume that 𝔯(𝐼) ∩ 𝐸, 𝔩(𝐼) ∩ 𝐸 are intervals with the same left boundary as 𝔯(𝐼), 𝔯(𝐼)
respectively and 𝐽1, 𝐽2 are the respective most antiparallel intervals of 𝔩(𝐼), 𝔯(𝐼). Let
𝑎, 𝑎𝐼, 𝑎1, 𝑎2 ∈ ℝ. Denote

𝑆 ≔ {𝑎𝟙𝐼, 𝑎𝐼𝐼, 𝑎1𝐽1, 𝑎2𝐽2}.

Then there is an 𝐸′ ⊂ 𝐼 with |𝐸′| = |𝐸|, an interval partition

𝐼 = 𝐼′
∥ ∪ 𝐼′

⟂,

an interval 𝐽 ′
∥ ⊂ 𝔯(𝐼′

∥) and 𝑎even, 𝑎odd ∈ ℝ such that

𝑆′
∥,1 ≔ {𝑎𝟙𝐼′

∥
, 𝑎𝐼𝐼′

∥, 𝑎2𝐽 ′
∥},

𝑆′
∥,2 ≔ {𝑎𝟙𝐼′

⟂
, 𝑎even𝐼′

⟂},

𝑆′
⟂ ≔ {𝑎𝐼𝟙𝐼′

⟂
, 𝑎odd𝐼′

⟂}

are each compatible 𝐸′-dominant nested sequences and

𝐴𝐸(𝑆) = 𝐴𝐸′(𝑆′
∥,1 ∪ 𝑆′

∥,2) + 𝐴𝐸′(𝑆′
⟂), (74)

𝐵𝐸(𝑆) = 𝐵𝐸′(𝑆′
∥,1 ∪ 𝑆′

∥,2) + 𝐵𝐸′(𝑆′
⟂). (75)
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Remark. (74) can be written as

𝐴𝐸(𝑆 ⧵ {𝑎𝟙𝐼}) = ‖𝑎𝐼ℎ𝐼′
∥,𝐸′‖2

2 + ‖𝑎2ℎ𝐽 ′
∥,𝐸′‖2

2 + ‖𝑎evenℎ𝐼′
⟂,𝐸′‖2

2

+ ‖𝑎𝐼𝟙𝐼′
⟂,𝐸′‖2

2 + ‖𝑎oddℎ𝐼′
⟂,𝐸′‖2

2.

Proof of Proposition 4.11. For 𝑝 = 1 all functions in 𝑆 are orthogonal which makes
the statement uninteresting and obvious. Hence only consider 𝑝 < 1 from now on. By
translating and dilating it suffices to consider the case 𝐼 = [0, 1), and by scaling we may
pass to 𝑎 = 1.

Claim.
|𝐽1| ≤ |𝐽2|.

Proof. By Lemma A.13 and 𝑏1 ≥ 𝑝 we have

|𝐽1| = 1
1 − 𝑝

1 − 𝑏1
2

,

|𝐽2| =
{

1
𝑝

𝑏2
2 𝑏2 ≤ 𝑝

1
1−𝑝

1−𝑏2
2 𝑏2 ≥ 𝑝

.

Note that |𝐽2| is linearly increasing in 𝑏2 for 𝑏2 ≤ 𝑝 and linearly decreasing for 𝑏2 ≥ 𝑝.
Hence it is minimal for 𝑏2 equal to one of the boundaries. For 𝑏1 fixed, the lower bound
for 𝑏2 is given by

𝑏1+𝑏2
2 ≥ 𝑝, i.e. 𝑏2 = 2𝑝 − 𝑏1 and the upper bound is 𝑏2 = 𝑏1. If 𝑏2 = 𝑏1

then |𝐽2| = |𝐽1|√. At the lower bound we have 𝑏 = 𝑝 which implies 𝑏2 ≤ 𝑝 since
𝑏1 ≥ 𝑝. Therefore

|𝐽2| =
𝑏2
2

1
𝑝

= 1
2

2𝑝 − 𝑏1
𝑝

,

|𝐽2| − |𝐽1| =
(2𝑝 − 𝑏1)(1 − 𝑝) − (1 − 𝑏1)𝑝

2𝑝(1 − 𝑝)
=

−𝑏1 + 𝑝 + 2𝑝𝑏1 − 2𝑝2

2𝑝(1 − 𝑝)

=
(2𝑝 − 1)(𝑏1 − 𝑝)

2𝑝(1 − 𝑝)
≥ 0,

which proves the claim.

Now we may partition
𝐽2 = 𝐽2,⟂ ∪ 𝐽2,∥

in such a way that

|𝐽2,⟂| = |𝐽1|,
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|𝔩(𝐽2) ∩ 𝐽2,⟂|
|𝐽2,⟂|

=
|𝔩(𝐽2) ∩ 𝐽2,∥|

|𝐽2,∥|
= 1

2
, (76)

𝐽2,⟂ ∩ 𝔩(𝐽2) ⊂ 𝔩(𝐽2) ⊂ 𝐸,
𝐽2,∥ ∩ 𝔩(𝐽2) ⊂ 𝔩(𝐽2) ⊂ 𝐸, (77)

|𝐽2,∥ ∩ 𝐸|
|𝐽2,∥|

=
|𝐽2,⟂ ∩ 𝐸|

|𝐽2,⟂|
=

|𝐽2 ∩ 𝐸|
|𝐽2|

= 𝑝. (78)

Of course it won’t be an interval partition this time. Orthogonally decompose

ℎ𝐽2,𝐸 = ℎ𝐽2,𝐸∩𝐽2,⟂
+ ℎ𝐽2,𝐸∩𝐽2,∥

and set

ℎeven ≔ +ℎ𝐽1,𝐸 + ℎ𝐽2,𝐸∩𝐽2,⟂
,

ℎodd ≔ −ℎ𝐽1,𝐸 + ℎ𝐽2,𝐸∩𝐽2,⟂
.

Then ℎeven and ℎodd are orthogonal. Set 𝑎even, 𝑎odd such that

𝑎1ℎ𝐽1,𝐸 + 𝑎2𝟙𝐽2,⟂
ℎ𝐽2,𝐸 = 𝑎evenℎeven + 𝑎oddℎodd.

Now define

𝐼⟂ ≔ 𝐽1 ∪ 𝐽2,⟂
𝐼∥ ≔ [0, 1) ⧵ 𝐼⟂

and orthogonally decompose

ℎ[0,1),𝐸 = ℎ[0,1),𝐼⟂∩𝐸 + ℎ[0,1),𝐼∥∩𝐸.

Now define

𝑆∥,1 ≔ { 𝟙𝐼∥∩𝐸, 𝑎[0,1)ℎ[0,1),𝐸∩𝐼∥
, 𝑎2ℎ𝐽2,𝐸∩𝐽2,∥

},

𝑆∥,2 ≔ { 𝟙𝐼⟂∩𝐸, 𝑎evenℎeven, },
𝑆⟂ ≔ { 𝑎[0,1)ℎ[0,1),𝐸∩𝐼⟂

, 𝑎oddℎodd }

Since we only did orthogonal decompositions and recombinations and 𝑆∥,1, 𝑆∥,2, 𝑆⟂
span orthogonal spaces, a few applications of Lemma A.8 show that

𝐴𝐸(𝑆) = 𝐴𝐸(𝑆∥,1) + 𝐴𝐸(𝑆∥,2) + 𝐴𝐸(𝑆⟂), (79)
𝐵𝐸(𝑆) = 𝐵𝐸(𝑆∥,1) + 𝐵𝐸(𝑆∥,2) + 𝐵𝐸(𝑆⟂). (80)
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Now define

𝐼′
⟂ ≔ [0,

1 − 𝑏1
1 − 𝑝 ),

𝐼′
∥ ≔ [

1 − 𝑏1
1 − 𝑝

, 1),

𝐸′ ≔ [0,
𝑝(1 − 𝑏1)

1 − 𝑝 ) ∪ [
1 − 𝑏1
1 − 𝑝

, 1 −
𝑏1 − 𝑏2

2 )

and the interval 𝐽 ′
∥ ⊂ 𝔯(𝐼′

∥) with |𝐽 ′
∥| = |𝐽2,∥| and |𝐽 ′

∥ ∩ 𝐸′| = 𝑝|𝐽 ′
∥|. We will see soon

that such 𝐽 ′
∥ exists. Note that

1 −
𝑏1 − 𝑏2

2
= 1 + 𝑏 − 𝑏1 =

1 + 𝑏 − 𝑏1 − 𝑝 − 𝑝𝑏 + 𝑝𝑏1
1 − 𝑝

=
1 − 𝑏1 + (𝑏 − 𝑝) + 𝑝(𝑏1 − 𝑏)

1 − 𝑝
≥

1 − 𝑏1
1 − 𝑝

,

|𝐸′| =
𝑝(1 − 𝑏1) − (1 − 𝑏1) + (1 − 𝑝)(1 + 𝑏 − 𝑏1)

1 − 𝑝
=

(1 − 𝑝)𝑏
1 − 𝑝

= 𝑏 = |𝐸|.

Now we would like to show that the three linear maps induced by

ℱ ∶ 𝑆∥,1 → 𝑆′
∥,1

𝟙𝐼∥∩𝐸
ℎ[0,1),𝐼∥∩𝐸
ℎ𝐽2,𝐽2,∥∩𝐸

↦ 𝟙𝐼′
∥∩𝐸′

↦ ℎ𝐼′
∥,𝐸′

↦ ℎ𝐽 ′
∥,𝐸′

},

𝒢 ∶ 𝑆∥,2 → 𝑆′
∥,2

𝟙𝐼⟂∩𝐸
ℎeven

↦ 𝟙𝐼′
⟂∩𝐸′

↦ ℎ𝐼′
⟂,𝐸′ },

ℋ ∶ 𝑆⟂ → 𝑆′
⟂

ℎ[0,1),𝐼⟂∩𝐸
ℎodd

↦ 𝟙𝐼′
⟂∩𝐸′

↦ ℎ𝐼′
⟂,𝐸′ }

are isometries.

Claim. 𝐽 ′
∥ exists, 𝐼′

∥, 𝐼′
⟂, 𝐽 ′

∥ are 𝐸′-dominant, and for

{
𝑇 = 𝑆∥,1,
ℐ = ℱ and {

𝑇 = 𝑆∥,2,
ℐ = 𝒢

and 𝑓 ∈ 𝑇 , 𝑖 ∈ {−1, 1} we have

|ℐ (𝑓)−1({𝑖})| = |𝑓 −1({𝑖})|.
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Assume the claim holds. Then 𝑆′
∥,1, 𝑆′

∥,2, 𝑆′
⟂ are each nested sequences because for

𝑇 = 𝐼′
∥, 𝐼′

⟂, 𝐽 ′
∥ we have 𝔩(𝑇 ) ⊂ 𝐸′. Also note that

supp(ℎ[0,1),𝐼∥∩𝐸) ⊂ 𝟙−1
𝐼∥∩𝐸({1}),

supp(ℎ𝐽2,𝐽2,∥∩𝐸) ⊂ ℎ−1
[0,1),𝐼∥∩𝐸({1}),

supp(ℎeven) ⊂ 𝟙−1
𝐼⟂∩𝐸({1}),

and the same holds true for their images under ℱ and 𝒢 respectively. This means by the
claim and Lemma A.12 that ℱ , 𝒢 are isometries. Furthermore

ℎ[0,1),𝐼⟂∩𝐸 = ℎ[0,1) ⋅ 𝟙𝐼⟂,𝐸,
ℎodd = ℎ[0,1) ⋅ ℎeven

which implies that also ℋ is an isometry since 𝒢 is one. Now (74) and (75) follow from
(79) and (80) because 𝑆′

∥,1 and 𝑆′
∥,2 span orthogonal spaces. Thus it suffices to prove the

claim in order to finish the proof of the proposition.

Proof of claim.

|𝐼′
∥| = 1 −

1 − 𝑏1
1 − 𝑝

= 1 − 2|𝐽1| = |𝐼∥| (81)

|𝐼′
⟂| = 1 − |𝐼′

∥| = 1 − |𝐼∥| = |𝐼⟂| (82)

|𝐼⟂ ∩ 𝐸| = |(𝐽1 ∩ 𝐸) ∪ (𝐽2,⟂ ∩ 𝐸)| = 𝑝|𝐽1| + 𝑝|𝐽2,⟂| = 𝑝|𝐼⟂| = 𝑝|𝐼′
⟂| = |𝐼′

⟂ ∩ 𝐸′|
(83)

(83) proves the claim for 𝟙𝐼⟂∩𝐸. (83) also contains that 𝐼′
⟂ is 𝐸′-dominant and that

|𝐼∥ ∩ 𝐸| = |𝐸| − |𝐼⟂ ∩ 𝐸| = |𝐸′| − |𝐼′
⟂ ∩ 𝐸′| = |𝐼′

∥ ∩ 𝐸′|. (84)

(84) proves the claim for 𝟙𝐼∥∩𝐸. And since 𝑏 ≥ 𝑝 we have

|𝐼∥| = 1 − |𝐼⟂| = 1 − 2|𝐽1|,
|𝐼∥ ∩ 𝐸| = |𝐸| − |𝐼⟂ ∩ 𝐸| = 𝑏 − 2𝑝|𝐽1| ≥ 𝑝|𝐼∥|

so that we get by (81) and (84) that 𝐼′
∥ is 𝐸′-dominant.

Recall that 𝐽1 is most antiparallel to [0, 1
2 ) w.r.t. [0, 𝑏1

2 ) and that 𝑏1 ≥ 𝑝. Hence
|𝐽1 ⧵ 𝐸| = (1 − 𝑝)|𝐽1| = 1

2 − 𝑏1 = |[0, 1
2 ) ⧵ 𝐸| and thus [0, 1

2 ) ⧵ 𝐸 ⊂ 𝐽1. Therefore

𝐼∥ ∩ [0, 1
2

) ∩ 𝐸 = ([0, 1
2

) ⧵ 𝐽1) ∩ 𝐸 = [0, 1
2

) ⧵ 𝐽1 = 𝐼∥ ∩ [0, 1
2

) = [0, 1
2

) ⧵ 𝐽1,

(85)
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⟹ |𝐼∥ ∩ [0, 1
2

) ∩ 𝐸| = 1
2

− 1
2

1 − 𝑏1
1 − 𝑝

= 1
2

𝑏1 − 𝑝
1 − 𝑝

.

Now since 𝐼′
∥ and 𝐼′

∥ ∩ 𝐸′ are intervals with the same left boundary, |𝐼′
∥ ∩ 𝐸′| is 𝐸′-

dominant and 𝑝 ≥ 1
2 , we have

|𝔩(𝐼′
∥) ∩ 𝐸′| = |𝔩(𝐼′

∥)| = 1
2

(1 −
1 − 𝑏1
1 − 𝑝

) = |𝐼∥ ∩ [0, 1
2

)| = |𝐼∥ ∩ [0, 1
2

) ∩ 𝐸| (86)

so that by (81) and (86) also

|𝔯(𝐼′
∥)| = |𝐼∥ ∩ [1

2
, 1)|. (87)

Furthermore

|𝐼∥ ∩ [1
2

, 1) ∩ 𝐸| = |𝐼∥ ∩ 𝐸| − |𝐼∥ ∩ 𝐸 ∩ [0, 1
2

)|

and by (81),(84) and (86) we have

= |𝐼′
∥ ∩ 𝐸′| − |𝔩(𝐼′

∥) ∩ 𝐸′| = |𝔯(𝐼′
∥) ∩ 𝐸′| (88)

(86) and (88) prove the claim for ℎ[0,1),𝐼∥∩𝐸.
Now to ℎ𝐽2,𝐽2,∥∩𝐸. Note that 𝔯(𝐼′

∥) and 𝔯(𝐼′
∥) ∩ 𝐸′ are intervals with the same left

boundary. Therefore when considering (76), (77) and (78), it suffices to find an interval
𝐽 ′

∥ ⊂ 𝔯(𝐼′
∥) with |𝐽 ′

∥ ∩ 𝐸′| = |𝐽2,∥ ∩ 𝐸| and |𝐽 ′
∥| = |𝐽2,∥|. And since 𝐽2,∥ ⊂ 𝐼∥ ∩ [1

2 , 1),
the existence of such an interval 𝐽 ′

∥ follows from (87) and (88). So the claim also holds
for ℎ𝐽2,𝐽2,∥∩𝐸.

For ℎeven we have by (83) that

supp(ℎeven) = |𝐽1 ∩ 𝐸| + |𝐽2,⟂ ∩ 𝐸| = |𝐼⟂ ∩ 𝐸| = |𝐼′
⟂ ∩ 𝐸′| (89)

and by (82) that

|ℎ−1
even({−1})| = 1

2
|𝐽1| + 1

2
|𝐽2,⟂| = 1

2
|𝐼⟂| = 1

2
|𝐼′

⟂| = ℎ−1
𝐼′

⟂,𝐸′({−1}). (90)

(89) and (90) prove the claim for ℎeven.

The claim is proven and thus so is the proposition.

Proof of Theorem 4.7. By Proposition 4.8 it suffices to consider the case that for each
𝑖 the sequence 𝐾𝑖1, 𝐾𝑖2, … has length 2 and 𝐾𝑖1 ⊂ 𝔩(𝐽𝑖), 𝐾𝑖2 ⊂ 𝔯(𝐽𝑖). Furthermore
abbreviate

𝑆0 ≔ {𝑎0[−1, 1), 𝑎[0, 1), 𝑎1𝐼1, 𝑎2𝐼2, …}.
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Then for each 𝑖 = 1, 2, … with ‖𝐹𝐸(𝑆0)‖𝐿2(𝐽𝑖) = 0 take 𝑆𝐽𝑖
≔ {𝑏𝑖𝐽𝑖, 𝑐𝑖1𝐾𝑖1, 𝑐𝑖2𝐾𝑖2}, so

that 𝑆𝐽𝑖
is the subset of 𝑆 that consists of all elements contained in 𝐽𝑖. Then 𝐹𝐸(𝑆 ⧵ 𝑆𝐽𝑖

)
and 𝐹𝐸(𝑆𝐽𝑖

) are orthogonal. That means by Lemma A.9 that 𝑆 ⧵ 𝑆𝐽𝑖
or 𝑆𝐽𝑖

has a smaller
ratio 𝐵

𝐴 than 𝑆. Therefore it suffices to prove Theorem 4.7 for each 𝑆𝐽𝑖
instead of 𝑆, and

for those 𝑆 where for all 𝑖 = 1, 2, … we have

‖𝐹𝐸(𝑆0)‖𝐿2(𝐽𝑖) > 0, (91)

which by the way implies for 𝑗 = 1, 2 that also

‖𝐹𝐸(𝑆0)‖𝐿2(𝐾𝑖𝑗) > 0. (92)

For the proof for 𝑆𝐽𝑖
, note that

𝑆𝐽𝑖,1 ≔ {𝑏𝑖𝟙𝔩(𝐽𝑖)∩𝐸, −𝑐𝑖1𝐾𝑖1},
𝑆𝐽𝑖,2 ≔ {𝑏𝑖𝟙𝔯(𝐽𝑖)∩𝐸, 𝑐𝑖2𝐾𝑖2}

are orthogonal and we have by Lemma A.8 that

𝐴𝐸(𝑆𝐽𝑖
) = 𝐴𝐸(𝑆𝐽𝑖,1 ∪ 𝑆𝐽𝑖,2),

𝐵𝐸(𝑆𝐽𝑖
) = 𝐵𝐸(𝑆𝐽𝑖,1 ∪ 𝑆𝐽𝑖,2)

so that by Lemma A.9 it suffices to consider 𝑆𝐽𝑖,1 and 𝑆𝐽𝑖,2 separately. And from Lemma
A.13 it follows that for 𝑗 = 1, 2 we have

𝐵[0,𝑝)([−1, 1), [0, 1))
𝐴[0,𝑝)([−1, 1), [0, 1))

≤
𝐵𝐸(𝑆𝐽𝑖,𝑗)
𝐴𝐸(𝑆𝐽𝑖,𝑗)

,

which, after adding the remaining intervals of 𝕀𝑝 with coefficient 0 to the left hand side,
finishes the proof of Theorem 4.7 for 𝑆𝐽𝑖

instead of 𝑆.
Thus it remains to consider such 𝑆 which for 𝑖 = 1, 2, … satisfy (91) from now

on. By Proposition 4.8 applied to [0, 1
2 ), there are ̃𝐸, 𝑎′

1 ∈ ℝ, 𝐼′
1 ⊂ [0, 1

2 ) such that
̃𝑆0 ≔ {𝑎0[−1, 1), 𝑎[0, 1), 𝑎′

1𝐼′
1} is ̃𝐸-dominant and

𝐴 ̃𝐸( ̃𝑆0) = 𝐴𝐸(𝑆0),
𝐵 ̃𝐸( ̃𝑆0) ≤ 𝐵𝐸(𝑆0).

Then by Proposition 4.9 we have

𝐵[0,𝑝)([−1, 1), [0, 1))
𝐴[0,𝑝)([−1, 1), [0, 1))

≤
𝐵 ̃𝐸( ̃𝑆0)
𝐴 ̃𝐸( ̃𝑆0)

.
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Now rescale the coefficients in 𝑆 in such a way that

𝐵𝐸(𝑆0) = 𝐵[0,𝑝)([−1, 1), [0, 1)). (93)

Then since 𝐵 ̃𝐸( ̃𝑆0)
𝐴 ̃𝐸( ̃𝑆0) ≤ 𝐵𝐸(𝑆0)

𝐴𝐸(𝑆0) we have

𝐴𝐸(𝑆0) ≤ 𝐴[0,𝑝)([−1, 1), [0, 1)). (94)

(93) and (94) also hold if we replace [0, 𝑝) by some 𝐸′ with

|𝐸′| = 𝑝, [0, 1
2

) ⊂ 𝐸′. (95)

Due to (93) and since for 𝑖 = 1, 2, … we have (91) and |𝐽𝑖∩𝐸|
|𝐽𝑖|

≥ 𝑝 ≥ 2𝑝 − 1 =
|[ 1

2 ,1)∩𝐸′|

|[ 1
2 ,1)|

, we can take an 𝐸′ with (95) and disjoint 𝐽 ′
1 , 𝐽 ′

2 , … ⊂ [1
2 , 1) in such a way that

for 𝑖 = 1, 2, … we have

|𝔩(𝐽 ′
𝑖 ) ∩ 𝐸′|

|𝔩(𝐽 ′
𝑖 )|

=
|𝔩(𝐽𝑖) ∩ 𝐸|

|𝔩(𝐽𝑖)|
,

|𝔯(𝐽 ′
𝑖 ) ∩ 𝐸′|

|𝔯(𝐽 ′
𝑖 )|

=
|𝔯(𝐽𝑖) ∩ 𝐸|

|𝔯(𝐽𝑖)|
, (96)

‖𝐹𝐸′([−1, 1), [0, 1))‖2
𝐿2(𝐽 ′

𝑖 ) = ‖𝐹𝐸(𝑆0)‖2
𝐿2(𝐽𝑖)

. (97)

Due to (97) and since for 𝑖 = 1, 2, … we have (92) and (96), we can redistribute 𝐸′ on
𝔩(𝐽 ′

𝑖 ) and 𝔯(𝐽 ′
𝑖 ) respectively and take 𝐾′

𝑖1 ⊂ 𝔩(𝐽 ′
𝑖 ) and 𝐾′

𝑖2 ⊂ 𝔯(𝐽 ′
𝑖 ) in such a way that

for 𝑗 = 1, 2 we have

|𝔩(𝐾′
𝑖𝑗) ∩ 𝐸′|

|𝔩(𝐾′
𝑖𝑗)|

=
|𝔩(𝐾𝑖𝑗) ∩ 𝐸|

|𝔩(𝐾𝑖𝑗)|
,

|𝔯(𝐾′
𝑖𝑗) ∩ 𝐸′|

|𝔯(𝐾′
𝑖𝑗)|

=
|𝔯(𝐾𝑖𝑗) ∩ 𝐸|

|𝔯(𝐾𝑖𝑗)|
, (98)

‖𝐹𝐸′([−1, 1), [0, 1))‖2
𝐿2(𝐾′

𝑖𝑗)
= ‖𝐹𝐸(𝑆0)‖2

𝐿2(𝐾𝑖𝑗)
. (99)

Now (97) and (99) further imply

|𝐾′
𝑖𝑗 ∩ 𝐸′|

|𝐽 ′
𝑖 ∩ 𝐸′|

=
|𝐾𝑖𝑗 ∩ 𝐸|
|𝐽𝑖 ∩ 𝐸|

. (100)

Now for 𝑖 = 1, 2, …, (96) and (97) imply that when we take 𝑏′
𝑖 such that

‖𝑏′
𝑖 ℎ𝐽 ′

𝑖 ,𝐸′‖2
2 = ‖𝑏𝑖ℎ𝐽𝑖,𝐸‖2

2, (101)

and with the sign of 𝑏𝑖 times the sign of 𝐹𝐸(𝑆0) on 𝐽𝑖, then

⟨𝑏′
𝑖 ℎ𝐽 ′

𝑖 ,𝐸′, 𝐹𝐸′([−1, 1), [0, 1))⟩ = ⟨𝑏𝑖ℎ𝐽𝑖,𝐸, 𝐹𝐸(𝑆0)⟩. (102)
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Similarly for 𝑗 = 1, 2, (98) and (99) imply that when we take 𝑐′
𝑖𝑗 such that

‖𝑐′
𝑖𝑗ℎ𝐾′

𝑖𝑗,𝐸′‖2
2 = ‖𝑐𝑖𝑗ℎ𝐾𝑖𝑗,𝐸‖2

2, (103)

and with the sign of 𝑐′
𝑖𝑗 times the sign of 𝐹𝐸(𝑆0) on 𝐽𝑖, then

⟨𝑐′
𝑖𝑗ℎ𝐾′

𝑖𝑗,𝐸′, 𝐹𝐸′([−1, 1), [0, 1))⟩ = ⟨𝑐𝑖𝑗ℎ𝐾𝑖𝑗,𝐸, 𝐹𝐸(𝑆0)⟩. (104)

Now by (96), (98), (100), (101), (103) and the choice of the signs we also have

⟨𝑐′
𝑖𝑗ℎ𝐾′

𝑖𝑗,𝐸′, 𝑏′
𝑖 ℎ𝐽 ′

𝑖 ,𝐸′⟩ = ⟨𝑐𝑖𝑗ℎ𝐾𝑖𝑗,𝐸, 𝑏𝑖ℎ𝐽𝑖,𝐸⟩. (105)

Now using (93), (101), (102), (103), (104), (105) we get that

𝐹𝐸(𝑆0) ↦ 𝐹𝐸′([−1, 1), [0, 1)),
𝑖 = 1, 2, …, 𝑗 = 1, 2 ∶ 𝑏𝑖ℎ𝐽𝑖,𝐸 ↦ 𝑏′

𝑖 ℎ𝐽 ′
𝑖 ,𝐸′,

𝑐𝑖𝑗ℎ𝐾𝑖𝑗,𝐸 ↦ 𝑐′
𝑖𝑗ℎ𝐾′

𝑖𝑗,𝐸′

induces an isometry. So with

𝑆′ ≔ {[−1, 1), [0, 1)} ∪ {𝑏′
1𝐽 ′

1 , 𝑏′
2𝐽 ′

2 , …} ∪ {𝑐′
𝑖1𝐾′

𝑖1, 𝑐′
𝑖2𝐾′

𝑖2 ∣ 𝑖 = 1, 2, …}

and recalling (94) we have

𝐴𝐸′(𝑆′) = 𝐴𝐸′([−1, 1), [0, 1)) + 𝐴𝐸′(𝑏′
𝑖 𝐽

′
𝑖 , 𝑐′

𝑖1𝐾′
𝑖1, 𝑐′

𝑖2𝐾′
𝑖2 | 𝑖 = 1, 2, …)

≥ 𝐴𝐸(𝑆0) + 𝐴𝐸(𝑏𝑖𝐽𝑖, 𝑐𝑖1𝐾𝑖1, 𝑐𝑖2𝐾𝑖2 | 𝑖 = 1, 2, …)
= 𝐴𝐸(𝑆),

𝐵𝐸′(𝑆′) = 𝐵𝐸′(𝐹𝐸′([−1, 1), [0, 1)), 𝑏′
𝑖 𝐽

′
𝑖 , 𝑐′

𝑖1𝐾′
𝑖1, 𝑐′

𝑖2𝐾′
𝑖2 | 𝑖 = 1, 2, …)

= 𝐵𝐸(𝐹𝐸(𝑆0), 𝑏𝑖𝐽𝑖, 𝑐𝑖1𝐾𝑖1, 𝑐𝑖2𝐾𝑖2 | 𝑖 = 1, 2, …)
= 𝐵𝐸(𝑆).

Now by Proposition 4.10 it suffices to consider the case that 𝐽 ′
1 , 𝐽 ′

2 , … consists of
only one interval 𝐽 ′. So we also drop the index 𝑖 at the 𝐾′s. It also suffices to consider
the case that 𝐾′

1, 𝐾′
2 are most antiparallel to 𝔩(𝐽 ′) and 𝔯(𝐽 ′) respectively. After possibly

swapping 𝔩(𝐽 ′) with 𝔯(𝐽 ′) and flipping the sign of 𝑏′, it suffices to consider the case that

|𝔩(𝐽 ′) ∩ 𝐸′|
|𝔩(𝐽 ′)|

≥
|𝔯(𝐽 ′) ∩ 𝐸′|

|𝔯(𝐽 ′)|
.

Now we apply Proposition 4.11 to 𝐽 ′ and

𝑆r ≔ {2𝟙𝐽 ′∩𝐸′, 𝑏′ℎ𝐽 ′,𝐸′, 𝑐′
1ℎ𝐾′

1,𝐸′, 𝑐′
2ℎ𝐾′

2,𝐸′}.
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Note that 2𝟙𝐸′∩𝐽 ′ = 𝟙𝐸′∩𝐽 ′ + ℎ[0,1),𝐸′∩𝐽 ′. Proposition 4.11 states that we may rearrange
𝐸′ into some ̃𝐸, divide 𝐽 ′ into two intervals 𝐼′

∥ and 𝐼′
⟂ and replace 𝑆r by three nested

sequences 𝑆′
∥,1, 𝑆′

∥,2, 𝑆′
⟂ with

𝐴𝐸′(𝑆r) = 𝐴 ̃𝐸(𝑆′
∥,1 ∪ 𝑆′

∥,2) + 𝐴 ̃𝐸(𝑆′
⟂),

𝐵𝐸′(𝑆r) = 𝐵 ̃𝐸(𝑆′
∥,1 ∪ 𝑆′

∥,2) + 𝐵 ̃𝐸(𝑆′
⟂).

Furthermore𝑆′
∥,1 and𝑆′

∥,2 are supported on 𝐼′
∥ and 𝐼′

⟂ respectively andwe have 2𝟙 ̃𝐸∩𝐼′
∥

∈
𝑆′

∥,1, 2𝟙 ̃𝐸∩𝐼′
⟂

∈ 𝑆′
∥,1. Note, that

2𝟙 ̃𝐸∩𝐼′
∥

+ 2𝟙 ̃𝐸∩𝐼′
⟂

= 𝟙 ̃𝐸∩𝐽 ′ + ℎ[0,1), ̃𝐸∩𝐽 ′.

Now define

̃𝑆 ≔ {[−1, 1), [0, 1)} ∪ (𝑆′
∥,1 ⧵ {2𝟙𝐼′

∥∩ ̃𝐸}) ∪ (𝑆′
∥,2 ⧵ {2𝟙𝐼′

⟂∩ ̃𝐸})

= {[−1, 1), [0, 1), 𝑏′𝐼′
∥, 𝑎even𝐼′

⟂, 𝑐′
2𝐽 ′

∥}.

Then using the remark after Proposition 4.11 we get also for the original set

𝑆′ = {[−1, 1), [0, 1), 𝑏′𝐽 ′, 𝑐′
1𝐾′

1, 𝑐′
2𝐾′

2}

that

𝐴𝐸′(𝑆′) = 𝐴 ̃𝐸( ̃𝑆) + 𝐴 ̃𝐸(𝑆′
⟂),

𝐵𝐸′(𝑆′) = 𝐵 ̃𝐸( ̃𝑆) + 𝐵 ̃𝐸(𝑆′
⟂).

By Lemma A.24 there is a 𝑇 ∈ { ̃𝑆, 𝑆′
⟂} for which we have

𝐵𝐸′(𝑇 )
𝐴𝐸′(𝑇 )

≤
𝐵𝐸′(𝑆′)
𝐴𝐸′(𝑆′)

.

If 𝑇 = 𝑆′
⟂ then 𝑇 is already of the form that we can apply Theorem 4.1 to it and are

done. If 𝑇 = ̃𝑆 we first apply Proposition 4.10 to replace 𝑇 by a single nested sequence
to which we thereafter can apply Theorem 4.1.

5 On Question 1
For 𝐸 ⊂ [0, 1) and a set of intervals 𝕀 define

𝐻𝐸(𝕀) ≔ {ℎ𝐼,𝐸 | 𝐼 ∈ 𝕀}.
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Proposition 5.1. Let [0, 1) = 𝐸0 ∪ 𝐸1 be a partition. Further assume 𝑛 ≥ 0 and that
𝐸0 and 𝐸1 are unions of intervals of scale 2𝑛. Assume that |𝐸1| > 0. Then there is a
partition 𝒟 = 𝒟0 ∪ 𝒟1 such that 𝐻(𝒟0)𝐸0

and 𝐻(𝒟1)𝐸1
are Riesz basic sequences and

𝟙𝐸1
∉ span(𝐻𝐸1

(𝒟1)).

However for any such partition we have

𝟙𝐸0
∈ span(𝐻𝐸0

(𝒟0)).

Remark. A few things about Proposition 5.1 should be stressed:

• Proposition 5.1 doesn’t claim anything about the constants of the Riesz basic se-
quences.

• If for some 𝑖 we have |𝐸𝑖| = 0, then 𝐸1−𝑖 = [0, 1) and we can answer Question 1
affirmatively by setting 𝒟𝑖 ≔ ∅ and 𝒟1−𝑖 ≔ 𝒟. Furthermore if |𝐸𝑖| = 0 then no
matter how we choose 𝒟𝑖 ⊂ 𝒟 we have 𝟙𝐸𝑖

= 0 ∈ span(𝐻𝐸𝑖
(𝒟𝑖)).

• Hence |𝐸0| > 0 and |𝐸1| > 0 hold for any interesting partition [0, 1) = 𝐸0∪𝐸1. In
that case Proposition 5.1 says that it is not possible to get a partition 𝒟 = 𝒟0 ∪ 𝒟1
with

𝟙𝐸0
∉ span(𝐻𝐸0

(𝒟0)),
𝟙𝐸1

∉ span(𝐻𝐸1
(𝒟1)),

but we always have the two options

𝟙𝐸0
∈ span(𝐻𝐸0

(𝒟0)),
𝟙𝐸1

∉ span(𝐻𝐸1
(𝒟1)) and

𝟙𝐸0
∉ span(𝐻𝐸0

(𝒟0)),
𝟙𝐸1

∈ span(𝐻𝐸1
(𝒟1)) .

The case

𝟙𝐸0
∈ span(𝐻𝐸0

(𝒟0)),
𝟙𝐸1

∈ span(𝐻𝐸1
(𝒟1))

is not very desirable, also because if we also want to add [−1, 1) to 𝒟𝑖 for some 𝑖,
then we need 𝟙𝐸𝑖

∉ span(𝐻𝐸𝑖
(𝐷𝑖)).

• The partitions are not unique. There are choices being made in the proof so that
there actually are exponentially in 𝑛 many such partitions.
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Proof of Proposition 5.1. If for some 𝑖 a dyadic interval 𝐼 is contained in𝐸𝑖 thenwe have
to put 𝐼 into 𝒟𝑖. Hence all the intervals 𝐼 of size 2−𝑛 and higher are already distributed
into 𝒟0, 𝒟1 and for all such 𝐼 ∈ 𝒟𝑖 ℎ𝐼,𝐸𝑖

= ℎ𝐼 is orthogonal to all other restricted
Haar functions. Hence it suffices to find a partition of the finite set of dyadic intervals of
size at most 2−𝑛. That means being a Riesz basic sequence just means being a linearly
independent set.

We proceed by induction on 𝑛. First consider the case 𝑛 = 0. Then 𝐸1 = [0, 1) and
we must have 𝒟1 = 𝒟. Then 𝒟0, 𝒟1 are Riesz basic sequences and 𝟙𝐸0

= 0 ∈ span∅ =
span(𝐻𝐸0

(𝒟0).
Now assume the proposition holds for 𝑛 ≥ 0 and let 𝐸0, 𝐸1 be unions of intervals of

size 2−(𝑛+1). If we have |𝐸0| = 0 then we are back to scale 20. Otherwise for 𝑖 = 0, 1
define

𝐸0𝑖 ≔ [0, 1
2

) ∩ 𝐸𝑖,

𝐸1𝑖 ≔ [1
2

, 1) ∩ 𝐸𝑖.

Then for any 𝑗, 𝑖 = 1, 2, 𝐸𝑗𝑖 translated and dilated to [0, 1) is a union of dyadic intervals
of size 2−𝑛.

We first show the existence of a partition 𝒟0 ∪ 𝒟1 of 𝒟 into Riesz basic sequences
with

𝟙𝐸1
∉ span𝐻𝐸1

(𝒟1).

Since we have |𝐸1| > 0 and already handled the case |𝐸0| = 0, it suffices to consider
the case

|𝐸00| > 0, |𝐸11| > 0

after possibly swapping [0, 1
2 ) with [1

2 , 1). Then by inductive hypothesis there are parti-
tions

𝒟00 ∪ 𝒟01 = {𝐼 ⊂ [0, 1
2

) | 𝐼 ∈ 𝒟},

𝒟10 ∪ 𝒟11 = {𝐼 ⊂ [1
2

, 1) | 𝐼 ∈ 𝒟}

such that for all 𝑗, 𝑖 = 0, 1 the set 𝐻𝐸𝑖
(𝒟𝑗𝑖) is linearly independent and

𝟙[0, 1
2 )∩𝐸0

∉ span(𝐻𝐸0
(𝒟00)), (106)

𝟙[ 1
2 ,1)∩𝐸1

∉ span(𝐻𝐸1
(𝒟11)). (107)

Define

𝒟0 ≔ 𝒟00 ∪ 𝒟10 ∪ {[0, 1)},
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𝒟1 ≔ 𝒟01 ∪ 𝒟11.

Now for 𝑖 = 0, 1 the set 𝐻𝐸𝑖
(𝒟0𝑖 ∪ 𝒟1𝑖) is linearly independent. Hence 𝐻𝐸1

(𝒟1) is
linearly independent. Its span does not contain 𝟙𝐸1

because of (107). 𝐻𝐸0
(𝒟0) is linearly

independent as well because of (106).
Now we show that for all partitions 𝒟0 ∪ 𝒟1 which are Riesz basic sequences with

𝟙𝐸1
∉ span𝐻𝐸1

(𝒟1) (108)

we must have

𝟙𝐸0
∈ span𝐻𝐸0

(𝒟0). (109)

For 𝑖 = 0, 1 define

𝒟0𝑖 ≔ {𝐼 ∈ 𝒟𝑖 | 𝐼 ⊂ [0, 1
2

)},

𝒟1𝑖 ≔ {𝐼 ∈ 𝒟𝑖 | 𝐼 ⊂ [1
2

, 1)}.

Then for 𝑗, 𝑖 = 0, 1 the set 𝐻𝐸𝑖
(𝒟𝑗𝑖) is a Riesz basic sequence. Due to (108), one of

𝟙[0, 1
2 )∩𝐸1

∉ span𝐻𝐸1
(𝒟01), (110)

𝟙[ 1
2 ,1)∩𝐸1

∉ span𝐻𝐸1
(𝒟11) (111)

has to hold. After possibly swapping [0, 1
2 ) and [1

2 , 1) it suffices to consider (111). Then
by inductive hypothesis we must have

𝟙[ 1
2 ,1)∩𝐸0

∈ span𝐻𝐸0
(𝒟10). (112)

Now if [0, 1) ∈ 𝒟0 then (109) follows from (112). If [0, 1) ∈ 𝒟1 then (108) requires
(110) to hold as well, which by inductive hypothesis implies

𝟙[0, 1
2 )∩𝐸0

∈ span𝐻𝐸0
(𝒟00). (113)

Now (112) and (113) imply (109).

A Elementary Lemmas
This appendix consists of a bunch of lemmas that are used in this thesis. They are put
here instead of into the main text for the following reasons:

• Some lemmas are used many times and throughout large parts of the thesis.

• Some lemmas hold in a more general setting than in the setting of the thesis.

• Some lemmas and their proofs are not very interesting or surprising.
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A.1 Lemmas on Inner Product Spaces
Some lemmas do not only hold in the setting of restricted Haar functions but also more
generally in the setting of a vector space with a scalar product. We list these lemmas in
this subsection.

Lemma A.1. Let 𝑣1, …, 𝑣𝑛 be vectors such that for any 𝑖 ≠ 𝑗 we have

⟨𝑣𝑖, 𝑣𝑗⟩ ≤ 0

and 𝑎1, …, 𝑎𝑛 ∈ ℝ. Then

‖
𝑛

∑
𝑖=1

|𝑎𝑖|𝑣𝑖‖2 ≤ ‖
𝑛

∑
𝑖=1

𝑎𝑖𝑣𝑖‖2.

Proof.

‖
𝑛

∑
𝑖=1

𝑎𝑖𝑣𝑖‖2 =
𝑛

∑
𝑖,𝑗=1

𝑎𝑖𝑎𝑗⟨𝑣𝑖, 𝑣𝑗⟩ =
𝑛

∑
𝑖=1

𝑎2
𝑖 ‖𝑣𝑖‖2 + ∑

𝑖≠𝑗
𝑎𝑖𝑎𝑗⟨𝑣𝑖, 𝑣𝑗⟩⏟

≤0

≥
𝑛

∑
𝑖=1

|𝑎𝑖|2‖𝑣𝑖‖2 + ∑
𝑖≠𝑗

|𝑎𝑖𝑎𝑗|⟨𝑣𝑖, 𝑣𝑗⟩ = ‖
𝑛

∑
𝑖=1

|𝑎𝑖|𝑣𝑖‖2.

Lemma A.2. Let 𝐹 and 𝐺 be Riesz basic sequences that are orthogonal to one another
and with constants 𝑐𝐹 and 𝑐𝐺. Then 𝐹 ∪ 𝐺 is a Riesz basic sequence with constant
max(𝑐𝐹, 𝑐𝐺).

Proof. Let 𝑎 ∈ 𝑙2(𝐹 ∪ 𝐺). Then

∑
𝑣∈𝐹 ∪𝐺

|𝑎𝑣|2 = ∑
𝑣∈𝐹

|𝑎𝑣|2 + ∑
𝑣∈𝐺

|𝑎𝑣|2

≤ max(𝑐𝐹, 𝑐𝐺)(‖ ∑
𝑣∈𝐹

𝑎𝑣𝑣‖2 + ‖ ∑
𝑣∈𝐺

𝑎𝑣𝑣‖2)

= max(𝑐𝐹, 𝑐𝐺)‖ ∑
𝑣∈𝐹

𝑎𝑣𝑣 + ∑
𝑣∈𝐺

𝑎𝑣𝑣‖2

Lemma A.3. Let 𝐹 and 𝐺 be Bessel sequences that are orthogonal to one another and
with constants 𝑐𝐹 and 𝑐𝐺. Then 𝐹 ∪ 𝐺 is a Bessel sequence with constant max(𝑐𝐹, 𝑐𝐺).
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Proof. Let 𝑢 be a vector in the surrounding space. Denote by 𝜋𝐹 and 𝜋𝐺 the projections
onto span𝐹 and span𝐺 respectively. Then

∑
𝑣∈𝐹 ∪𝐺

⟨𝑣, 𝑢⟩2 = ∑
𝑣∈𝐹

⟨𝑣, 𝑢⟩2 + ∑
𝑣∈𝐺

⟨𝑣, 𝑢⟩2

= ∑
𝑣∈𝐹

⟨𝜋𝐹(𝑢), 𝑣⟩2 + ∑
𝑣∈𝐺

⟨𝜋𝐺(𝑢), 𝑣⟩2

≤ max(𝑐𝐹, 𝑐𝐺)(‖𝜋𝐺(𝑢)‖2 + ‖𝜋𝐺(𝑢)‖2)
≤ max(𝑐𝐹, 𝑐𝐺)‖𝑢‖2

Lemma A.4. Let 𝑢, 𝑣 be vectors and 𝑣 ≠ 0. Then the infimum over 𝑎 ∈ ℝ of

‖𝑢 + 𝑎𝑣‖2

is attained at
𝑎 = −

⟨𝑢, 𝑣⟩
‖𝑣‖2 .

Proof.
‖𝑢 + 𝑎𝑣‖2 = ‖𝑢‖2 + 2𝑎⟨𝑢, 𝑣⟩ + 𝑎2‖𝑣‖2

is a second degree polynomial with positive leading coefficient which attains its infimum
at 𝑎 = − ⟨𝑢,𝑣⟩

‖𝑣‖2 .

Lemma A.5. Let 𝑢, 𝑣 be vectors with ‖𝑢‖ = ‖𝑣‖. Then the infimum over 𝑎 ∈ ℝ of

‖𝑢 + 𝑎𝑣‖2

‖𝑢‖2 + ‖𝑎𝑣‖2

is attained at
𝑎 = − sign⟨𝑢, 𝑣⟩.

Lemma A.5 applied to the setting |[0, 1
2 ) ∩ 𝐸| > |[

1
2 , 1) ∩ 𝐸| and 𝑢 ≔ 𝟙[0, 1

2 )∩𝐸, 𝑣 ≔
ℎ[0,1),𝐸 was the first idea to Proposition 4.9. It also already proves it for the case 𝑎𝐼 = 0.
The observation that sign⟨𝑢, 𝑣⟩ = −1 and 𝟙𝐸 + ℎ[0,1),𝐸 is supported on [1

2 , 1) then led to
the role of Proposition 4.9 in the proof of Theorem 4.7.

Proof. By scaling it suffices to consider ‖𝑢‖ = ‖𝑣‖ = 1. Then the fraction is equal to

1 + 2𝑎⟨𝑢, 𝑣⟩ + 𝑎2

1 + 𝑎2 = 1 + 2⟨𝑢, 𝑣⟩ 𝑎
1 + 𝑎2 .
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If ⟨𝑢, 𝑣⟩ = 0 then any choice for 𝑎 works. Now consider ⟨𝑢, 𝑣⟩ ≠ 0. For |𝑎| → ∞ we
have 𝑎

1+𝑎2 → 0 while for 𝑎 ≷ 0 we have 𝑎
1+𝑎2 ≷ 0. That means the optima will be attained

at

0 = 𝜕
𝜕𝑎

𝑎
1 + 𝑎2 = 1 + 𝑎2 − 2𝑎2

(1 + 𝑎2)2 = 1 − 𝑎2

(1 + 𝑎2)2 ⟺ 𝑎 ∈ {−1, 1}.

Note that of the two the infimum is attained at 𝑎 = − sign⟨𝑢, 𝑣⟩.

Lemma A.6 is only used to prove Lemma A.7.

Lemma A.6. Let 𝑢, 𝑣, 𝑤 be vectors and 𝑢 ⟂ 𝑣 and 𝑣 ⟂ 𝑤. Then

sup
𝑎,𝑏∈ℝ

|∢[𝑢, 𝑎𝑣 + 𝑏𝑤]⟩| = |∢[𝑢, 𝑤]|.

Proof. If 𝑣 = 0 then argument on the left hand side is constantly equal to the right hand
side except for 𝑏 = 0. If 𝑤 = 0 then both sides vanish. Hence it suffices to consider
‖𝑣‖, ‖𝑤‖ = 1. Furthermore because the argument on the left hand side vanishes for
𝑎 = 𝑏 = 0, it suffices to consider 𝑎2 + 𝑏2 = 1. Then

|∢[𝑢, 𝑎𝑣 + 𝑏𝑤]| = |𝑎⟨𝑢𝑣⟩ + 𝑏⟨𝑢𝑤⟩| = |𝑏⟨𝑢𝑤⟩|

which is maximal for 𝑎 = 0, 𝑏 = 1.

Lemma A.7. Let 𝐸 ⊂ ℝ and supp(𝑓 ) ⊂ 𝐸 and 𝑔 be dilate and translate of 𝑓 such that
supp(𝑓 ) and supp(𝑔) are disjoint subsets of 𝐸. Then for all 𝑣 ∈ span{𝑓 , 𝑔} we have

sup
𝑎,𝑏∈ℝ

|∢[𝟙𝐸, 𝑎𝑓 + 𝑏𝑔]| = |∢[𝟙𝐸, 𝑓 + 𝑔]|.

Note that Lemma A.7 can be extended inductively to sets of more than two functions
that are disjointly supported translates and dilates of one another.

Proof of Lemma A.7. First note that

𝑓 + 𝑔,
𝑓

‖𝑓‖2
2

−
𝑔

‖𝑔‖2
2

are orthogonal and span span{𝑓 , 𝑔}. 𝑓
‖𝑓‖2

2
− 𝑔

‖𝑔‖2
2
is orthogonal to 𝟙𝐸 since

⟨𝟙𝐸, 𝑔⟩ = ∫ 𝑔 =
∫ 𝑔
∫ 𝑓

⟨𝟙𝐸, 𝑓⟩ =
supp(𝑔)
supp(𝑓 )

⟨𝟙𝐸, 𝑓⟩ =
‖𝑔‖2

2

‖𝑓‖2
2

⟨𝟙𝐸, 𝑓⟩.

Therefore by Lemma A.6, 𝑓 + 𝑔 optimizes the supremum.
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Lemma A.8. Let 𝐸 ⊂ [0, 1), 𝑆 ⊂ 𝐿2(𝐸) and let 𝑢, 𝑣 ∈ 𝐿2(𝐸) be orthogonal to one
another. Then

𝐴𝐸(𝑆 ∪ {𝑢 + 𝑣}) = 𝐴𝐸(𝑆 ∪ {𝑢, 𝑣}),
𝐹𝐸(𝑆 ∪ {𝑢 + 𝑣}) = 𝐹𝐸(𝑆 ∪ {𝑢, 𝑣}),
𝐵𝐸(𝑆 ∪ {𝑢 + 𝑣}) = 𝐵𝐸(𝑆 ∪ {𝑢, 𝑣}).

Proof. The equality for 𝐹 is evident from the definition and implies the equality for 𝐵.
For 𝐴 it follows from ‖𝑣 + 𝑢‖2

2 = ‖𝑣‖2
2 + ‖𝑢‖2

2.

Lemma A.9 is a corollary of Lemma A.24.

Lemma A.9. Let 𝑉1 and 𝑉2 be two sets of vectors where ∑𝑣∈𝑉1
𝑣 and ∑𝑣∈𝑉2

𝑣 are or-
thogonal. Then there is an 𝑖 ∈ {1, 2} with

‖ ∑𝑣∈𝑉𝑖
𝑣‖2

2

∑𝑣∈𝑉𝑖
‖𝑣‖2

2

≤
‖ ∑𝑣∈𝑉1∪𝑉2

𝑣‖2
2

∑𝑣∈𝑉1∪𝑉2
‖𝑣‖2

2

.

Proof. Lemma A.9 follows from

‖ ∑
𝑣∈𝑉1∪𝑉2

𝑣‖2
2 = ‖ ∑

𝑣∈𝑉1

𝑣‖2
2 + ‖ ∑

𝑣∈𝑉2

𝑣‖2
2,

∑
𝑣∈𝑉1∪𝑉2

‖𝑣‖2
2 = ∑

𝑣∈𝑉1

‖𝑣‖2
2 + ∑

𝑣∈𝑉2

‖𝑣‖2
2,

and Lemma A.24.

Lemma A.10. Let 𝑉 be a finite set of vectors to all of which 𝑢 is orthogonal. Further
assume

‖𝑢 + ∑
𝑣∈𝑉

𝑣‖2 ≤ ‖𝑢‖2 + ∑
𝑣∈𝑉

‖𝑣‖2.

Then
‖ ∑𝑣∈𝑉 𝑣‖2

∑𝑣∈𝑉 ‖𝑣‖2 ≤
‖𝑢 + ∑𝑣∈𝑉 𝑣‖2

‖𝑢‖2 + ∑𝑣∈𝑉 ‖𝑣‖2

Lemma A.8 and A.10 will often be used in conjunction: First a function 𝑓 ∈ 𝑆 will
be orthogonally split into 𝑓 = 𝑢 + 𝑣, of which 𝑢 will be orthogonal also to all other
functions in 𝑆. Then {𝑓} can be replaced by {𝑢, 𝑣} in 𝑆 by Lemma A.8, after which 𝑢
can again be discarded using Lemma A.10. That means 𝑓 has been replaced by its part
𝑣 that is more (anti-)parallel to the other functions in 𝑆.
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Proof of Lemma A.10. By orthogonality we have

‖𝑢 + ∑
𝑣∈𝑉

𝑣‖2 = ‖𝑢‖2 + ‖ ∑
𝑣∈𝑉

𝑣‖2

so that the assumption of the lemma implies

‖ ∑𝑣∈𝑉 𝑣‖2

∑𝑣∈𝑉 ‖𝑣‖2 ≤ 1 =
‖𝑢‖2

‖𝑢‖2 .

Then Lemma A.10 follows from by Lemma A.9 applied to 𝑉 and {𝑢}.

Lemma A.11. Let ‖𝑢‖ = ‖𝑣‖, −‖𝑢‖‖𝑣‖ < ⟨𝑢, 𝑣⟩ ≤ 0 and |𝑎| ≥ 1. Then there is a
𝑏 ≥ 0 s.t.

‖𝑢 + 𝑎𝑣‖2 = ‖𝑢 + 𝑣‖2 + ‖𝑏𝑢 + 𝑏𝑣‖2. (114)

Furthermore for any such 𝑏 we have

‖𝑎𝑣‖2 ≤ ‖𝑣‖2 + ‖𝑏𝑢‖2 + ‖𝑏𝑣‖2. (115)

Proof. Since −‖𝑢‖‖𝑣‖ < ⟨𝑢, 𝑣⟩ implies ‖𝑢‖ > 0, it suffices to consider ‖𝑢‖ = ‖𝑣‖ = 1
after rescaling. By Lemma A.5 and |𝑎| ≥ 1 we have

‖𝑢 + 𝑣‖2 ≤
‖𝑢‖2 + ‖𝑣‖2

‖𝑢‖2 + ‖𝑎𝑣‖2 ‖𝑢 + 𝑎𝑣‖2 ≤ ‖𝑢 + 𝑎𝑣‖2.

This means that a 𝑏 that satisfies (114) exists, because by ⟨𝑢, 𝑣⟩ > −1 we have ‖𝑢+𝑣‖2 >
0.

Write 𝑥 ≔ −⟨𝑢, 𝑣⟩. Then (114) reads

1 − 2𝑥𝑎 + 𝑎2 = 1 − 2𝑥 + 1 + 𝑏2(1 − 2𝑥 + 1) = 2(1 − 𝑥)(1 + 𝑏2)

and we have to show
𝑎2 ≤ 1 + 2𝑏2.

Now

1 + 2𝑏2 − 𝑎2 = 2(1 + 𝑏2) − 1 − 𝑎2 = 1 − 2𝑥𝑎 + 𝑎2

1 − 𝑥
− 1 − 𝑎2

= 1 − 2𝑥𝑎 + 𝑎2 − 1 + 𝑥 − 𝑎2 + 𝑎2𝑥
1 − 𝑥

= −2𝑥𝑎 + 𝑥 + 𝑎2𝑥
1 − 𝑥

= 𝑥(𝑎 − 1)2

1 − 𝑥
≥ 0.
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A.2 Lemmas on Restricted Haar Functions
Lemma A.12. Let 𝑓, 𝑓 ′, 𝑔, 𝑔′ ∶ [0, 1) → {−1, 0, 1} with supp 𝑔 ⊂ 𝑓 −1({1}) and
supp 𝑔′ ⊂ 𝑓 ′−1({1}) and

| supp 𝑓| = | supp 𝑓 ′|,

|𝑔−1({1})| = |𝑔′−1({1})|,

|𝑔−1({−1})| = |𝑔′−1({−1})|.

Then the linear map induced by

𝑓 ↦ 𝑓 ′,
𝑓𝟙𝑓=1 ↦ 𝑓 ′𝟙𝑓 ′=1,

𝑓𝟙𝑓=−1 ↦ 𝑓 ′𝟙𝑓 ′=−1,
𝑔 ↦ 𝑔′

𝑔𝟙𝑔=1 ↦ 𝑔′𝟙𝑔′=1,
𝑔𝟙𝑔=−1 ↦ 𝑔′𝟙𝑔′=−1

is an isometry.

Proof. straightforward calculation.

Lemma A.12 can clearly be extended to sets of more than two functions.

Lemma A.13. Let 𝑝 ∈ [1
2 , 1) and 𝐼 be an interval and 𝐸 ⊂ 𝐼. Then there are unique

𝐸∥, 𝐼∥ with 𝐸∥ ⊂ 𝐼, |𝐸∥| = |𝐸| and 𝐼∥ is the most 𝑝-antiparallel interval to 𝐼 with
respect to 𝐸∥. Furthermore for all 𝐸, 𝑝-dominant 𝐽 ⊂ 𝐼 we have

∢[𝟙[0,𝑝), ℎ[0,1),[0,𝑝)] ≤ ∢[𝟙𝐸∥
, ℎ𝐼∥,𝐸∥] ≤ ∢[𝟙𝐸, ℎ𝐽 ,𝐸]. (116)

Remark. Here are some examples of most antiparallel intervals:

• If 𝐼∥ is most antiparallel to some interval 𝐼 w.r.t. 𝐸 and 𝐼∥ ⊂ 𝐽 ⊂ 𝐼 then 𝐼∥ is also
most antiparallel to 𝐽 w.r.t. 𝐸.

• 𝐼 is most antiparallel to 𝐼 w.r.t. 𝐸 if and only if 𝐼 and 𝐸 ∩ 𝐼 are intervals with the
same left boundary and |𝐼 ∩ 𝐸| = 𝑝. In particular [0, 1) is most antiparallel to
[0, 1) w.r.t. [0, 𝑝).

Proof of Lemma A.13. Wefirst prove the existence of a most antiparallel interval 𝐼∥. For
that it suffices to consider the case that 𝐼 = [0, |𝐼|). Now set 𝐸∥ ≔ [0, |𝐸|) and

𝐼∥ ≔
{

[0, |𝐸|
𝑝 ) |𝐸| ≤ 𝑝|𝐼|

[
|𝐸|−𝑝|𝐼|

1−𝑝 , |𝐼|) |𝐸| ≥ 𝑝|𝐼|
.
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For |𝐸| ≤ 𝑝|𝐼| it is evident from the definition that 𝐼∥ is most 𝑝-antiparallel to 𝐼 w.r.t
𝐸∥. For |𝐸| ≥ 𝑝|𝐼| we have |𝐸|−𝑝|𝐼|

1−𝑝 ≥ 0 and |𝐸|−𝑝|𝐼|
1−𝑝 ≤ |𝐼|−𝑝|𝐼|

1−𝑝 = |𝐼|. Also

|𝐼∥| =
|𝐼|(1 − 𝑝) − (|𝐸| − 𝑝|𝐼|)

1 − 𝑝
=

|𝐼| − |𝐸|
1 − 𝑝

,

|𝐸∥ ∩ 𝐼∥| =
|𝐸|(1 − 𝑝) − (|𝐸| − 𝑝|𝐼|)

1 − 𝑝
=

𝑝(|𝐼| − |𝐸|)
1 − 𝑝

= 𝑝|𝐼∥|.

Hence 𝐼∥ is most antiparallel.
𝐸∥ is clearly the unique interval contained in 𝐼 with the same left boundary as 𝐼

and |𝐸∥| = |𝐸|. 𝐼∥ is the unique most antiparallel interval to 𝐼 w.r.t. 𝐸∥, because 𝐼 =
𝐸∥ ∪ (𝐼 ⧵ 𝐸∥) is an interval partition and the definition of being most antiparallel fixes
|𝔩(𝐼∥) ∩ 𝐸∥| and |𝔯(𝐼∥) ∩ 𝐸|.

Now we prove the first inequality in (116). First calculate

∢[𝟙𝐸∥
, ℎ𝐼∥,𝐸∥] =

(𝑝 − 1
2 )|𝐼∥| − 1

2 |𝐼∥|

√𝑝|𝐼∥|√|𝐸∥|
=

𝑝 − 1

√𝑝
√|𝐼∥|

√|𝐸∥|
.

The same calculation holds for 𝐸∥ = [0, 𝑝), 𝐼∥ = [0, 1) so that

∢[𝟙[0,𝑝), ℎ[0,1),[0,𝑝)] =
𝑝 − 1

√𝑝
1

√𝑝
.

Now

|𝐸∥| ≤ 𝑝|𝐼| ∶
|𝐼∥|
|𝐸∥|

= 1
𝑝

,

|𝐸∥| ≥ 𝑝|𝐼| ∶
|𝐼∥|
|𝐸∥|

=

|𝐼|(1−𝑝)−(|𝐸∥|−𝑝|𝐼|)
1−𝑝

|𝐸∥|
=

|𝐼| − |𝐸∥|
(1 − 𝑝)|𝐸∥|

=

|𝐼|
|𝐸∥| − 1

1 − 𝑝
≤

1
𝑝 − 1

1 − 𝑝
= 1

𝑝
.

This proves the first inequality.
Now for the second inequality in (116) let 𝐸∥ ⊂ 𝐼, |𝐸∥| = |𝐸| and 𝐼∥ be most

antiparallel to 𝐼 w.r.t. 𝐸∥. Since 𝐽 is 𝐸-dominant we have

|𝔯(𝐽 ) ∩ 𝐸|
|𝔩(𝐽 ) ∩ 𝐸|

≥ 2𝑝 − 1,

and it suffices to consider the case

|𝔯(𝐽 ) ∩ 𝐸|
|𝔩(𝐽 ) ∩ 𝐸|

< 1.
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since otherwise ∢[𝟙𝐸, ℎ𝐼,𝐸] ≥ 0. That means there is a partition

𝐽 = 𝐽∥ ∪ 𝐽⟂

such that

|𝔯(𝐽 ) ∩ 𝐽∥|
|𝔩(𝐽 ) ∩ 𝐽∥|

=
|𝔯(𝐽 ) ∩ 𝐽⟂|
|𝔩(𝐽 ) ∩ 𝐽⟂|

=
|𝔯(𝐽 ) ∩ 𝐽⟂ ∩ 𝐸|
|𝔩(𝐽 ) ∩ 𝐽⟂ ∩ 𝐸|

= 1,

|𝔯(𝐽 ) ∩ 𝐽∥ ∩ 𝐸|
|𝔩(𝐽 ) ∩ 𝐽∥ ∩ 𝐸|

= 2𝑝 − 1,

|𝐽∥ ∩ 𝐸| = 𝑝|𝐽∥|,

and |𝐽∥| > 0. Now we have an orthogonal decomposition

ℎ𝐽 ,𝐸 = ℎ𝐽 ,𝐸∩𝐽∥
+ ℎ𝐽 ,𝐸∩𝐽⟂

where ℎ𝐽 ,𝐸∩𝐽⟂
is orthogonal to 𝟙𝐸. Thus because ∢[𝟙𝐸, ℎ𝐽 ,𝐸∩𝐽∥] < 0 we have

∢[𝟙𝐸, ℎ𝐽 ,𝐸∩𝐽∥] ≤ ∢[𝟙𝐸, ℎ𝐽 ,𝐸] (117)

Claim.
|𝐽∥| ≤ |𝐼∥|.

Proof.

|𝐸| ≤ 𝑝|𝐼| ∶ |𝐽∥| =
|𝐽∥ ∩ 𝐸|

𝑝
≤

|𝐸|
𝑝

= |𝐼∥|,

|𝐸| ≥ 𝑝|𝐼| ∶ |𝐽∥| =
|𝐽∥ ⧵ 𝐸|

1 − 𝑝
≤

|𝐼| − |𝐸|
1 − 𝑝

= |𝐼∥|.

By the claim we may take 𝐷 ⊂ 𝐸 ⧵ 𝐽∥ such that

|𝐽∥|
|𝐸 ⧵ 𝐷|

=
|𝐼∥|
|𝐸∥|

.

Note that the definition of most antiparallel implies that 𝔩(𝐼∥) ⊂ 𝐸∥. So

|𝔯(𝐽 ) ∩ 𝐽∥ ∩ 𝐸|
|𝔩(𝐽 ) ∩ 𝐽∥ ∩ 𝐸|

= (2𝑝 − 1) =
|𝔯(𝐼∥) ∩ 𝐸∥|
|𝔩(𝐼∥) ∩ 𝐸∥|
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and we have by Lemma A.12 that

∢[𝟙𝐸⧵𝐷, ℎ𝐽 ,𝐸∩𝐽∥] = ∢[𝟙𝐸∥
, ℎ𝐼∥,𝐸∥]. (118)

Now because (118) ≤ 0 and 𝟙𝐸 = 𝟙𝐸⧵𝐷 + 𝟙𝐷 is an orthogonal decomposition and
𝟙𝐷 ⟂ ℎ𝐽 ,𝐸∩𝐽∥

we get

∢[𝟙𝐸, ℎ𝐽 ,𝐸∩𝐽∥] ≥ ∢[𝟙𝐸⧵𝐷, ℎ𝐽 ,𝐸∩𝐽∥]. (119)

(117), (118) and (119) prove the second inequality in (116).

Lemma A.14. Let 𝐸 ⊂ [0, 1) and 𝑆 be a compatible 𝐸-dominant sequence with
[−1, 1) ∈ 𝕀(𝑆). Then there is an 𝐸′ ⊂ [0, 1) and a compatible 𝐸′-dominant sequence
𝑆′ with [−1, 1) ∉ 𝕀(𝑆) and

𝐵𝐸′(𝑆′)
𝐴𝐸′(𝑆′)

=
𝐵𝐸(𝑆)
𝐴𝐸(𝑆)

.

Proof. By rescaling it suffices to consider the case that the coefficient in front of [−1, 1)
is 1. Then let 𝐸1 be 𝐸 translated and dilated to [0, 1

2 ) and 𝐸2 = 𝐸1 + 1
2 . Define 𝑆1, 𝑆2

similarly, applied to 𝑆 ⧵ {[−1, 1)}. Further define 𝐸′ = 𝐸1 ∪ 𝐸2 and 𝑆′ = {[0, 1)} ∪
(−𝑆1) ∪ 𝑆2. Then

𝐴𝐸(𝑆) = 1
2

𝐴𝐸(𝑆) + 1
2

𝐴𝐸(𝑆)

= ‖𝟙𝐸1
‖2

2 + 𝐴𝐸1
(𝑆1) + ‖𝟙𝐸1

‖2
2 + 𝐴𝐸2

(𝑆2)

= ‖ − 𝟙𝐸1
+ 𝟙𝐸2

‖2
2 + 𝐴𝐸1

(−𝑆1) + 𝐴𝐸2
(𝑆2)

= 𝐴𝐸′(𝑆′)

𝐵𝐸(𝑆) = 1
2

𝐵𝐸(𝑆) + 1
2

𝐵𝐸(𝑆)

= ‖𝟙𝐸1
+ 𝐹𝐸1

(𝑆1)‖2
2 + ‖𝟙𝐸2

+ 𝐹𝐸2
(𝑆2)‖2

2

= ‖ − 𝟙𝐸1
− 𝐹𝐸1

(𝑆1)‖2
2 + ‖𝟙𝐸2

+ 𝐹𝐸2
(𝑆2)‖2

2

= ‖ − 𝟙𝐸1
− 𝐹𝐸1

(𝑆1) + 𝟙𝐸2
+ 𝐹𝐸2

(𝑆2)‖2
2

= 𝐵𝐸′(𝑆′)

Also, [0, 1), 𝕀(𝑆1), 𝕀(𝑆2) are all 𝐸′-dominant.

Remark. The proof shows that if 𝕀(𝑆) ⊂ 𝒟 then we can also take 𝕀(𝑆′) ⊂ 𝒟.

Lemma A.15. Let 𝑝 ∈ [0, 1]. For 𝑖 = 1, 2, … let 𝐸𝑖 ⊂ [0, 1) and let 𝕀𝑖 consist of
compatible 𝐸𝑖, 𝑝-dominant intervals so that {

ℎ𝐼,𝐸𝑖
‖ℎ𝐼,𝐸𝑖‖2

∣ 𝐼 ∈ 𝕀𝑖} is a Riesz basic sequence

with maximal constant at most 1
𝑖 . Then there is an 𝐸 ⊂ [0, 1) and a compatible 𝐸, 𝑝-

dominant 𝕀 ⊂ 𝒟 such that { ℎ𝐼,𝐸
‖ℎ𝐼,𝐸‖2

∣ 𝐼 ∈ 𝕀} is not a Riesz basic sequence.
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Proof. By Lemma A.14 it suffices to consider the case [−1, 1) ∉ 𝕀𝑖 so that all intervals in
𝕀𝑖 are contained in [0, 1). Then let 𝐸 and 𝕀 be a disjoint union of translates and dilates of
𝐸1, 𝐸2, … and 𝕀1, 𝕀2, … respectively. For example work with dyadic numbers and define

𝐸 ≔ ⋃
𝑖=1,2,…

0.1…1⏟
𝑖 − 1 times

+ 2−𝑖𝐸𝑖,

𝕀 ≔ ⋃
𝑖=1,2,…

0.1…1⏟
𝑖 − 1 times

+ 2−𝑖𝕀𝑖.

Then 𝕀 is compatible and 𝐸, 𝑝-dominant, and for all 𝑖 = 1, 2, … the maximal constant
of {

ℎ𝐼,𝐸
‖ℎ𝐼,𝐸‖2

∣ 𝐼 ∈ 𝕀} can be at most 1
𝑖 , because it contains a translate and dilate of

{
ℎ𝐼,𝐸𝑖

‖ℎ𝐼,𝐸𝑖‖2
∣ 𝐼 ∈ 𝕀𝑖}. Hence the maximal constant has to be zero which means that it is

no Riesz basic sequence.

Lemma A.16. Let 𝐼 be an interval, 0 ≤ 𝑏1, 𝑏2 ≤ 1, 𝑏 ≔ 𝑏1+𝑏2
2 and 𝐸 ⊂ 𝐼 with |𝔩(𝐼) ∩

𝐸| = 𝑏1|𝔩(𝐼)|, |𝔯(𝐼) ∩ 𝐸| = 𝑏2|𝔯(𝐼)|. Then the infimum over 𝑎 ∈ ℝ of

‖𝟙𝐸 + 𝑎ℎ𝐼,𝐸‖2
2

is attained at
𝑎 = 𝑎min ≔

𝑏1 − 𝑏2
2𝑏

.

Furthermore if 𝑏 ≥ 2
3 then for all |𝑎| ≤ 1 and

{
𝐼1 = 𝔩(𝐼),
𝐼2 = 𝔯(𝐼) and {

𝐼1 = 𝔯(𝐼),
𝐼2 = 𝔩(𝐼)

there is an 𝑎′ with the same sign as 𝑎 and |𝑎| ≤ |𝑎′| ≤ 1 and

‖𝟙𝐸 + 𝑎ℎ𝐼,𝐸‖2
𝐿2(𝐼1) ≤ ‖𝟙𝐸 + 𝑎′ℎ𝐼,𝐸‖2

𝐿2(𝐼2), (120)

‖𝟙𝐸 + 𝑎ℎ𝐼,𝐸‖2
2 = ‖𝟙𝐸 + 𝑎′ℎ𝐼,𝐸‖2

2. (121)

Proof. By translation and dilation it suffices to consider 𝐼 = [0, 1). Then the value for
𝑎 where the infimum is attained follows Lemma A.4 and

‖ℎ[0,1),𝐸‖2
2 = |𝐸| = 𝑏,

⟨𝟙𝐸, ℎ[0,1),𝐸⟩ =
𝑏2 − 𝑏1

2
.

For the second part, the changes 𝐼1 ↔ 𝐼2, 𝑎 ↦ −𝑎 and 𝑏1 ↔ 𝑏2 all have the same
effect. Hence it suffices to consider the case 𝐼1 = 𝔩(𝐼), 𝐼2 = 𝔯(𝐼) and 𝑎 ≥ 0.
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If 𝑏1 ≤ 𝑏2 then (120) and (121) hold for 𝑎′ = 𝑎. It remains to consider 𝑏1 ≥ 𝑏2.
Rewrite 𝑎 = 𝑎min + 𝜀 and 𝑎′ = 𝑎min + 𝛿. Then

‖𝟙𝐸 + 𝑎′ℎ[0,1),𝐸‖2
𝐿2([ 1

2 ,1))
− ‖𝟙𝐸 + 𝑎ℎ[0,1),𝐸‖2

𝐿2([0, 1
2 ))

=
𝑏2
2

[1 + 𝑎min + 𝛿]2 −
𝑏1
2

[1 − 𝑎min − 𝜀]2

=
𝑏2
2

(2𝑏 + 𝑏1 − 𝑏2 + 2𝑏𝛿)2

(2𝑏)2 −
𝑏1
2

(2𝑏 − 𝑏1 + 𝑏2 − 2𝑏𝜀)2

(2𝑏)2

=
𝑏2
2

(2𝑏1 + 2𝑏𝛿)2

(2𝑏)2 −
𝑏1
2

(2𝑏2 − 2𝑏𝜀)2

(2𝑏)2

=
(𝑏1 − 𝑏2)𝑏1𝑏2 + 2𝑏1𝑏2𝑏(𝛿 + 𝜀) + 𝑏2(𝑏2𝛿2 − 𝑏1𝜀2)

2𝑏2 (122)

We set 𝛿 ≔ |𝜀|. Then (121) holds because 𝑥 ↦ ‖𝟙𝐸 +𝑥ℎ𝐼,𝐸‖2
2 is a quadratic polynomial

with minimum 𝑥 = 𝑎min. Also 𝑎′ ≥ 𝑎min ≥ 0. For 𝜀 ≥ 0 we have 𝑎′ = 𝑎 ≤ 1. For 𝜀 ≤ 0
we still have 𝑎 ≥ 0 i.e. 𝜀 ≥ −𝑎min so that 𝛿 ≤ 𝑎min and

𝑎′ ≤ 2𝑎min = 2
𝑏1 − 𝑏2

2𝑏
= 2

𝑏1 − 𝑏2
𝑏1 + 𝑏2

= 2
1 − 𝑏2

𝑏1

1 + 𝑏2
𝑏1

≤ 21 − (2𝑏 − 1)
1 + (2𝑏 − 1)

= 22 − 2𝑏
2𝑏

= 21 − 𝑏
𝑏

≤ 2
1
3
2
3

= 1.

Because 𝑏1 ≥ 𝑏2 the choice 𝛿 = |𝜀| makes (122) a quadratic polynomial in 𝜀 with
negative leading coefficient, in the domains 𝜀 ≥ 0 and 𝜀 ≤ 0 each. Thus in order to
ensure its positivity we only need to check it at the boundaries of the domains, which
are at 𝜀 = −𝑎min, 𝜀 = 0 and 𝜀 = 𝑎min. Of the three summands in (122) the first does
not depend on 𝜀, 𝛿. The second one vanishes for 𝛿 = 𝜀 = 0 and 𝛿 = −𝜀 = 𝑎min and is
positive for 𝛿 = 𝜀 = 𝑎min. The last one vanishes for 𝛿 = 𝜀 = 0 and is equal and negative
for 𝛿 = 𝜀 = 𝑎min and 𝛿 = −𝜀 = 𝑎min. Thus it suffices to consider 𝛿 = −𝜀 = 𝑎min because
(122) is minimal there. If 𝑏1 = 𝑏2 then (122) = 0. Otherwise

2𝑏2

𝑏1 − 𝑏2
(122) = 𝑏1𝑏2 − 𝑏2𝑎2

min = 𝑏1𝑏2 −
(𝑏1 − 𝑏2)2

4
= 3

2
𝑏1𝑏2 −

𝑏2
1

4
−

𝑏2
2

4

= 𝑏1𝑏2[
3
2

− 1
4

(
𝑏1
𝑏2

+
𝑏2
𝑏1

)]
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and since 0 = d
d𝑥 ( 1

𝑥 + 𝑥) = − 1
𝑥2 + 1 ≤ 0 for 𝑥 ≤ 1 we maximize 𝑏1

𝑏2
+ 𝑏2

𝑏1
for 𝑏2

𝑏1
minimal.

So since 𝑏2
𝑏1

≥ 2𝑏 − 1 > 4
3 − 1 = 1

3 we get

≥ 𝑏1𝑏2[
3
2

− 1
4

(3 + 1
3

)] = 𝑏1𝑏2[
3
2

− 1
4

10
3 ] = 𝑏1𝑏2

9 − 5
6

> 0.

Lemma A.17. Let 𝑝 ≥ 1
2 , 𝐸 ⊂ 𝐼 be intervals with the same left boundary, |𝐸| = 𝑝|𝐼|

and 𝐽 ⊂ 𝐼 with |𝐽 ∩ 𝐸| = 𝑝|𝐽| and 𝑎, 𝑎𝐼, 𝑎𝐽 ≥ 0. Now if

‖𝑎𝐽ℎ𝐽 ,𝐸‖2
2 = ‖𝑎𝐼ℎ𝐼,𝐸‖2

2

then
‖𝑎𝟙𝐸 + 𝑎𝐽ℎ𝐽 ,𝐸‖2

𝐿2(𝔯(𝐽 )) ≤ ‖𝑎𝟙𝐸 + 𝑎𝐼ℎ𝐼,𝐸‖2
𝐿2(𝔯(𝐼))

Proof. The assumption |𝐽 ∩ 𝐸|𝑎2
𝐽 = |𝐼 ∩ 𝐸|𝑎2

𝐼 implies

|𝐽 |𝑎2
𝐽 = |𝐼|𝑎2

𝐼

which by |𝐽 | ≤ |𝐼| also implies |𝐽 |2𝑎2
𝐽 ≤ |𝐼|2𝑎2

𝐼 and thus

|𝐽 |𝑎𝐽 ≤ |𝐼|𝑎𝐼.

Therefore

‖𝑎𝟙𝐸 + 𝑎𝐽ℎ𝐽 ,𝐸‖2
𝐿2(𝔯(𝐽 )) = |𝐽|(𝑝 − 1

2
)(𝑎 + 𝑎𝐽)2

= (𝑝 − 1
2

)(|𝐽 |𝑎2 + 2|𝐽|𝑎𝑎𝐽 + |𝐽|𝑎2
𝐽)

≤ (𝑝 − 1
2

)(|𝐼|𝑎2 + 2|𝐼|𝑎𝑎𝐼 + |𝐼|𝑎2
𝐼)

= ‖𝑎𝟙𝐸 + 𝑎𝐼ℎ𝐼,𝐸‖𝐿2(𝔯(𝐼))

Lemma A.18. Let 𝐸 ⊂ 𝐽 ⊂ 𝐼 be three intervals with the same left boundary and
|𝐸| > 1

2 |𝐼|. Let 0 ≤ 𝑎 ≤ 𝑎0. Then there is an (𝑎max, 𝐽max) where 𝑎 ≤ 𝑎max ≤ 𝑎0,
𝐽 ⊂ 𝐽max ⊂ 𝐼, and 𝐽max also has the same left boundary as 𝐼 and with

‖𝑎0𝟙𝐸 + 𝑎maxℎ𝐽max,𝐸‖2
𝐿2(𝔯(𝐼)) = ‖𝑎0𝟙𝐸 + 𝑎ℎ𝐽 ,𝐸‖2

𝐿2(𝔯(𝐼))

and
‖𝑎0𝟙𝐸 + 𝑎maxℎ𝐽max,𝐸‖2

2 ≤ ‖𝑎0𝟙𝐸 + 𝑎ℎ𝐽 ,𝐸‖2
2

and where 𝑎max = 𝑎0 or 𝐽max = 𝐼.
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Proof. If 𝑎0 = 0 we may just keep 𝑎max ≔ 𝑎 = 0, 𝐽max ≔ 𝐽. Otherwise if 𝑎0 > 0 by
rescaling it suffices to consider 𝑎0 = 1. Then note that

1
|𝐸|

‖𝟙𝐸 + 𝑎ℎ𝐽 ,𝐸‖2
𝐿2(𝔯(𝐼)) = (1 −

|𝐽|
2|𝐸|

)(1 + 𝑎)2,

1
|𝐸|

‖𝟙𝐸 + 𝑎ℎ𝐽 ,𝐸‖2
2 =

|𝐽|
2|𝐸|

(1 − 𝑎)2 + (1 −
|𝐽|

2|𝐸|
)(1 + 𝑎)2.

Now Lemma A.25 allows us to increase 𝑎 and extend 𝐽 to the right in such a way that
‖𝟙𝐸 + 𝑎ℎ𝐽 ,𝐸‖2

𝐿2(𝔯(𝐽 )) stays constant and ‖𝟙𝐸 + 𝑎ℎ𝐽 ,𝐸‖2
2 decreases. We do this until one

of the bounds 𝑎 = 1, 𝐽 = 𝐼 is reached.

A.3 Calculations
Some statements in this thesis can be seen as results of simple calculations. We list most
of these calculations in this subsubsection.

Lemma A.19. Let 𝑓 ∶ [0, 1] → ℝ be continuous and midpoint convex, i.e. for all
𝑥, 𝑦 ∈ [0, 1) we have

𝑓(𝑥) + 𝑓(𝑦)
2

≥ 𝑓(
𝑥 + 𝑦

2 ).

Then 𝑓 is also convex, i.e. for all 𝑥, 𝑦, 𝑡 ∈ [0, 1] we have

𝑡𝑓 (𝑥) + (1 − 𝑡)𝑓(𝑦) ≥ 𝑓(𝑡𝑥 + (1 − 𝑡)𝑦).

Proof. Assume 𝑓 is not convex. Then there are 𝑥, 𝑦, 𝑡 ∈ [0, 1] with

𝑡𝑓 (𝑥) + (1 − 𝑡)𝑓(𝑦) < 𝑓(𝑡𝑥 + (1 − 𝑡)𝑦).

Since both sides are continuous in 𝑡, there is an interval 𝐼 ∋ 𝑡 such that for all 𝑠 ∈ 𝐼 the
above strict inequality holds for 𝑠 instead of 𝑡. Let 𝐽 be the union of all such intervals
𝐼. 𝐽 is also an interval. At the endpoints of 𝐽 the strict inequality cannot hold anymore,
for then we could extend it even further by continuity. Hence we may write 𝐽 = (𝑡0, 𝑡1).
Since for 𝑠 = 0, 1 the inequality does not hold, we have {𝑡0, 𝑡1} ⊂ [0, 1]. By continuity
we must have equality for 𝑠 = 𝑡0, 𝑡1. Therefore

𝑓(𝑡0𝑥 + (1 − 𝑡0)𝑦) + 𝑓(𝑡1𝑥 + (1 − 𝑡1)𝑦)
2

=
𝑡0
2

𝑓(𝑥) +
1 − 𝑡0

2
𝑓(𝑦) +

𝑡1
2

𝑓(𝑥) +
1 − 𝑡1

2
𝑓(𝑦)

=
𝑡0 + 𝑡1

2
𝑓(𝑥) + (1 −

𝑡0 + 𝑡1
2

)𝑓(𝑦)
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and since 𝑡0+𝑡1
2 ∈ 𝐽 we have

< 𝑓(
𝑡0 + 𝑡1

2
𝑥 + (1 −

𝑡0 + 𝑡1
2

)𝑦)

= 𝑓(
𝑡0𝑥 + (1 − 𝑡0)𝑦 + 𝑡1𝑥 + (1 − 𝑡1)𝑦

2 )

which means that 𝑓 is not midpoint convex.

Lemma A.20. For 𝑐− + 𝑐+ > 2 and 𝑐 ∈ ℝ we have

inf
𝑥∈ℝ

(1 − 𝑥)2

2
𝑐− + (1 + 𝑥)2

2
𝑐+ − 𝑐 − 𝑥2 =

𝑐− + 𝑐+
2

− 1
2

(𝑐+ − 𝑐−)2

𝑐+ + 𝑐− − 2
− 𝑐

=
2𝑐+𝑐− − (1 + 𝑐)(𝑐+ + 𝑐−) + 2𝑐

𝑐+ + 𝑐− − 2
.

Proof.

(1 − 𝑥)2

2
𝑐− + (1 + 𝑥)2

2
𝑐+ − 𝑐 − 𝑥2

= (
𝑐+ + 𝑐−

2
− 1)𝑥2 + (𝑐+ − 𝑐−)𝑥 + (

𝑐+ + 𝑐−
2

− 𝑐)

= (
𝑐+ + 𝑐−

2
− 1)(𝑥 +

𝑐+ − 𝑐−
𝑐− + 𝑐+ − 2)

2 − 1
2

(𝑐+ − 𝑐−)2

𝑐+ + 𝑐− − 2
+

𝑐− + 𝑐+
2

− 𝑐

whose minimum is
𝑐− + 𝑐+

2
− 1

2
(𝑐+ − 𝑐−)2

𝑐+ + 𝑐− − 2
− 𝑐.

Now multiplying this by 𝑐+ + 𝑐− − 2 yields

1
2

(𝑐− + 𝑐+)(𝑐+ + 𝑐− − 2) − 1
2

(𝑐+ − 𝑐−)2 − 𝑐(𝑐+ + 𝑐− − 2)

= 2𝑐+𝑐− − (1 + 𝑐)(𝑐+ + 𝑐−) + 2𝑐.

Lemma A.21. Let 1 < 𝑏 < 𝑎. Then for all 𝑥 ∈ ℝ and 𝑞1, 𝑞2 ∈ [0, 1] and 𝑞 ≔ 𝑞1+𝑞2
2 we

have
(1 − 𝑥)2

2
𝑎 − 𝑞1
𝑏 − 𝑞1

+ (1 + 𝑥)2

2
𝑎 − 𝑞2
𝑏 − 𝑞2

−
𝑎 − 𝑞
𝑏 − 𝑞

≥ 𝑥2

Proof. Abbreviate

𝑎1 = 𝑎 − 𝑞1 𝑎2 = 𝑎 − 𝑞2
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𝑏1 = 𝑏 − 𝑞1 𝑏2 = 𝑏 − 𝑞2

Then we have to check that
(1 − 𝑥)2

2
𝑎1
𝑏1

+ (1 + 𝑥)2

2
𝑎2
𝑏2

−
𝑎1 + 𝑎2
𝑏1 + 𝑏2

− 𝑥2 ≥ 0

Since 𝑎1 > 𝑏1 > 0 and 𝑎2 > 𝑏2 > 0 we may invoke Lemma A.20 for that, which implies
that it suffices to confirm the positivity of

2
𝑎1𝑎2
𝑏1𝑏2

− (1 +
𝑎1 + 𝑎2
𝑏1 + 𝑏2

)(
𝑎1
𝑏1

+
𝑎2
𝑏2

) + 2
𝑎1 + 𝑎2
𝑏1 + 𝑏2

=
2𝑎1𝑎2(𝑏1 + 𝑏2) − (𝑏1 + 𝑏2 + 𝑎1 + 𝑎2)(𝑎1𝑏2 + 𝑎2𝑏1) + 2𝑏1𝑏2(𝑎1 + 𝑎2)

𝑏1𝑏2(𝑏1 + 𝑏2)

=
𝑎1𝑎2(𝑏1 + 𝑏2) + 𝑏1𝑏2(𝑎1 + 𝑎2) − 𝑎1𝑏2(𝑎1 + 𝑏2) − 𝑎2𝑏1(𝑎2 + 𝑏1)

𝑏1𝑏2(𝑏1 + 𝑏2)

=
𝑎1𝑎2𝑏1 + 𝑎1𝑎2𝑏2 − 𝑎1𝑎1𝑏2 − 𝑎2𝑎2𝑏1 + 𝑎1𝑏1𝑏2 + 𝑎2𝑏1𝑏2 − 𝑎1𝑏2𝑏2 − 𝑎2𝑏1𝑏1

𝑏1𝑏2(𝑏1 + 𝑏2)

=
(𝑎1 − 𝑎2)𝑎2𝑏1 + 𝑎1(𝑎2 − 𝑎1)𝑏2 + 𝑎1(𝑏1 − 𝑏2)𝑏2 + 𝑎2𝑏1(𝑏2 − 𝑏1)

𝑏1𝑏2(𝑏1 + 𝑏2)
which since 𝑎1 − 𝑎2 = 𝑞1 − 𝑞2 = 𝑏1 − 𝑏2 is

= 0

Lemma A.22. Let 𝜀 > 0 and 𝑝 = 2
3 + 𝜀. Then the infimum of

𝑎 − 1
𝑏 − 1

under the conditions

𝑎 ≥ 𝑏 > 1, (123)
2𝑝 − 1

𝑝
𝑎 − 𝑝
𝑏 − 𝑝

≥
𝑎 − (2𝑝 − 1)
𝑏 − (2𝑝 − 1)

(124)

is
8

81
1
𝜀2 + 𝒪(1

𝜀
).

Furthermore

𝑎 = 4
27

1
𝜀

+ 10
9

+ 4
3

𝜀,

𝑏 = 1 + 3
2

𝜀

satisfy (123), (124) and 𝑎−1
𝑏−1 = 8

81
1
𝜀2 + 𝒪(1

𝜀 ).
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Proof. First we check that it suffices to consider the case of equality in (124): Increasing
𝑏 decreases the right hand side of (124) less than the left hand side because 𝑝 > 2𝑝 − 1.
At the same time it decreases 𝑎−1

𝑏−1 . Hence if the inequality in (124) is strict then we can
just increase 𝑏 until it is not strict anymore. This will happen for some 𝑏 ≤ 𝑎, since for
𝑎 = 𝑏 the inequality is reversed as 2𝑝 − 1 < 𝑝.

Now (124) holds with equality if and only if

0 =
(𝑝 − (1 − 𝑝))(𝑎 − 𝑝)

𝑝(𝑏 − 𝑝)
−

𝑎 − 𝑝 + 1 − 𝑝
𝑏 − 𝑝 + 1 − 𝑝

⟺ 0 = (𝑝 − (1 − 𝑝))(𝑎 − 𝑝)(𝑏 − 𝑝 + 1 − 𝑝) − (𝑎 − 𝑝 + 1 − 𝑝)𝑝(𝑏 − 𝑝)
= 𝑝(𝑎 − 𝑝)(𝑏 − 𝑝) + 𝑝(𝑎 − 𝑝)(1 − 𝑝) − (1 − 𝑝)(𝑎 − 𝑝)(𝑏 − 𝑝) − (1 − 𝑝)2(𝑎 − 𝑝)

− 𝑝(𝑏 − 𝑝)(𝑎 − 𝑝) − 𝑝(𝑏 − 𝑝)(1 − 𝑝)
= 𝑝(1 − 𝑝)(𝑎 − 𝑝) − (1 − 𝑝)(𝑎 − 𝑝)(𝑏 − 𝑝) − (1 − 𝑝)2(𝑎 − 𝑝) − 𝑝(1 − 𝑝)(𝑏 − 𝑝)

dividing by (1 − 𝑝) implies

⟺ 0 = 𝑝(𝑎 − 𝑝) − (𝑎 − 𝑝)(𝑏 − 𝑝) − (1 − 𝑝)(𝑎 − 𝑝) − 𝑝(𝑏 − 𝑝)
= 𝑝(𝑎 − 𝑏) − (𝑎 − 𝑝)(1 − 𝑝 + 𝑏 − 𝑝)
= −𝑎𝑏 + (2𝑝 − (1 − 𝑝))𝑎 + 𝑝((1 − 𝑝) − 𝑝)

⟺ 𝑎 =
𝑝(𝑝 − (1 − 𝑝))

2𝑝 − (1 − 𝑝) − 𝑏
=

2
9 + 5

3𝜀 + 2𝜀2

1 + 3𝜀 − 𝑏

Thus having 𝑎 ≥ 0 requires 𝑏 ≤ 1 + 3𝜀. Plugging the result into 𝑎−1
𝑏−1 yields

𝑎 − 1
𝑏 − 1

=
2
9 + 5

3𝜀 + 2𝜀2 − 1 − 3𝜀 + 𝑏

(𝑏 − 1)(1 + 3𝜀 − 𝑏)
=

𝑏 − 7
9 − 4

3𝜀 + 2𝜀2

(𝑏 − 1)(1 + 3𝜀 − 𝑏)
.

If 𝜀 is small, and since we already know 1 < 𝑏 < 1 + 3𝜀, we cannot influence the
nominator a lot by our choice of 𝑏. Hence we minimize the fraction about where we
maximize the denominator, i.e. for

𝑏 = 1 + 3
2

𝜀 + 𝒪(𝜀2),

That means

𝑎 − 1
𝑏 − 1

=
2
9 + 𝒪(𝜀)

9
4𝜀2 + 𝒪(𝜀3)

= 8
81

1
𝜀2 + 𝒪(1

𝜀
),

𝑎 =
2
9 + 5

3𝜀 + 2𝜀2

3
2𝜀 + 𝒪(𝜀2)

= 4
27

1
𝜀

+ 𝒪(1).
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If we instead take
𝑏 = 1 + 3

2
𝜀

we get the same result for 𝑎−1
𝑏−1 up to another 𝒪(1

𝜀 ) and

𝑎 = 4
27

1
𝜀

+ 10
9

+ 4
3

𝜀

and
𝑎 − 𝑏 = 4

27
1
𝜀

+ 1
9

− 1
6

𝜀 ≥ 4
27

⋅ 3 + 1
9

− 1
6

1
3

= 8 + 2 − 1
18

= 1
2

≥ 0

Lemma A.23. For all 𝑥 ∈ [√2, 2) we have

2 − 𝑥
𝑥 − 1

≤ 2 + 𝑥
𝑥 + 1

.

Proof.

2 + 𝑥
𝑥 + 1

− 2 − 𝑥
𝑥 − 1

= (2 + 𝑥)(𝑥 − 1) − (2 − 𝑥)(𝑥 + 1)
𝑥2 − 1

= 2𝑥2 − 4
𝑥2 − 1

≥ 0.

Lemma A.24 is used here to prove Lemma A.9 and in similar situations.

Lemma A.24. Let 𝑎1, 𝑎2 ≥ 0, 𝑏1, 𝑏2 > 0 and 𝑎1
𝑏1

≤ 𝑎2
𝑏2
. Then

𝑎1
𝑏1

≤
𝑎1 + 𝑎2
𝑏1 + 𝑏2

≤
𝑎2
𝑏2

.

Proof. We have
(𝑎1 + 𝑎2)𝑏1 − (𝑏1 + 𝑏2)𝑎1 = 𝑎2𝑏1 − 𝑏2𝑎1 ≥ 0

and thus 𝑎1 + 𝑎2
𝑏1 + 𝑏2

≥
𝑎1
𝑏1

.

Similarly
(𝑎1 + 𝑎2)𝑏2 − (𝑏1 + 𝑏2)𝑎2 = 𝑎1𝑏2 − 𝑏1𝑎2 ≤ 0

and thus 𝑎1 + 𝑎2
𝑏1 + 𝑏2

≤
𝑎2
𝑏2

.
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Lemma A.25 is the calculation that leads to Lemma A.18.

Lemma A.25. For 𝑅 ≥ 0 fixed, define

𝑐(𝑎) ≔ 1 − 𝑅
(1 + 𝑎)2 ,

i.e. s.t. for all 𝑎 > −1 we have

𝑅 = (1 − 𝑐(𝑎))(1 + 𝑎)2.

Then for all 0 ≤ 𝑎 ≤ 1 with 1
2 ≤ 𝑐(𝑎) ≤ 1 we have

d
d𝑎

[𝑐(𝑎)(1 − 𝑎)2 + (1 − 𝑐(𝑎))(1 + 𝑎)2] ≤ 0.

Proof. 𝑐(𝑎) ≥ 1
2 is equivalent to

𝑅
(1 + 𝑎)2 ≤ 1

2
,

2𝑅 ≤ (1 + 𝑎)2.

Now

d
d𝑎[𝑐(𝑎)(1 − 𝑎)2 + (1 − 𝑐(𝑎))(1 + 𝑎)2

] = d
d𝑎[𝑐(𝑎)(1 − 𝑎)2 + 𝑅]

= d
d𝑎

𝑐(𝑎)(1 − 𝑎)2

= 𝑐′(𝑎)(1 − 𝑎)2 − 2𝑐(𝑎)(1 − 𝑎)

= (1 − 𝑎)[2 𝑅
(1 + 𝑎)3 (1 − 𝑎) − 2 + 2 𝑅

(1 + 𝑎)2 ]

= 2 1 − 𝑎
(1 + 𝑎)3 [𝑅(1 − 𝑎) − (1 + 𝑎)3 + 𝑅(1 + 𝑎)]

= 2 1 − 𝑎
(1 + 𝑎)3 [2𝑅 − (1 + 𝑎)3

]

≤ 2 1 − 𝑎
(1 + 𝑎)3 [(1 + 𝑎)2(1 − (1 + 𝑎))]

≤ 0.
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B Notation
• For 𝑎 ∈ ℕ and 𝑏 ∈ ℕ ∪ {∞} a tuple (𝐹𝑖)𝑏

𝑖=𝑎 we denote

{𝐹𝑎, 𝐹𝑎+1, …} = {𝐹𝑎, …, 𝐹𝑏} = {𝐹𝑖 | 𝑎 ≤ 𝑖 ≤ 𝑏}.

That means that even if {𝐹𝑖 ∣ 𝑎 ≤ 𝑖 ≤ 𝑏} is finite we sometimes write
{𝐹𝑎, 𝐹𝑎+1, …}. In fact, most of our tuples will be finite but we usually don’t care
about how many members they have exactly, only that they are finite. For some
elements 𝑥, 𝑦, 𝑧, … we write

{𝑥, 𝑦, 𝑧, …, 𝐹𝑎, 𝐹𝑎+1, …} = {𝑥, 𝑦, 𝑧, …} ∪ {𝐹𝑎, 𝐹𝑎+1, …}.

Similarly we write

𝐹𝑎 + 𝐹𝑎+1 + … =
𝑏

∑
𝑖=𝑎

𝐹𝑖,

𝐹𝑎 ∪ 𝐹𝑎+1 ∪ … =
𝑏

⋃
𝑖=𝑎

𝐹𝑖,

…

We do that so that we don’t have to introduce a variable for the length of a sequence
even though we don’t actually care about its value.

• We write ’positive’ when we mean ’nonnegative’ and ’strictly positive’ when we
mean ’positive’. Similarly for ’smaller, greater,…’.

• ’⊂’ means the same as ’⊆’

• Whenever we assume a set 𝐸 to be a subset of ℝ we implicitly assume it to be Le-
besgue measurable. Since usually we only care about how 𝐸 effects ⟨ℎ𝐼,𝐸, ℎ𝐽 ,𝐸⟩
for 𝐼, 𝐽 belonging to a finite set of intervals 𝕀, by Lemma A.12 we could even as-
sume𝐸 to be a finite union of intervals without reducing the strength of statements.

• For a subset 𝐸 ⊂ ℝ we denotes its Lebesgue measure by |𝐸|.

• Since we only care about subsets of real numbers in terms of integrals, we do not
care about measure zero sets. That means whenever we write words like ’subset’
or ’disjoint’ we mean ’subset/disjoint up to measure zero’.

• 𝑓(𝑥) = 𝒪(𝑔(𝑥)) means
lim sup

𝑥→0
|
𝑓 (𝑥)
𝑔(𝑥)

| < ∞.
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(𝐸, 𝑝)-dominant, 3
𝐴𝐸(𝑆), 6, 22
𝐴𝑛(𝑟), 23
𝐴∞, 23
𝐵𝐸(𝑆), 7, 22
𝐵𝑛(𝑟), 23
𝐵∞, 23
𝐹𝐸(𝑆), 6, 22
𝐻𝐸(𝕀), 62
𝑆, 6, 22
𝑆𝑛(𝑟), 23
𝑆∞(𝑟), 23
𝑈(𝑆), 35
𝒟, 3
𝔩(𝐼), 3
𝔯(𝐼), 3
𝑎𝐼𝐼, 6
𝑓(𝑞), 9, 11
𝑓(𝑟), 23
𝑔(𝑞), 7
ℎ𝐼, 3
ℎ𝐼,𝐸, 3
𝑝(𝕀), 11
𝕀(𝑆), 7
𝕀𝑝, 23
𝕀𝑝
𝑛, 22

𝜇𝑃, 11
𝜇𝑛, 9

Bessel sequence, 2

compatible, 3
convex, 78

frame, 2

Haar function, 3

midpoint convex, 78

most 𝑝-antiparallel interval to 𝐼 w.r.t. 𝐸, 22

nested, 34

restricted Haar function, 3
Riesz basic sequence, 2
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