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Abstract

Let 0 < α < d and 1 ≤ p < d/α. We present a proof that for all f ∈ W 1,p(Rd) the uncen-
tered fractional maximal operator Mαf is weakly differentiable and ‖∇Mαf‖p∗ ≤ Cd,α,p‖∇f‖p,
where p∗ = (p−1 −α/d)−1. In particular it covers the endpoint case p = 1 for 0 < α < 1 where
the bound was previously unknown. For p = 1 we can replace W 1,1(Rd) by BV. The ingre-
dients used are a pointwise estimate for the gradient of the fractional maximal function, the
layer cake formula, a Vitali type argument, a reduction from balls to dyadic cubes, the coarea
formula, a relative isoperimetric inequality and an earlier established result for α = 0 in the
dyadic setting. We use that for α > 0 the fractional maximal function does not use certain
small balls. For α = 0 the proof collapses.

1 Introduction

For f ∈ L1
loc(Rd) and a ball or cube B, we denote

fB =
1

L(B)

ˆ
B

|f |.

The uncentered Hardy-Littlewood maximal function is defined by

Mf(x) = sup
B3x

fB

where the supremum is taken over all balls that contain x. The regularity of a maximal operator
was first studied by Kinnunen in 1997. He proved in [18] that for each p > 1 and f ∈W 1,p(Rd) the
bound

‖∇Mf‖p ≤ Cd,p‖∇f‖p (1)

holds, which implies that the Hardy-Littlewood maximal operator is bounded on Sobolev spaces
with p > 1. His proof does not apply for p = 1. Note that unless f = 0 also ‖Mf‖1 ≤ Cd,1‖f‖1
fails since Mf is not in L1(Rd). In [16] Haj lasz and Onninen asked whether eq. (1) also holds for
p = 1. This question has become a well known problem for various maximal operators and there
has been lots of research on this topic. So far it has mostly remained unanswered, but there has
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been some progress. For the uncentered maximal function and d = 1 it has been proved in [28] by
Tanaka and later in [22] by Kurka for the centered Hardy-Littlewood maximal function. The proof
for the centered maximal function turned out to be much more complicated. For the uncentered
Hardy-Littlewood maximal function Aldaz and Pérez Lázaro obtained in [3] the sharp improve-
ment ‖∇Mf‖L1(R) ≤ ‖∇f‖L1(R) of Tanaka’s result. For the uncentered Hardy-Littlewood maximal
function Haj lasz’s and Onninen’s question already also has a positive answer for all dimensions d
in several special cases. For radial functions Luiro proved it in [24], for block decreasing functions
Aldaz and Pérez Lázaro proved it in [2] and for characteristic functions the author proved it in [30].

As a first step towards weak differentiability, Haj lasz and Malý proved in [15] that for f ∈ L1(Rd)
the centered Hardy-Littlewood maximal function is approximately differentiable. In [1] Aldaz,
Colzani and Pérez Lázaro proved bounds on the modulus of continuity for all dimensions.

A related question is whether the maximal operator is a continuous operator. Luiro proved
in [23] that for p > 1 the uncentered maximal operator is continuous on W 1,p(Rd). There is
ongoing research for the endpoint case p = 1. For example Carneiro, Madrid and Pierce proved in
[11] that for the uncentered maximal function f 7→ ∇Mf is continuous W 1,1(R) → L1(R) and in
[14] González-Riquelme and Kosz recently improved this to continuity on BV. Carneiro, González-
Riquelme and Madrid proved in [8] that for radial functions f , the operator f 7→ ∇Mf is continuous
as a map W 1,1(Rd)→ L1(Rd).

The regularity of maximal operators has also been studied for other maximal operators and
on other spaces. We focus on the endpoint p = 1. In [12] Carneiro and Svaiter and in [7]
Carneiro and González-Riquelme investigated maximal convolution operators associated to certain
partial differential equations. Analogous to the Hardy-Littlewood maximal operator they proved
‖∇Mf‖L1(Rd) ≤ Cd‖∇f‖L1(Rd) for d = 1, and for d > 1 if f is radial. In [9] Carneiro and Hughes
proved ‖∇Mf‖l1(Zd) ≤ Cd‖f‖l1(Zd) for centered and uncentered discrete maximal operators. This

bound does not hold on Rd, but because in the discrete setting we have ‖∇f‖l1(Zd) ≤ Cd‖f‖l1(Zd), it
is weaker than the still open ‖∇Mf‖l1(Zd) ≤ Cd‖∇f‖l1(Zd). In [21] Kinnunen and Tuominen proved
the boundedness of a discrete maximal operator in the metric Haj lasz Sobolev space M1,1. In [27]
Pérez, Picon, Saari and Sousa proved the boundedness of certain convolution maximal operators
on Hardy-Sobolev spaces Ḣ1,p for a sharp range of exponents, including p = 1. In [29] the author
proved var Mdf ≤ Cd var f for the dyadic maximal operator for all dimensions d.

For a ball B we denote the radius of B by r(B). For 0 ≤ α ≤ d the uncentered fractional
Hardy-Littlewood maximal function is defined by

Mαf(x) = sup
B3x

r(B)αfB

where the supremum is taken over all balls that contain x. Note that Mα does not make much
sense for α > d. For α = 0 it is the uncentered Hardy-Littlewood maximal function. The following
is the fractional version of eq. (1).

Theorem 1.1. Let 1 ≤ p <∞ and 0 < α < d/p. Then for all f ∈W 1,p(Rd) we have that Mαf is
weakly differentiable with

‖∇Mαf‖(p−1−α/d)−1 ≤ Cd,α,p‖∇f‖p (2)

where the constant Cd,α,p depends only on d, α and p. In the endpoint p = 1 we can replace
f ∈W 1,1 by f ∈ BV. The endpoint result for p = d/α holds true as well.

We prove Theorem 1.1 in section 2.1.
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The study of the regularity of the fractional maximal operator was initiated by Kinnunen and
Saksman. They proved in [20, Theorem 2.1] that eq. (2) holds for 0 ≤ α < d/p and 1 < p < ∞.
They showed |∇Mαf(x)| ≤ Mα|∇f |(x) for almost every x ∈ Rd, and then concluded eq. (2) from the

L(p−1−α/d)−1

-boundedness of Mα, which fails for p = 1. Another result by Kinnunen and Saksman
in [20] is that for all α ≥ 1 we have |∇Mαf(x)| ≤ (d − α)Mα−1f(x) for almost every x ∈ Rd. In
[10] Carneiro and Madrid used this, the Ld/(d−α)-boundedness of Mα−1, and Sobolev embedding
to concluded eq. (2). This strategy fails for α < 1.

Our main result is the extension of eq. (2) to the endpoint p = 1 for 0 < α < 1 which has
been an open problem. Our proof of Theorem 1.1 also works for 1 ≤ α ≤ d, and further extends
to 1 ≤ p < ∞, 0 < α ≤ d/p. We decided to present the proof for this range of parameters here.
Our approach fails for α = 0. The corner point α = 0, p = 1 is the earlier mentioned question by
Haj lasz and Onninen and remains open. Similarly to Carneiro and Madrid, we begin the proof with
a pointwise estimate |∇Mαf(x)| ≤ (d − α)Mα,−1f(x) which holds for all 0 < α < d for bounded
functions. We estimate Mα,−1f in Theorem 1.2 and from that conclude Theorem 1.1.

Define

Bα(x) =
{
B(z, r) : r is maximal with x ∈ B(z, r) and Mαf(x) = rαfB(z,r)

}
and Bα =

⋃
x∈Rd Bα(x). Then for almost every x ∈ Rd the set Bα(x) is nonempty, i.e. the supremum

in the definition of the maximal function is attained in a largest ball B with x ∈ B, see Lemma 2.2.
For β ∈ R with −1 ≤ α + β < d this allows us to define for almost every x ∈ Rd the following
operator,

Mα,βf(x) = sup
B∈Bα:x∈B

r(B)α+βfB . (3)

Theorem 1.2. Let 1 ≤ p <∞ and 0 < α < d and β ∈ R with 0 ≤ α + β + 1 < d/p. Then for all
f ∈W 1,p(Rd) we have

‖Mα,βf‖(p−1−(1+α+β)/d)−1 ≤ Cd,α,β,p‖∇f‖p
where the constant Cd,α,β,p depends only on d, α, β and p. In the endpoint p = 1 we can replace
f ∈W 1,1 by f ∈ BV. The endpoint result for p = d/(1 + α+ β) holds true as well.

We prove Theorem 1.2 in section 4.

Remark 1.3. Theorems 1.1 and 1.2 also hold for the centered Hardy-Littlewood maximal function,
with the same proof. We only need to change the following. In the centered setting denote by
Mαf(x) the centered Hardy-Littlewood maximal function, i.e. for α > 0 and x ∈ Rd set

Mαf(x) = sup
r>0

 
B(x,r)

|f |,

and further define

Bα(x) =
{
B(x, r) : r is maximal with x ∈ B(z, r) and Mαf(x) = rαfB(z,r)

}
With these changes, the proof in this manuscript will work verbatim as a proof for the centered
setting. Note that also in the centered setting we define Mα,βf by eq. (3), but with Bα being defined
via the centered version of Bα(x).
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There had also been progress on 0 < α ≤ 1 similarly as for the Hardy-Littlewood maximal
operator. In [10] Carneiro and Madrid proved Theorem 1.1 for d = 1, and in [25] Luiro proved
Theorem 1.1 for radial functions. Beltran and Madrid transfered Luiros result to the centered
fractional maximal function in [5]. In [6] Beltran, Ramos and Saari proved Theorem 1.1 for d ≥ 2 and
a centered maximal operator that only uses balls with lacunary radius and for maximal operators
with respect to smooth kernels. The next step after boundedness is continuity of the gradient of
the fractional maximal operator, as it implies boundedness, but doesn’t follow from it. In [4, 26]
Beltran and Madrid already proved it for the uncentered fractional maximal operator in the cases
where the boundedness is known.

For a dyadic cube Q we denote by l(Q) the sidelength of Q. The fractional dyadic maximal
function is defined by

Md
αf(x) = sup

Q:Q3x
l(Q)αfQ,

where the supremum is taken over all dyadic cubes that contain x. The dyadic maximal operator
has enjoyed a bit less attention than its continuous counterparts, such as the centered and the
uncentered Hardy-Littlewood maximal operator. The dyadic maximal operator is different in the
sense that eq. (2) only holds for α = 0, p = 1 and only in the variation sense, for which eq. (2)
has been proved in [29]. But for any other α and p eq. (2) fails because ∇Md

αf is not a Sobolev
function. We can however prove Theorem 1.5, the dyadic analog of Theorem 1.2. For α ≥ 0 and a
function f ∈ L1(Rd) define Qα to be the set of all cubes Q such that for all dyadic cubes P ) Q
we have l(P )αfP < l(Q)αfQ.

Remark 1.4. In the uncentered setting one could also define Bα in a similar way as Qα.

For β ∈ R with −1 ≤ α+ β < d also define in the dyadic setting

Md
α,βf(x) = sup

Q∈Qα:x∈Q
l(Q)α+βfQ.

Then

Theorem 1.5. Let 1 ≤ p <∞ and 0 < α < d and β ∈ R with 0 ≤ α + β + 1 < d/p. Then for all
f ∈W 1,p(Rd) we have

‖Md
α,βf‖(p−1−(1+α+β)/d)−1 ≤ Cd,α,β,p‖∇f‖p

where the constant Cd,α,β,p depends only on d, α, β and p. In the endpoint p = 1 we can replace
f ∈W 1,1 by f ∈ BV. The endpoint result for p = d/(1 + α+ β) holds true as well.

Our main result in the dyadic setting is the following.

Theorem 1.6. Let 1 ≤ p <∞ and 0 < α < d. Then for all f ∈W 1,p(Rd) we have( ∑
Q∈Qα

(l(Q)
d
p−1fQ)p

) 1
p

≤ Cd,α,p‖∇f‖p

where the constant Cd,α,p depends only on d, α and p. In the endpoint p = 1 we can replace
f ∈W 1,1 by f ∈ BV. The endpoint result for p =∞ holds true as well.

Remark 1.7. Note that in Theorem 1.6 we restrict 0 < α < d and not 0 < α < d/p.

In section 2.2 we conclude Theorem 1.5 from Theorem 1.6, and in section 3 we prove Theorem 1.6.
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Remark 1.8. Theorem 1.6 fails for α = 0. However for α = 0 and p = 1, a version with fQ by
replaced by fQ − λQ holds for certain λQ, see [29, Proposition 2.5].

Remark 1.9. Theorems 1.2, 1.5 and 1.6 admit localized versions of the following form. For D ⊂ Rd
we set Bα(D) =

⋃
x∈D Bα(x) and E =

⋃
{cB : B ∈ Bα(D)} with some large c > 1. Then

Theorem 1.2 also holds in the form

‖∇Mα,−1f‖L(p−1−α/d)−1 (D) ≤ Cd,α,p‖∇f‖Lp(E).

Theorem 1.5 holds with the dyadic version of E and Theorem 1.6 where the sum on the left hand
side is over any subset Q ⊂ Qα and the integral on the right is over

⋃
{cQ : Q ∈ Q}. These

localized results directly follow from the same proof as the global results, if one keeps track of the
balls and cubes which are being dealt with. This also works for the centered maximal operator.
The respective localized version of Theorem 1.1 can be proven if one has Lemma 2.4 without the
differentiability assumption. Then in the reduction of Theorem 1.1 to Theorem 1.2 one could apply
Theorem 1.2 to the same function f and Qα for which one is showing Theorem 1.1, bypassing the
approximation step and therefore preserving the locality of Theorem 1.2. This is in contrast to the
actual local fractional maximal operator, for whom Theorem 1.1 fails by [17, Example 4.2], which
works for α > 0. However if α = 0 and p > 1 then the local fractional maximal operator is again
bounded due to [19], and by [30] for α = 0 and p = 1 and characteristic functions.

Dyadic cubes are much easier to deal with than balls, but the dyadic version still serves as a
model case for the continuous versions since both versions share many properties. This can be
observed in [30], where we proved var M01E ≤ Cd var 1E for the dyadic maximal operator and the
uncentered Hardy-Littlewood maximal operator. The proof for the dyadic maximal operator is
much shorter, but the same proof idea also works for the uncentered maximal operator. Also in
this paper a part of the proof of Theorem 1.5 for the dyadic maximal operator is used also in the
proof of Theorem 1.2 for the Hardy-Littlewood maximal operator.

The plan for the proof of Theorem 1.1 is the following. For simplicity we write it down for p = 1.

ˆ
|∇Mαf |

d
d−α ≤ (d− α)

d
d−α

ˆ
(Mα,−1f)

d
d−α

= d(d− α)
α
d−α

ˆ ∞
0

λ
α
d−αL({Mα,−1f > λ}) dλ

= d(d− α)
α
d−α

ˆ ∞
0

λ
α
d−αL(

⋃
{B : B ∈ Bα, r(B)α−1fB > λ}) dλ

.α

ˆ ∞
0

λ
α
d−α

∑
B∈B̃α,cr(B)α−1fB>λ

L(B) dλ

=
∑
B∈B̃α

ˆ cr(B)α−1fB

0

λ
α
d−α dλ

=
(1− α/d)c

d
d−α

(dσd)
d

d−α

∑
B∈B̃α

(fBHd−1(∂B))
d

d−α

≤ (1− α/d)c
d

d−α

(dσd)
d

d−α

( ∑
B∈B̃α

fBHd−1(∂B)

) d
d−α
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.α

( ∑
Q∈Q̃α

fQHd−1(∂Q)

) d
d−α

≤ Cd,α(var f)
d

d−α ,

where σd is the volume of the d-dimensional unit ball. In the second step we apply the layer cake
formula, in the forth step we pass from a union of arbitrary balls to very disjoint balls B̃α with a
Vitali covering argument, in the eighth step we pass from those balls to comparable dyadic cubes
and as the last step use a result from the dyadic setting.

We use α > 0 as follows. Let B be a ball and C be a smaller ball that intersects B. Then by C ⊂
3B we have 3α−dr(B)αfB ≤ r(3B)αf3B . Thus if r(C)αfC ≤ 3α−dr(B)αfB then C is not used by the
fractional maximal operator. Hence it suffices to consider balls C with 3d−α(r(C)/r(B))αfC > fB .
From that we can conclude fC > 2fB or r(C) &α r(B). Thus for any two balls B,C used by the
fractional maximal operator, one of the following alternatives applies.

1. The balls B and C are disjoint.

2. The intervals (fB/2, fB) and (fC/2, fC) are disjoint.

3. The radii r(B) and r(C) are comparable.

We use this in the forth step of the proof strategy above. We use a dyadic version of these
alternatives in last step. Note that for α = 0 optimal balls B of arbitrarily different sizes with
similar values fB can intersect.

Remark 1.10. There is a proof of Theorem 1.1 which has a structure parallel to the one presented

above, but three steps are replaced. The estimate |∇Mαf |
d

d−α ≤ (d− α)
d

d−αMα,−1f is replaced by

|∇Mαf |
d

d−α ≤ (d − α)
α
d−α |∇Mαf |(Mα,−1f)

α
d−α , the layer cake formula is replaced by the coarea

formula [13, Theorem 3.11] and the Vitali covering argument is replaced by [30, Lemma 4.1] which
deals with the boundary of balls instead of their volume. Otherwise it is identical to the proof
presented in this paper.ˆ

|∇Mαf |
d

d−α ≤ (d− α)
α
d−α

ˆ
|∇Mαf |(Mα,−1f)

α
d−α

= (d− α)
α
d−α

ˆ ∞
0

ˆ
∂∗{Mαf>λ}

(Mα,−1f)
α
d−α dλ

= (d− α)
α
d−α

ˆ ∞
0

ˆ
∂∗

⋃
{B:B∈Bα,r(B)αfB>λ}

(r(Bx)α−1fBx)
α
d−α dHd−1(x) dλ

.α

ˆ ∞
0

∑
B∈B̃α,r(B)αfB>λ

Hd−1(∂B)(r(B)α−1fB)
α
d−α dλ

.α
∑
B∈B̃α

(fBHd−1(∂B))
d

d−α

and from there on arrive exactly as before at the bound by (var f)
d

d−α . This motivates a simi-
lar replacement in the dyadic setting. Instead of proving the boundedness of ‖Mα,−1f‖d/(d−α),
Theorem 1.5, one might bound ˆ ∞

0

ˆ
∂∗{Mαf>λ}

(Mα,−1f)
α
d−α dλ.
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Note that formally ˆ
|∇Mαf(x)|(Mα,−1f(x))

α
d−α dx

is not well defined because Mα,−1f jumps where ∇Mαf is supported.

Remark 1.11. In the proof of Theorems 1.1, 1.2, 1.5 and 1.6 we do not a priori need f ∈ Lp(Rd), it
suffices to have f ∈ Lq(Rd) for some 1 ≤ q ≤ p. However from ‖∇f‖p < ∞ we can then anyways
conclude f ∈ Lp(Rd) by Sobolev embedding.

Acknowledgements I would like to thank my supervisor, Juha Kinnunen, for all of his support.
I would like to thank Olli Saari for introducing me to this problem. I am also thankful for the
discussions with Juha Kinnunen, Panu Lahti and Olli Saari who made me aware of a version of the
coarea formula [13, Theorem 3.11], which was used in the first draft of the proof, and for discussions
with David Beltran, Cristian González-Riquelme and Jose Madrid. The author has been supported
by the Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Science and Letters.

2 Reformulation

In order to avoid writing absolute values, we consider only nonnegative functions f for the rest
of the paper. We can still conclude Theorems 1.1, 1.2, 1.5 and 1.6 for signed functions because
|f |B = fB and

∣∣∇|f |(x)
∣∣ ≤ |∇f(x)|. Recall the set of dyadic cubes⋃

n∈Z

{
[x1, x1 + 2n)× . . .× [xd, xd + 2n) : ∀i ∈ {1, . . . , n} xi ∈ 2nZ

}
.

For a set B of balls or dyadic cubes we denote⋃
B =

⋃
B∈B

B

as is commonly used in set theory. By a .γ1,...,γn b we mean that there exists a constant Cd,γ1,...,γn
that depends only on the values of γ1, . . . , γn and the dimension d and such that a ≤ Cd,γ1,...,γnb.

We work in the setting of functions of bounded variation, as in Evans-Gariepy [13, Section 5].
For an open set Ω ⊂ Rd a function u ∈ L1

loc(Ω) is said to have locally bounded variation if for each
open and compactly supported V ⊂ Ω we have

sup
{ˆ

V

udivϕ : ϕ ∈ C1
c (V ;Rd), |ϕ| ≤ 1

}
<∞.

Such a function comes with a measure µ and a function ν : Ω → Rd that has |ν| = 1 µ-a.e. such
that for all ϕ ∈ C1

c (Ω;Rd) we have
ˆ
udivϕ =

ˆ
ϕν dµ.

We denote ∇u = −νµ and define the variation of u by

varΩ u = µ(Ω) = ‖∇u‖L1(Ω).

If ∇u is a locally integrable function we call u weakly differentiable.
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Lemma 2.1. Let 1 < p ≤ ∞ and (un)n be a sequence of locally integrable functions with

sup
n
‖∇un‖p <∞

which converge to u in L1
loc(Rd). Then u is weakly differentiable and

‖∇u‖p ≤ lim sup
n
‖∇un‖p.

Proof. By the weak compactness of Lp(Rd) there is a subsequence, for simplicity also denoted by
(un)n, and a v ∈ Lp(Rd)d such that ∇un → v weakly in Lp(Rd) and ‖v‖p ≤ lim supn ‖∇un‖p. Let
ϕ ∈ C∞c (Rd) and i ∈ {1, . . . , d}. Thenˆ

u∂iϕ = lim
n→∞

ˆ
un∂iϕ = − lim

n→∞

ˆ
∂iunϕ = −

ˆ
viϕ

which means ∇u = v.

2.1 Hardy-Littlewood Maximal Operator

In this section we reduce Theorem 1.1 to Theorem 1.2.
Let 1 ≤ p < d/α and f ∈ Lp(Rd). For x ∈ Rd consider the set of balls B with x ∈ B and

Mαf(x) = r(B)αfB . Recall that we denote by Bα(x) the subset of those balls that have the largest
radius.

Lemma 2.2. Let 1 ≤ p < d/α and f ∈ Lp(Rd) and x ∈ Rd be a Lebesgue point of f . Then Bα(x)
is nonempty.

Proof. Let (Bn)n a sequence of balls with x ∈ Bn and

Mαf(x) = lim
n→∞

r(Bn)αfBn .

Assume there is a subsequence (nk)k with r(Bnk)→ 0. Then fBnk → f(x) and thus

lim sup
k→∞

r(Bnk)αfBnk ≤ f(x) lim sup
n→∞

r(Bnk)α = 0,

a contradiction. Assume there is a subsequence (nk)k with r(Bnk)→∞. Then

lim sup
k→∞

r(Bnk)αfBnk ≤ lim sup
k→∞

r(Bnk)αL(Bnk)−1L(Bnk)1− 1
p

(ˆ
Bnk

fp
) 1
p

= lim sup
k→∞

σ
− 1
p

d r(Bnk)α−
d
p

(ˆ
Bnk

fp
) 1
p

≤ σ−
1
p

d lim sup
k→∞

r(Bnk)α−
d
p ‖f‖p = 0

since ‖f‖p < ∞, a contradiction. Hence there is a subsequence (nk)k such that r(Bnk) converges
to some value r ∈ (0,∞). We can conclude that there is a ball B with x ∈ B and r(B) = r and´
Bnk

f →
´
B
f. So we have

Mαf(x) = lim
k→∞

r(Bnk)αfBnk = r(B)αfB .

A similar argument shows that there exist a largest ball B for which supB3x r(B)αfB is attained.
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Lemma 2.3. For each f ∈ L∞(Rd) with bounded variation Mαf is locally Lipschitz.

Proof. If f = 0 then the statement is obvious, so consider f 6= 0. Let B be a ball. Then there is a
ball C ⊃ B with fC > 0, and for every ball D with

r(D) < r0 = r(C)
( fC
‖f‖∞

)1/α

we have

r(D)αfD < r(C)α
fC
‖f‖∞

‖f‖∞ = r(C)αfC .

That means that on B the maximal function Mαf is the supremum over all functions σ−1
d rα−df ∗

1B(z,r) with r ≥ r0 and z such that 0 ∈ B(z, r). Those convolutions are weakly differentiable with

∇(rα−df ∗ 1B(z,r)) = rα−d(∇f) ∗ 1B(z,r)

so that
|∇(rα−df ∗ 1B(z,r))| ≤ rα−d var f ≤ rα−d0 var f.

Thus onB the maximal function Mαf is a supremum of functions with Lipschitz constant σ−1
d rα−d0 var f

and hence itself Lipschitz with the same constant.

The following has essentially already been observed in [17, 20, 23, 25].

Lemma 2.4. Let Mαf be differentiable in x. Then for every B ∈ Bα(x) we have

|∇Mαf(x)| ≤ (d− α)r(B)α−1fB ,

and if x ∈ B we have ∇Mαf(x) = 0.

Proof. Let B(z, r) ∈ Bα(x) and let e be a unit vector. Then for all h > 0 we have x + he ∈
B(z, r + h). Thus

|∇Mαf(x)| = sup
e

lim
h→0

Mαf(x)−Mαf(x+ he)

h

≤ 1

σd
lim
h→0

1

h
(rα−d

ˆ
B(z,r)

f − (r + h)α−d
ˆ
B(z,r+h)

f)

≤ 1

σd
lim
h→0

1

h
(rα−d

ˆ
B(z,r+h)

f − (r + h)α−d
ˆ
B(z,r+h)

f)

=
1

σd
lim
h→0

1

h
(rα−d − (r + h)α−d)

ˆ
B(z,r+h)

f

=
1

σd
(d− α)rα−d−1

ˆ
B(z,r)

f.

If x ∈ B(z, r) then since for all y ∈ B(z, r) we have Mαf(y) ≥ Mαf(x) we get ∇Mαf(x) = 0.

Now we reduce Theorem 1.1 to Theorem 1.2. We prove Theorem 1.2 in section 4.
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Proof of Theorem 1.1. For each n ∈ N define a cutoff function ϕn by

ϕn(x) =


1, 0 ≤ |x| ≤ 2n,

2− 2−n|x|, 2n ≤ |x| ≤ 2n+1,

0, 2n+1 ≤ |x| <∞.

Then |∇ϕn(x)| = 2−n12n≤|x|≤2n+1 and thus

‖f∇ϕn‖p = 2−n‖f‖Lp(B(0,2n+1)\B(0,2n)) → 0 (4)

for n→∞. Denote fn(x) = min{f(x), n} · ϕn(x). Then by eq. (4) we have

lim
n→∞

‖∇fn‖p = lim
n→∞

‖∇fn −min{f, n}∇ϕn‖p = lim
n→∞

‖ϕn∇min{f, n}‖p = ‖∇f‖p. (5)

Since 1 ≤ p < d/α and f ∈ Lp(Rd) we have Mαf ∈ L(p−1−α/d)−1,∞(Rd) ⊂ L1
loc(Rd). Then since

Mαfn → Mαf pointwise from below, Mαfn converges to Mαf in L1
loc(Rd). So from Lemma 2.1 it

follows that
‖∇Mαf‖(p−1−α/d)−1 ≤ lim sup

n→∞
‖∇Mαfn‖(p−1−α/d)−1 .

By Lemma 2.3 we have that Mαfn is weakly differentiable and differentiable almost everywhere, so
that by Lemmas 2.2 and 2.4 and Theorem 1.2 we have

ˆ
|∇Mαfn|(p

−1−α/d)−1

≤ (d− α)‖Mαfn/r(Bx)‖(p−1−α/d)−1

≤ (d− α)‖Mα,−1fn‖(p−1−α/d)−1

.α ‖∇fn‖p,

which by eq. (5) converges to ‖∇f‖p. for n → ∞. For the endpoint p = d/α the proof works the
same.

2.2 Dyadic Maximal Operator

In this section we reduce Theorem 1.5 to Theorem 1.6.
Let 1 ≤ p < d/α and f ∈ Lp(Rd). Recall that we denote by Qα the set of all dyadic cubes Q

such that for every dyadic cube ball P ) Q we have l(P )αfP < l(Q)αfQ. For x ∈ Rd, we denote
by Qα(x) the set of dyadic cubes Q with x ∈ Q and

Md
αf(x) = l(Q)αfQ.

Lemma 2.5. Let 1 ≤ p < d/α and f ∈ Lp(Rd) and x ∈ Rd be a Lebesgue point of f . Then Qα(x)
contains a dyadic cube Qx with

l(Qx) = sup
Q∈Qα(x)

l(Q)

and that cube also belongs to Qα.
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Proof. Let (Qn)n be a sequence of cubes with l(Qn)→∞. Then

lim sup
n→∞

l(Qn)αfQn ≤ lim sup
n→∞

l(Qn)α−dL(Qn)1− 1
p

(ˆ
Qn

fp
) 1
p

= lim sup
n→∞

l(Qn)α−d+d− dp
(ˆ

Qn

fp
) 1
p

= lim sup
n→∞

l(Qn)α−
d
p

(ˆ
Qn

fp
) 1
p

≤ lim sup
n→∞

l(Qn)α−
d
p ‖f‖p = 0.

Let (Qn)n be a sequence of cubes with l(Qn) → 0. Then since fQn → f(x) and l(Qn)α → 0, we
have l(Qn)αfQ → 0. Thus since for each k there are at most 2d many cubes Q with l(Q) = 2k and
whose closure contains x, the supremum has to be attained for a finite set of cubes from which we
can select the largest.

Now we reduce Theorem 1.5 to Theorem 1.6. We prove Theorem 1.6 in section 3.

Proof of Theorem 1.5. By Lemma 2.5, Md
α,βf is defined almost everywhere. We have

ˆ
(Md

α,βf(x))(p−1−(1+α+β)/d)−1

dx ≤
ˆ ∑

Q∈Qα

1Q(x)(l(Q)α+βfQ)(p−1−(1+α+β)/d)−1

dx

=
∑
Q∈Qα

L(Q)(l(Q)α+βfQ)(p−1−(1+α+β)/d)−1

=
∑
Q∈Qα

(l(Q)d/p−1fQ)(p−1−(1+α+β)/d)−1

≤
( ∑
Q∈Qα

(
l(Q)d/p−1fQ

)p)(1−p(1+α+β)/d)−1

.α ‖∇f‖(p
−1−(1+α+β)/d)−1

p ,

where the last step follows from Theorem 1.6. In the endpoint case we have by Theorem 1.6

‖Md
α,βf‖∞ = sup

Q∈Qα
l(Q)α+βfQ = sup

Q∈Qα
l(Q)

d
p−1fQ ≤

( ∑
Q∈Qα

(l(Q)
d
p−1fQ)p

) 1
p

.p ‖∇f‖p.

3 Dyadic Maximal Operator

In this section we prove Theorem 1.6. For a measurable set E ⊂ Rd we define the measure theoretic
boundary by

∂∗E =
{
x : lim sup

r→0

L(B(x, r) \ E)

rd
> 0, lim sup

r→0

L(B(x, r) ∩ E)

rd
> 0
}
.
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We denote the topological boundary by ∂E. As in [29, 30], our approach to the variation is the
coarea formula rather then the definition of the variation, see for example [13, Theorem 5.9].

Lemma 3.1. Let f ∈ L1
loc(Rd) with locally bounded variation and U ⊂ Rd. Then

varU f =

ˆ
R
Hd−1(∂∗{f > λ} ∩ U) dλ.

Lemma 3.2. Let f ∈ L1
loc(Rd) be weakly differentiable and U ⊂ Rd and λ0 < λ1. Then

ˆ
{x∈U :λ0<f(x)<λ1}

|∇f | =
ˆ λ1

λ0

Hd−1(∂∗{f > λ} ∩ U) dλ.

Recall also the relative isoperimetric inequality for cubes.

Lemma 3.3. Let Q be a cube and E be a measurable set. Then

min{L(Q ∩ E),L(Q \ E)}d−1 . Hd−1(∂∗E ∩Q)d.

We will use a result from the case α = 0. For a subset Q ⊂ Q0 and Q ∈ Q0, we denote

λQQ = min

{
max

{
inf{λ : L({f > λ} ∩Q) < 2−d−2L(Q)}, sup{fP : P ∈ Q, P ) Q}

}
, fQ

}
.

Proposition 3.4. Let 1 ≤ p <∞ and f ∈ L1
loc(Rd) and |∇f | ∈ Lp(Rd). Then for every set Q ⊂ Q0

we have ∑
Q∈Q

(l(Q)
d
p−1(fQ − λQQ))p .p ‖∇f‖pp.

For p = 1 it also holds with ‖∇f‖1 replaced by var f .

Remark 3.5. We have that α < β implies Qβ ⊂ Qα. This is because for l(Q) < l(P ), l(Q)αfQ >
l(P )αfP becomes a stronger estimate the larger α becomes.

By Remark 3.5 we can apply Proposition 3.4 to Q = Qα. For p = 1 Proposition 3.4 is Proposi-
tion 2.5 in [29]. For the proof for all p ≥ 1 we follow the strategy in [29]. In particular we use the
following result. For Q ∈ Q0 we denote

λ̄Q = min

{
max

{
inf{λ : L({f > λ} ∩Q) < L(Q)/2}, sup{fP : P ∈ Q0, P ) Q}

}
, fQ

}
.

Lemma 3.6 (Corollary 3.3 in [29]). Let f ∈ L1
loc(Rd). Then for every Q ∈ Q0 we have

L(Q)(fQ − λ∅Q) ≤ 2d+2
∑

P∈Q0,P(Q

ˆ fP

λ̄P

L(P ∩ {f > λ}) dλ

Note that fP > λ̄P implies P ∈ Q0.
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Proof of Proposition 3.4. By Lemmas 3.2 and 3.3 we have for each P ∈ Q0 and P ( Q thatˆ fP

λ̄P

L({f > λ} ∩ P ) dλ ≤ l(P )

ˆ fP

λ̄P

L({f > λ} ∩ P )1− 1
d dλ

. l(P )

ˆ fP

λ̄P

Hd−1(∂∗{f > λ} ∩ P ) dλ

= l(P )

ˆ
x∈P :λ̄P<f(x)<fP

|∇f |

= l(P )

ˆ
Q

|∇f |1P×(λ̄P ,fP )(x, f(x)) dx.

We note that for any Q ∈ Q we have λQQ ≥ λ∅Q and use Lemma 3.6. Then we apply the above

calculation, Hölder’s inequality and use that (λ̄P , fP ) and (λ̄Q, fQ) are disjoint for P ( Q,∑
Q∈Q

(
l(Q)

d
p−1(fQ − λQQ)

)p
≤ 2d+2

∑
Q∈Q

(
l(Q)

d
p−1−d

∑
P∈Q0,P(Q

ˆ fP

λ̄P

L({f > λ} ∩ P ) dλ

)p

.
∑
Q∈Q

(
l(Q)

d
p−1−d

ˆ
Q

|∇f |
∑

P∈Q0,P(Q
l(P )1P×(λ̄P ,fP )(x, f(x)) dx

)p

≤
∑
Q∈Q

(
l(Q)

d
p−1−d+d(1− 1

p )

[ˆ
Q

|∇f |p
( ∑
P∈Q0,P(Q

l(P )1P×(λ̄P ,fP )(x, f(x))

)p
dx

] 1
p
)p

=
∑
Q∈Q

(
l(Q)−1

[ ∑
P∈Q0,P(Q

l(P )p
ˆ

(x,f(x))∈P×(λ̄P ,fP )

|∇f |p
] 1
p
)p

=
∑
Q∈Q

l(Q)−p
∑

P∈Q0,P(Q
l(P )p

ˆ
(x,f(x))∈P×(λ̄P ,fP )

|∇f |p

=
∑
P∈Q0

l(P )p
ˆ
x∈P :f(x)∈(λ̄P ,fP )

|∇f |p
∑

Q∈Q,Q)P
l(Q)−p

≤ 1

2p − 1

∑
P∈Q0

ˆ
x∈P :f(x)∈(λ̄P ,fP )

|∇f |p

≤ 1

2p − 1

ˆ
|∇f |p.

For p = 1 with var f instead of ‖∇f‖1 we do not use Lemma 3.2 or Hölder’s inequality, but
interchange the order of summation first and then apply Lemma 3.1.

For a dyadic cube Q denote by prt(Q) the dyadic parent cube of Q.

Lemma 3.7. Let 1 ≤ p < d/α and f ∈ Lp(Rd) and let ε > 0. Then there is a subset Q̃α of Qα
such that for each Q ∈ Qα with l(Q)αfQ > ε there is a P ∈ Q̃α with Q ⊂ prt(P ) and fQ ≤ 2dfP .

Furthermore for any two Q,P ∈ Q̃α one of the following holds.
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1. prt(Q) = prt(P ).

2. prt(Q) and prt(P ) don’t intersect.

3. fQ/fP 6∈ (2−d, 2d).

Proof. Set Q̃0
α to be the set of maximal cubes Q with l(Q)αfQ > ε. For any dyadic cube Q with

l(Q)αfQ > ε we have

ε < l(Q)α−d
ˆ
Q

f ≤ l(Q)α−d+d− dp
(ˆ

Q

fp
) 1
p ≤ l(Q)α−

d
p ‖f‖p

which implies

l(Q) < (‖f‖p/ε)(p−1−α/d)−1

. (6)

Hence ⋃
Q̃0
α =

⋃
{Q ∈ Qα : l(Q)αfQ > ε}.

Assume we have already defined Q̃nα. Then define Q̃n+1
α to be the set of maximal cubes Q ∈ Qα

with
fQ > 2d sup

P∈Q̃nα:Q⊂prt(P )

fP . (7)

Set Q̃α = Q̃0
α ∪ Q̃1

α ∪ . . ..
Assume there is a cube Q with l(Q)αfQ > ε such that for all P ∈ Q̃α with Q ⊂ prt(P ) we

have fQ > 2dfP . Then by eq. (6) there is a maximal such cube Q. Furthermore there is a smallest

P ∈ Q̃α with Q ⊂ prt(P ) and an n with P ∈ Q̃nα. But then Q is a maximal cube that satisfies
eq. (7), which implies Q ∈ Q̃n+1

α , a contradiction.
If for Q,P ∈ Q̃α neither item 1 nor item 2 holds, then after renaming we have prt(Q) ( prt(P ).

Then P has been added to Q̃α before Q, and since Q ⊂ prt(P ) this means fQ > 2dfP .

Lemma 3.8. Let 1 ≤ p < ∞ and f ∈ W 1,p(Rd) and let ε > 0. Let Q ⊂ Q0 be a set of dyadic
cubes such that

1. for each Q ∈ Q there is an ancestor cube p(Q) ) Q with l(p(Q)) ≤ l(Q)/ε and fQ > 2εfp(Q),

2. and for any two distinct Q,P ∈ Q such that p(Q) and p(P ) intersect we have fQ/fP 6∈
(2−ε, 2ε).

Then (∑
Q∈Q

(l(Q)
d
p−1fQ)p

) 1
p

.ε ‖∇f‖p.

The endpoint p =∞ holds as well.

Proof. We divide into two types of cubes and deal with them separately. Denote

Q− = {Q ∈ Q : L({f > 2−ε/3fQ} ∩Q) < 2−d−2L(Q)},
Q+ = {Q ∈ Q : L({f > 2−ε/3fQ} ∩Q) ≥ 2−d−2L(Q)}.
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Let Q ∈ Q− and recall λQQ from Proposition 3.4. Then since

sup{λ : L({f > λ} ∩Q) < 2−d−2L(Q)} ≤ 2−ε/3fQ,

sup{fP : P ∈ Q, P ) Q} ≤ 2−εfQ

we have
fQ − λQQ ≥ (1− 2−ε/3)fQ.

Since Q ⊂ Q0 we conclude from Proposition 3.4∑
Q∈Q−

(
l(Q)

d
p−1fQ

)p
≤ (1− 2−ε/3)−p

∑
Q∈Q−

(
l(Q)

d
p−1(fQ − λQQ)

)p
.ε,p ‖∇f‖pp.

Let Q ∈ Q+ and λ > 2−2ε/3fQ. Since by item 1 we have 2ε/3fp(Q) < 2−2ε/3fQ, we obtain from
Chebyshev’s inequality

L(p(Q) ∩ {f > λ}) ≤ 2−ε/3L(p(Q)). (8)

Since Q ∈ Q+, for λ < 2−ε/3fQ we have

2−d−2εdL(p(Q)) ≤ 2−d−2L(Q) ≤ L(Q ∩ {f > λ}) ≤ L(p(Q) ∩ {f > λ}). (9)

So for all 2−2ε/3fQ ≤ λ ≤ 2−ε/3fQ we can conclude by the isoperimetric inequality Lemma 3.3 and
eqs. (8) and (9) that

Hd−1(∂∗{f > λ} ∩ p(Q))d & min{L(p(Q) ∩ {f > λ}),L(p(Q) \ {f > λ})}d−1

≥ (L(p(Q)) min{εd2−d−2, 1− 2−ε/3})d−1

&ε L(p(Q))d−1.

Thus for each Q ∈ Q+ by Lemma 3.2 and Hölder’s inequality we have

ˆ 2−ε/3fQ

2−2ε/3fQ

l(p(Q))d−1 dλ .ε

ˆ 2−ε/3fQ

2−2ε/3fQ

Hd−1(∂∗{f > λ} ∩ p(Q)) dλ

=

ˆ
x∈p(Q):f(x)∈(2−2ε/3,2−ε/3)fQ

|∇f |

≤ l(p(Q))d−
d
p

(ˆ
x∈p(Q):f(x)∈(2−2ε/3,2−ε/3)fQ

|∇f |p
) 1
p

.

Now we use item 2 and conclude∑
Q∈Q+

(
l(Q)

d
p−1fQ

)p
.ε,p

∑
Q∈Q+

(
l(p(Q))

d
p−1fp(Q)

)p
.ε,p

∑
Q∈Q+

(
l(p(Q))

d
p−d

ˆ 2−ε/3fQ

2−2ε/3fQ

l(p(Q))d−1 dλ

)p

.ε,p
∑
Q∈Q+

ˆ
x∈p(Q):f(x)∈(2−2ε/3,2−ε/3)fQ

|∇f |p
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≤
ˆ
|∇f |p.

For p = 1 with var f instead of ‖∇f‖1 we use Lemma 3.1 instead of Lemma 3.2 and Hölder’s
inequality. For p =∞ let Q ∈ Q. Then by the Sobolev-Poincaré inequality we have

‖∇f‖∞ ≥ ‖∇f‖L∞(p(Q)) & l(p(Q))−d−1

ˆ
p(Q)

|f − fp(Q)|

≥ l(Q)−d−1εd+1

ˆ
Q

|f − fp(Q)|

≥ l(Q)−d−1εd+1

ˆ
Q

f − fp(Q)

= l(Q)−1εd+1(fQ − fp(Q))

≥ l(Q)−1εd+1(1− 2−ε)fQ.

Proof of Theorem 1.6. Let ε > 0 and Q̃α be the set of cubes from Lemma 3.7. Let Q ∈ Qα.
Then there is a P ∈ Q̃α with Q ⊂ prt(P ) and fQ ≤ 2dfP . Then fQ ≤ 4dfprt(P ). Thus since

l(Q)αfQ > l(prt(P ))αfprt(P ) we have l(Q) > 4−d/α l(prt(P )). Thus for each P there are at most cα
many Q ∈ Qα with Q ⊂ prt(P ) and fQ ≤ 2dfP . We conclude∑

Q∈Qα,l(Q)αfQ>ε

(
l(Q)

d
p−1fQ

)p
≤
∑
P∈Q̃α

∑
Q∈Qα, Q⊂prt(P ), fQ≤2dfP

(
l(Q)

d
p−1fQ

)p
.α,p cα

∑
P∈Q̃α

(
l(P )

d
p−1fP

)p
.

For each dyadic cube P ∈ {prt(Q) : Q ∈ Q̃α} pick a Q ∈ Q̃α with P = prt(Q) such that for all
Q′ ∈ Q̃α with P = prt(Q′) we have fQ′ ≤ fQ. Denote by Q̂α the set of all such dyadic cubes Q.
Then ∑

Q∈Q̃α

(
l(Q)

d
p−1fQ

)p
≤

∑
P∈{prt(Q):Q∈Q̃α}

∑
Q∈Q̃α:P=prt(Q)

(
l(Q)

d
p−1fQ

)p
≤

∑
P∈{prt(Q):Q∈Q̃α}

2d
∑

Q∈Q̂α:P=prt(Q)

(
l(Q)

d
p−1fQ

)p
= 2d

∑
Q∈Q̂α

(
l(Q)

d
p−1fQ

)p
We want to show that Lemma 3.8 applies to Q̂α with p(Q) = prt(Q). Since Q̂α ⊂ Qα we have
Q̂α ⊂ Q0 by Remark 3.5, and item 1 follows from fQ > 2αfprt(Q). For item 2 let Q,P ∈ Q̂α be
distinct such that prt(Q) and prt(P ) intersect. Since we have prt(Q) 6= prt(P ), Lemma 3.7 implies
fQ/fP 6∈ (2−d, 2d). Thus by Lemma 3.8 we have

2d
∑
Q∈Q̂α

(
l(Q)

d
p−1fQ

)p
.α,p ‖∇f‖pp.
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We have proven for every ε > 0 that∑
Q∈Qα,l(Q)αfQ>ε

(
l(Q)

d
p−1fQ

)p
.α,p ‖∇f‖pp

with constant independent of ε. So we can let ε go to zero and conclude Theorem 1.6.
For the endpoint p = ∞ let Q ∈ Qα. Then we use fprt(Q) ≤ 2−αfQ and copy the proof of the

endpoint in Lemma 3.8 with p(Q) = prt(Q) and ε = 1/2.

4 Hardy-Littlewood Maximal Operator

In this section we prove Theorem 1.2.

4.1 Making the balls disjoint

Lemma 4.1. Let 1 ≤ p < d/(1 +α+β) and f ∈ Lp(Rd) and let ε > 0. Then for any c1 ≥ 2, c2 ≥ 1

there is a set of balls B̃ ⊂ Bα such that for two balls B,C ∈ B̃ we have c1B ∩ c1C = ∅ or
fC/fB 6∈ (c−1

2 , c2), and furthermore

ˆ ∞
ε

λ(p−1−(1+α+β)/d)−1−1L
(⋃{

B ∈ Bα : r(B)α+βfB > λ
})

dλ

.α,β,p,c1,c2

(∑
B∈B̃

(
r(B)

d
p−1fB

)p)(1−p(1+α+β)/d)−1

.

Proof. Let B ∈ Bα with r(B)α+βfB > ε. Then

ε < r(B)α+βfB ≤ r(B)α+βL(B)−1L(B)1−1/p
(ˆ

B

fp
)1/p

≤ σ−1/p
d r(B)α+β−d/p‖f‖p,

which means that r(B) is bounded by

K = (σ
−1/p
d ‖f‖p/ε)1/(d/p−α−β).

Define B0 = {B ∈ Bα : r(B) ∈ [1/2, 1]K}. Then for all B ∈ B0 we have that r(B)αfB is uniformly
bounded. Inductively define a sequence of balls as follows. For B0, . . . , Bk−1 already defined choose
a ball Bk ∈ B0 such that c1Bk is disjoint from c1B0, . . . , c1Bk−1 and which attains at least half of

sup{fB : B ∈ B0, c1B ∩ (c1B0 ∪ . . . ∪ c1Bk−1) = ∅}

if one exists. Set B̃0 = {B0, B1, . . .}. Then for all B ∈ B0 we have that c1B intersects
⋃
{c1B : B ∈

B̃0}. Define

B0 = {B ∈ Bα : ∃C ∈ B̃0 B ⊂ 5c1C, fB ≤ c2fC}.

Then B0 ⊂ B0. We proceed by induction. For each n ∈ N define

Bn =
{
B ∈ Bα \ (B0 ∪ . . . ∪ Bn−1) : r(B) ∈ [1/2, 1]2−nK

}
,
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as above greedily select a sequence B̃n of balls B ∈ Bn with almost maximal fB such that for every
already selected C ∈ B̃n we have c1B ∩ c1C = ∅, and define

Bn =
{
B ∈ Bα : ∃C ∈ B̃n B ⊂ 5c1C, fB ≤ c2fC

}
.

Note that we have Bn ⊂ Bn. Finally set B̃ = B̃0 ∪ B̃1 ∪ . . .. For C ∈ B̃, we denote

UC,λ =
{
B ∈ Bα : B ⊂ 5c1C, fB ≤ c2fC , r(B)α+βfB > λ

}
.

Let λ > ε and B ∈ Bα with r(B)α+βfB > λ. Then there is an n with B ∈ Bn, and hence a C ∈ B̃n
with B ∈ UC,λ. Let C ∈ B̃ and B ∈ UC,λ. Since B ∈ Bα we have

r(B)αfB ≥ r(5c1C)αf5c1C

which implies

r(B) ≥ r(5c1C)(f5c1C/fB)1/α ≥ (5c1)1−d/αc
1/α
2 r(C).

Since r(B) ≤ 5c1r(C) it follows that

r(B)β ≤ r(C)β

{
(5c1)β , β ≥ 0,

(5c1)β−dβ/αc
β/α
2 , β < 0.

Together with
r(B)αfB ≤ (5c1r(C))αc2fC

we obtain
r(B)α+βfB ≤ c3r(C)α+βfC ,

where

c3 =

{
(5c1)α+βc2, β ≥ 0,

(5c1)α+β−dβ/αc
1+β/α
2 , β < 0.

Thus UC,λ is only nonempty if
λ < c3r(C)α+βfC .

We can concludeˆ ∞
ε

λ(p−1−(1+α+β)/d)−1−1L
(⋃
{B ∈ Bα : r(B)α+βfB > λ}

)
dλ

=

ˆ ∞
ε

λ(p−1−(1+α+β)/d)−1−1L
( ⋃
C∈B̃

⋃
UC,λ

)
dλ

≤
∑
C∈B̃

ˆ ∞
ε

λ(p−1−(1+α+β)/d)−1−1L
(⋃

UC,λ

)
dλ

=
∑
C∈B̃

ˆ c3r(C)α+βfC

ε

λ(p−1−(1+α+β)/d)−1−1L
(⋃

UC,λ

)
dλ

≤
∑
C∈B̃

(5c1)dL(C)

ˆ c3r(C)α+βfC

ε

λ(p−1−(1+α+β)/d)−1−1 dλ
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≤ (1/p− (1 + α+ β)/d)
∑
C∈B̃

(5c1)dL(C)
(
c3r(C)α+βfC

)(p−1−(1+α+β)/d)−1

= (1/p− (1 + α+ β)/d)(5c1)dc
(p−1−(1+α+β)/d)−1

3 σd
∑
C∈B̃

(
r(C)

d
p−1fC

)(p−1−(1+α+β)/d)−1

≤ (1/p− (1 + α+ β)/d)(5c1)dc
(p−1−(1+α+β)/d)−1

3 σd

(∑
C∈B̃

(
r(C)

d
p−1fC

)p)(1−p(1+α+β)/d)−1

.

4.2 Transfer to dyadic cubes

In this subsection we pass from disjoint balls to dyadic cubes and then conclude Theorem 1.2 using
a result from the dyadic setting.

Remark 4.2. There are 3d dyadic grids D1, . . . ,D3d such that each ball B is contained in a dyadic
cube QB ∈ D = D1 ∪ . . . ∪ D3d with l(Q) . r(B).

Lemma 4.3. Let f ∈ L1
loc(Rd). Then for each B ∈ Bα we have fQB ∼ fB and l(QB) ∼ r(B).

Proof. Let x be the center of B, and QB be the cube from Remark 4.2, and C = B(x,
√
d l(Q)).

Then r(B) ∼ l(QB) ∼ r(C) and fB . fQB . fC . Since B ∈ Bα we also have r(C)αfC < r(B)αfB
and therefore conclude fQB . fC . fB .

Lemma 4.4. Let f ∈ L1
loc(Rd). For each α > 0 and B ∈ Bα and cube P ⊃ QB we have

l(P )αfP .α l(QB))αfQB .

Proof. For x the center of B define C = B(x,
√
d l(P )). Then from fP . fC and r(C)αfC <

r(B)αfB and fB . fQB we obtain l(P )αfP . r(C)αfC < r(B)αfB .α l(QB)αfQB .

Proof of Theorem 1.2. For B ∈ Bα denote by PB the cube largest that attains maxP⊃QB fP . Then
PB ∈ Q0 and by Lemmas 4.3 and 4.4 we have l(PB) ∼α r(B) and fPB ∼α fB . By Lemma 4.4 there
further exists a cube p(PB) ⊃ PB with fp(PB) ≤ fPB/2 and l(p(PB)) .α l(PB).

Let ε > 0 and let B̃ be the set of balls from Lemma 4.1. By Lemmas 4.3 and 4.4 there are
c1, c2 such that for any two distinct B,C ∈ B̃ we have that p(PB) and p(PC) are disjoint or

fPB/fPC 6∈ (1/2, 2). Define Q = {PB : B ∈ B̃}. By the layer cake formula and Lemmas 4.1 and 4.3
we haveˆ

(Mα,βf)(p−1−(1+α+β)/d)−1

= (p−1 − (1 + α+ β)/d)−1

ˆ ∞
0

λ(p−1−(1+α+β)/d)−1−1L({Mα,βf > λ}) dλ

= (p−1 − (1 + α+ β)/d)−1 lim
ε→0

ˆ ∞
ε

λ(p−1−(1+α+β)/d)−1−1L
(⋃
{B ∈ Bα : r(B)α+βfB > λ}

)
dλ

.α,β,p lim
ε→0

(∑
B∈B̃

(
r(B)

d
p−1fB

)p)(1−p(1+α+β)/d)−1
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∼α,β,p lim
ε→0

(∑
Q∈Q

(
l(Q)

d
p−1fQ

)p)(1−p(1+α+β)/d)−1

.

For each i = 1, . . . , 3d we apply Lemma 3.8 to Q∩Di and obtain

∑
Q∈Q

(
l(Q)

d
p−1fQ

)p
=

3d∑
i=1

∑
Q∈Q∩Di

(
l(Q)

d
p−1fQ

)p
.α,β,p ‖∇f‖pp.

For the endpoint p = d/(1 + α + β) we use ‖Mα,βf‖∞ = supB∈Bα r(B)α+βfB . Let B ∈ Bα.
Then f2B ≤ 2−αfB and we have by the Sobolev-Poincaré inequality

‖∇f‖d/(1+α+β) ≥
(ˆ

2B

|∇f |d/(1+α+β)

)(1+α+β)/d

& r(2B)α+β−d
ˆ

2B

|f − f2B |

≥ 2α+β−dr(B)α+β−d
ˆ
B

|f − f2B |

≥ 2α+β−dr(B)α+β−d
ˆ
B

(f − f2B)

= σd2
α+β−dr(B)α+β(fB − f2B)

≥ σd2α+β−dr(B)α+β(1− 2−α)fB .
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