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Let Ω ⊂ Rn be bounded a domain. We prove under certain 
structural assumptions that the fractional maximal operator 
relative to Ω maps Lp(Ω) → W 1,p(Ω) for all p > 1, when the 
smoothness index α ≥ 1. In particular, the results are valid in 
the range p ∈ (1, n/(n − 1)] that was previously unknown. As 
an application, we prove an endpoint regularity result in the 
domain setting.
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1. Introduction

Regularity of the Hardy–Littlewood maximal function of a Sobolev function was first 
studied in [13]. It was shown that the maximal operator preserves W 1,p(Rn) regularity 
for p > 1. This continues to hold true at the derivative level when p = 1 and n = 1
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[21,16] and for radial functions [18]. Extending such a statement to more general Sobolev 
functions of several variables is a difficult open problem, which has inspired many results 
in related topics. For instance, slightly stronger bounds have been proved for maximal 
operators with more special convolution kernels (see [7], [3], [4] and [20]), the continuity 
of the mapping has been studied in [17] and [6], and a part of the techniques used for 
continuity, also relevant for the current paper, have been extended to p = 1 in [11].

Another aspect of the problem is the fractional endpoint question proposed by 
Carneiro and Madrid [5]. The fractional maximal function is given by

Mαf(x) = sup
r>0

rα

|B(x, r)|

ˆ

B(x,r)

|f(y)| dy,

and it defines a bounded operator Lp(Rn) → Lq(Rn) when q = np/(n −αp), 0 < α < n/p

and p > 1. This boundedness fails at the endpoint p = 1, but the question about 
boundedness of ∇Mα from W 1,1(Rn) to Ln/(n−α)(Rn) has not been answered so far for 
α < 1 (see [19], [1] and [2] for related research and partial results). The case α ≥ 1
turned out to be very simple, and the reason can be traced back to the inequality

|∇Mαf(x)| ≤ cα,nMα−1f(x) (1.1)

of Kinnunen and Saksman [15]. Carneiro and Madrid [5] noted that (1.1) together with 
the Gagliardo–Sobolev–Nirenberg inequality and the Lp → Lq bounds for the fractional 
maximal function imply the expected endpoint bound when α ≥ 1.

In the present paper, we study these problems in general open subsets of Rn, which 
is a natural context for analysis from the point of view of potential theory and partial 
differential equations. Regularity of the local Hardy–Littlewood maximal function of a 
Sobolev function on an open Ω ⊂ Rn was first studied by Kinnunen and Lindqvist [14], 
and a local variant of the inequality for the derivative of the fractional maximal function 
(1.1) was proved in [12]. This is our starting point, and for more thorough discussion of 
what was proved and what is unknown, we introduce some more notation.

If Ω ⊂ Rn is an open set, the local fractional maximal function is defined as

MΩ
α f(x) = sup

0<r<dist(x,Ωc)

rα

|B(x, r)|

ˆ

B(x,r)

f(y) dy.

As the boundary of Ω restricts the choice of r in the definition, one cannot expect (1.1)
to trivially carry over to the local setting. Indeed, such a pointwise inequality is false in 
general (Example 4.1 in [12]). On the other hand, if one adds a correction term involving 
the surface measure of the sphere to the right hand side of (1.1), one obtains

|∇MΩ
α f(x)| ≤ cα,n

(
Mα−1f(x) + sup |rα−1σr ∗ f(x)|

)
, (1.2)
r>0
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which is valid in all domains. This was used in [12] to prove that Lp functions with 
p > n/(n − 1) large enough have MΩ

α f in a first order Sobolev class. The lower bound 
on p rules out functions too singular for an application of a spherical maximal function 
argument.

Our main theorem shows that under suitable assumptions on the domain Ω, the 
maximal function MΩ

α maps Lp(Ω) into a first order Sobolev space for all p > 1.

Theorem 1.1. Let Ω ⊂ Rn be open, n ≥ 2, p > 1 and f ∈ Lp(Ω). Then MΩ
α f is weakly 

differentiable and

‖∇MΩ
α f‖Lp(Ω) ≤ C‖f‖Lp(Ω)

if any one of the following holds:

(1) α > 1 and Ω is bounded.
(2) α = 1 and Ωc is convex.
(3) α = 1 and Ω is bounded and satisfies a uniform curvature bound in the sense of 

Section 2.2.
(4) α = 1 and p > 1 + 1

n .

The constant C depends on the dimension, and in (1) and (3) it also depends on α and 
the domain.

Unlike [12], we are not able to prove an Lp → Lq smoothing effect on top of winning 
one derivative. However, our method does apply to singular functions in Lp spaces with 
1 ≤ p ≤ n/(n − 1) where the argument in [12] fails to give any result. In particular, we 
have the following endpoint regularity result, which was previously out of reach.

Corollary 1.2. Let Ω ⊂ Rn be a Lipschitz domain. Then for all f ∈ W 1,1(Ω)

‖∇MΩ
1 f‖Ln/(n−1)(Ω) ≤ C‖f‖W 1,1(Ω)

where the constant C only depends on Ω and the dimension.

We briefly outline the proof of the main theorem. The maximal function on a domain 
behaves differently depending on whether the ball attaining the maximum touches the 
boundary or not. In case it does not, the local maximal function behaves like the global 
one, and the analysis is very similar. Otherwise it coincides with a linear averaging 
operator (2.3), which depends on the domain. These two parts are analyzed separately, 
and the main part of the proof is to establish Lp bounds for the derivative of (2.3). This 
leads to studying a domain dependent weighted spherical averaging operator (5.1).

Instead of resorting to maximal averages and the Bourgain–Stein theorem, an angular 
decomposition of the operator is carried out. The additional geometric information allows 
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Fig. 1. A set P (y) and a tangent line.

instead to establish good L1 bounds that can be interpolated with trivial L∞ bounds 
in order to obtain a domination of (5.1) by a converging sum of Lp bounded operators. 
Improving the L1 bound over what follows from the behavior of generic spherical means 
is crucial when aiming at Lp bounds for all p > 1. Such a conclusion cannot be drawn 
from mere polynomial decay of the Fourier transform of the weighted spherical measure 
in question, if no additional L1 information is taken into account. Turning the focus from 
the Littlewood–Paley decomposition and L2 methods to an angular decomposition and 
geometric estimates in L1 is the leading insight of the proof.

The key idea in the L1 estimates can be described as follows. Each domain Ω comes 
endowed with a family of sets (Fig. 1)

{P (y) : y ∈ Ω}, P (y) = {x ∈ Ω : y ∈ ∂B(x,dist(x,Ωc))},

which can morally be used to dualize the spherical averaging operators (5.1) through 
Fubini’s theorem. The L1 bounds for the constituents in the angular decomposition of 
the spherical averaging operator correspond to weighted integrals over the pieces of P (y). 
If Ω is a ball, then the sets P (y) are ellipsoids with foci at the center of the ball and at y. 
In the cases of the complement of a ball and a half-space, the P (y) take the simple forms 
of hyperboloids and paraboloids. One cannot hope for as explicit descriptions as that in 
more general domains, but all P (y) are boundaries of convex sets. This observation is 
used extensively in the proof.

The structure of the paper is as follows. In the first section, we introduce notation 
and some tools that will be helpful throughout the proof. The first sections are about 
differentiating the maximal function on so-called unconstrained points and proving the 
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weak differentiability of the maximal function conditionally to the Lp boundedness of the 
averaging operator (2.3). The rest of the paper is devoted to proving those Lp bounds by 
first computing a formula for the derivative and then carrying out the strategy sketched 
above. Finally, there is a concluding section with remarks on open problems and certain 
observations about the proof which might be of independent interest for future research.

2. Preliminaries

2.1. Notation

We let n ≥ 1 denote the dimension. For a measurable set E, we let |E| denote the 
n-dimensional Lebesgue measure. The k-dimensional Hausdorff measures are denoted by 
Hk. An Euclidean ball with center x ∈ Rn and radius r > 0 is denoted by B(x, r). A 
finite constant only depending on quantities that are not being kept track of is denoted 
by C. If A ≤ CB for such constant, we denote A � B or write A is � B. We write 
A ∼ B if both A � B and B � A hold.

2.2. Domains

We always assume Ω ⊂ Rn to be an open set, which we interchangeably call domain 
as the distinction obviously plays no role in this paper. We assume it to have non-empty 
complement. The distance function is denoted by δ(x) = dist(x, Ωc). As Ωc is closed, 
there exists at least one bx ∈ Ωc so that |x − bx| = δ(x). We reserve the notation bx for 
such a point, which need not be unique unless Ωc is convex. The distance function δ : Ω →
[0, ∞) is always 1-Lipschitz. The gradient exists almost everywhere by Rademacher’s 
theorem, and it holds that

∇δ(x) = x− bx
δ(x) . (2.1)

This is because clearly the one sided directional derivative of δ(x) in the direction of 
bx − x always exists and is −1. Where the gradient exists, we can use |∇δ(x)| ≤ 1 to 
conclude that the directional derivative in all directions orthogonal to x − bx must be 
zero.

A domain is said to satisfy a uniform curvature bound if there is an R > 0 so that for 
every point x ∈ Ω it holds

B
(
bx + R

x− bx
δ(x) , R

)
⊂ Ω.

All bounded C2 domains satisfy this condition, but a domain satisfying a uniform cur-
vature bound might be non-smooth and have inwards-pointing cusps. A domain with 
an interior ball condition need not satisfy the uniform curvature bound. An example of 
such a domain is B(0, 1) \ ({0} ∪ {(0, . . . , 0, 2k) : k ∈ Z, k < 0}).
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2.3. Function spaces on domains

Functions f ∈ Lp(Ω) are a priori only defined in the domain Ω, but we always extend 
them by zero to Rn without additional comments. The Sobolev class W 1,p(Ω) consists 
of functions f ∈ Lp(Ω) such that |∇f | ∈ Lp(Ω). The weak derivatives are defined using 
test functions in C∞

c (Ω).
For the application of the main theorem to the endpoint regularity problem, we need 

a Sobolev embedding theorem for domains. One concrete case we can deal with is that 
of a Lipschitz domain.

Proposition 2.1 (Section 4.4 in [9]). Let Ω ⊂ Rn be a bounded open set so that ∂Ω is 
Lipschitz. Then for every 1 ≤ p < ∞ there exists a bounded extension operator

E : W 1,p(Ω) → W 1,p(Rn)

such that supp(Ef) ⊂ B(x0, 2 diam(Ω)) for some x0 ∈ Ω and all f ∈ W 1,p(Ω).

By the boundary being Lipschitz, we mean that it can be covered by a finite number 
of open balls Bi so that for each i the domain Bi ∩ Ω is the epigraph of a Lipschitz 
function.

The proposition together with the Gagliardo–Nirenberg–Sobolev inequality (see e.g. 
Section 4.5.1 in [9]) implies a rudimentary local Sobolev embedding

‖f‖Lpn/(n−p)(Ω) ≤ CΩ,p,n‖f‖W 1,p(Ω) (2.2)

valid for all f ∈ W 1,p(Ω) whenever Ω is a bounded open set with Lipschitz boundary. 
This is sufficient for our purposes.

2.4. Maximal function

For α ∈ [1, n), define the local fractional maximal function relative to Ω as

MΩ
α f(x) = sup

0<r<δ(x)
rα −

ˆ

B(x,r)

f(y) dy

whenever f ∈ L1
loc(Ω). We omit the superscript when Ω is the whole Rn. In addition, we 

define for α ∈ R the auxiliary linear operator

Aαf(x) = δ(x)α −
ˆ

f(y) dy. (2.3)

B(z,δ(x))
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2.5. Constrained points

Let f be continuous. Fix x ∈ Ω. Because the complement of Ω is non-empty, δ(x) < ∞
and there exists a convergent sequence rj ∈ (0, δ(x)) with limit r = limj→∞ rj ∈ [0, δ(x)]
such that

MΩ
α f(x) = lim

j→∞
rαj −

ˆ

B(x,rj)

f(y) dy = rα −
ˆ

B(x,r)

f(y) dy

if r > 0. If

MΩ
α f(x) > δ(x)α −

ˆ

B(x,δ(x))

f(y) dy,

the sequence rj must be chosen so that r < δ(x), and the point x is said to be uncon-
strained. All other points are called constrained.

3. The unconstrained part

The local maximal function behaves similarly to the global one in the unconstrained 
set, and we reduce the differentiability question of the unconstrained part accordingly 
to that of the global maximal function. This is the content of the following proposition.

Proposition 3.1. Let p > 1, α ≥ 1 and f ∈ Lp
loc(Ω) be continuous. The set U of the 

unconstrained points is open, the maximal function MΩ
α f is weakly differentiable in U , 

and the pointwise bound

|∇MΩ
α f(x)| ≤ cMα−1f(x)

holds for a constant c only depending on the dimension and α whenever x ∈ U .

Proof. Consider the fractional average function

A(z, r) := rα −
ˆ

B(z,r)

f(y) dy.

It is continuous in (z, r) ∈ Ω ×R+. Fix now an unconstrained point x. By definition, there 
exists ε > 0 so that MΩ

α f(x) − A(x, δ(x)) > ε. Moreover, there exists γ > 0 so that if 
|(z, r) −(x, δ(x))| < γ, then MΩ

α f(x) −A(z, r) > ε/2. Since MΩ
α f is lower semicontinuous, 

one can find for every z close enough to x a sequence rz,j → rz < δ(x) − γ/2 so that

MΩ
α f(z) = lim

j→∞
rαz,j −

ˆ
f(y) dy.
B(z,rz,j)
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In particular, there is an open neighborhood Ux of x so that for all z ∈ Ux

MΩ
α f(z) = Mα(1B(x,δ(x))f)(z).

By Theorem 3.1 in [15],

|∇MΩ
α f(x)| ≤ CMα−1f(x)

follows. �
4. The full maximal function

Next we prove the differentiability of the local maximal function conditional to Lp

bounds for the derivative of the averaging operator (2.3). This step morally follows from 
the lattice property of Sobolev functions, but as we only know the weak differentiability 
of MΩ

α f in the unconstrained set, some extra work is needed.

Lemma 4.1. Let p > 1, α ≥ 1 and Ω ⊂ Rn be such that ∇Aα and Mα−1 are bounded 
Lp(Ω) → Lp(Ω). If f ∈ Lp(Ω), then the local fractional maximal function is weakly 
differentiable and

‖∇MΩ
α f‖Lp(Ω) � ‖f‖Lp(Ω).

Proof. Assume first that f is continuous and compactly supported. Following the argu-
ments in [15], we infer that MΩ

α f can be seen as supremum over radii between a fixed 
upper and lower bound. The fractional averages are Lipschitz continuous with constants 
only depending on the radii, and hence their supremum is also Lipschitz. In particular, 
we know that MΩ

α f is continuous.
Denote by g+ = max(g, 0) the positive part of a function g and write

MΩ
α f = (MΩ

α f −Aαf)+ + Aαf.

By assumption, the second term admits the desired Sobolev bounds. To deal with the 
other term, let ε > 0 and define

Fε(t) =
{

((t− ε)2 + ε2)1/2 − ε, t > ε

0, t ≤ ε.

These functions are of class C1(R) and converge pointwise to t �→ (t)+ as ε → 0. 
Moreover, as MΩ

α f and Aαf are continuous, E = {x ∈ Ω : Fε(MΩ
α f(x) − Aαf(x)) > 0}

has its closure contained in the open set of unconstrained points U . By Proposition 3.1, 
the assumption on Aα and the chain rule for Sobolev derivatives (4.2.2 in [9]), we obtain 
for all partial derivatives ∂i
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∂iFε(MΩ
α f −Aαf) = (∂iMΩ

α f − ∂iAα)F ′
ε(MΩ

α f −Aαf).

Taking a test function ϕ and computing

ˆ

Ω

Fε(MΩ
α f −Aαf)∂iϕdx =

ˆ

Ω

(∂iMΩ
α f − ∂iAαf)F ′

ε(MΩ
α f −Aαf)ϕdx,

we see that taking the limit ε → 0 proves the claim for continuous and compactly 
supported f .

To deal with the general case, let f ∈ Lp(Ω) and let fj be continuous and compactly 
supported functions converging to f in Lp norm. By Lp continuity of the fractional 
maximal operator, MΩ

α fj → MΩ
α f in Lp. As we have proved the following inequality

‖∇MΩ
α fj‖Lp(Ω) � ‖fj‖Lp(Ω),

for continuous functions fj , the sequence MΩ
α fj is bounded in W 1,p(Ω). We can extract 

a weakly convergent subsequence. By taking limits along this sequence and using the 
uniqueness of distributional limit, we conclude the proof for general f ∈ Lp(Ω). �

As the main theorem is a direct consequence of the previous lemma, it remains to 
investigate the boundedness of the operator ∇Aα on Lp(Ω). The following sections are 
devoted to establishing the required Lp bounds when Ω is sufficiently well-behaved.

5. Constrained part

By a change of variables, we can write the averaging operator (2.3) as

Aαf(x) = δ(x)α −
ˆ

B(0,1)

f(x + yδ(x)) dy.

This operator is linear, and as we are aiming for Lp bounds, there is no loss of gener-
ality in restricting the attention to smooth functions. If x is a constrained point, then 
MΩ

α f(x) = Aαf(x), which justifies our reference to Aα as the constrained part. Also, 
Lemma 4.1 showed that Lp bounds for the derivative of Aαf are enough to imply weak 
differentiability of the full maximal operator, so the maximal function does not play any 
role in what follows. A version of the following proposition was already proved in [12], 
but as we need a formula more precise than what they stated, we include the short proof 
for clarity.
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Proposition 5.1. Let f ∈ C∞(Ω). Then for almost every x ∈ Ω

|∇Aαf(x)| ≤ cn,α|Aα−1f(x)| + cnδ(x)α−1 −
ˆ

∂B(x,δ(x))

|y − bx|
δ(x) f(y) dHn−1(y)

where bx ∈ ∂Ω is a point such that |bx − x| = δ(x).

Proof. Fix a point x. As Aαf(x) = δ(x)αA0f(x), it holds that

∇Aαf(x) = αδ(x)α−1A0f(x)∇δ(x) + δ(x)α(∇A0f)(x).

Since |∇δ(x)| ≤ 1 (cf. (2.1)), the first summand above is bounded by Aα−1f(x). Thus it 
suffices to analyze the gradient of A0f . Take the unit vector

e = ∇A0f(x)/|∇A0f(x)|.

Then

|∇(A0f)(x)| = (e · ∇)A0f(x)

= −
ˆ

B(0,1)

(
e + y(e · ∇δ(x))

)
· ∇f(x + δ(x)y) dy

= 1
δ(x) −

ˆ

B(0,1)

divy

(
(e + y(e · ∇δ(x)))f(x + δ(x)y)

)
dy

− ne · ∇δ(x)
δ(x) −

ˆ

B(0,1)

f(x + δ(x)y) dy =: I + II .

Since |∇δ(x)| ≤ 1, the contribution δ(x)α · II is pointwise bounded by nAα−1f . To 
estimate the other term, we apply Gauss’s theorem to obtain

I = cn
δ(x)

ˆ

∂B(0,1)

y · (e + y(e · ∇δ(x)))f(x + δ(x)y) dHn−1(y)

= cn
δ(x) −

ˆ

∂B(x,δ(x))

(y − bx) · e
δ(x) f(y)dy.

So we reach the inequality

|∇Aαf(x)| ≤ αn|Aα−1(x)| + cnδ(x)α−1 −
ˆ

∂B(x,δ(x))

|y − bx|
δ(x) f(y) dHn−1(y),

which proves the claim. �
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Because Aα−1f(x) ≤ MΩ
α−1f(x), and MΩ

α−1 satisfies the right Lp → Lq bounds, we 
have reduced the matter to understanding the weighted spherical average

Bαf(x) := δ(x)α−1 −
ˆ

B(x,δ(x))

|y − bx|
δ(x) f(y) dHn−1(y) (5.1)

on the right hand side of the conclusion of the previous proposition. The weight |y −
bx|/δ(x) measures the angle between bx − x and y − x when |y − bx|/δ(x) is small. We 
decompose the weighted spherical averaging operator according to the angle and location 
in the domain as follows. For k ∈ Z, let

Ωk = {x ∈ Ω : 2k ≤ δ(x) < 2k+1}

and for every point x ∈ Ω and integer j ≥ 0

ωj(x) =
{
y ∈ ∂B(x, δ(x)) : 2−j <

|y − bx|
δ(x) ≤ 2−j+1

}
.

Define

Sk
j f(x) = 1Ωk

(x)
ˆ

ωj(x)

f(y) dHn−1(y).

Then

Bαf(x) �
∑
k∈Z

∞∑
j=1

2k(α−n)−jSk
j f(x) (5.2)

and it remains to prove bounds for Sk
j so that the right hand side sums up in Lp. This 

is done by interpolating bounds on L∞ and L1.

Proposition 5.2. Let Ω be any domain. It holds that ‖Sk
j ‖L∞→L∞ � 2(n−1)(k−j), and 

consequently ‖ 
∑

k 2k(1−n)Sk
j ‖L∞→L∞ � 2−(n−1)j.

Proof. This follows from Hn−1(ωj(x)) � 2(n−1)(k−j). �
6. L1 bounds

To prove L1 bounds, we introduce some more notation. For each integer j ≥ 0 and 
each point y ∈ Ω, define

Pj(y) = {x ∈ Ω : y ∈ ωj(x)}, P (y) =
∞⋃

Pj(y). (6.1)

j=0
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In addition, let

Ak
j =

⋃
x∈Ωk

ωj(x). (6.2)

Formally, certain weighted integrals over P (y) give the adjoint operator of Bα. A 
naive change of order of integration is not justified in this case, but using the decompo-
sition of Bα, we can make the idea precise. The following two propositions give effective 
description of P (y) and provide a substitute for Fubini’s theorem.

Proposition 6.1. Let Ω be an open set and let y ∈ Ω. Then

E(y) = {x ∈ Ω : |x− y| ≤ δ(x)}

is closed and convex set such that

P (y) = ∂E(y).

For each x ∈ P (y), the supporting hyperplane at x bisects the angle between y − x and 
bx − x and is normal to bx − y.

Proof. Recall that P (y) consists of the points with {x ∈ Ω : |y−x| = δ(x)}. For x ∈ P (y), 
it holds that

x + ε
bx − x

|bx − x| ∈ E(y)c,

and it is easy to see ∂E(y) = P (y). Consider the hyperplane

{z ∈ Rn : |z − bx| = |z − y|}.

It divides the space into two half spaces H1 = {z : |z − bx| < |z − y|} and H2 = {z :
|z − bx| ≥ |z − y|}. If x ∈ P (y), then E(y) ⊂ H2 and x ∈ H2. Thus ∂H2 is a supporting 
hyperplane for E(y) at x. As every boundary point of E(y) has a supporting hyperplane, 
E(y) is convex. The remaining assertions readily follow from the definition of ∂H2. �
Proposition 6.2. Let Ω be a domain, j ≥ 0 and k integers and f ≥ 0 a bounded continuous 
function on Ω. Then

ˆ

Ω

Sk
j f(x) dx � 2j

∑
|j′−j|≤1,|k′−k|≤1

ˆ

Ak′
j′

f(y)Hn−1(P k′

j′ (y)) dy,

where we let P k
j (y) = Pj(y) ∩ Ωk.
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Fig. 2. The construction to find x1.

Note that y ∈ Ak
j if and only if P k

j (y) �= ∅.

Proof. The parameter k plays no role in the following computation, but is included in 
the statement for future reference. Let ϕ ≥ 0 be a smooth function of one variable with 
compact support in (0, 1) and ‖ϕ‖L1(R) = 1. Denote the ε-dilation by ϕε(t) = ε−1ϕ(tε−1). 
For any fixed x, we define the set of relevant directions

ωdir
j (x) = δ(x)−1(ωj(x) − x) ⊂ ∂B(0, 1).

As f is positive, the weak convergence

Sk
j f(x) =

ˆ

ωj(x)

f(y) dHn−1(y) = lim
ε→0

ˆ

x+Rωdir
j (x)

f(y)ϕε (δ(x) − |x− y|) dy

holds. Integrating over x, applying the dominated convergence theorem (this is justified, 
see the remark at the end of the argument), and using Fubini’s theorem, we obtain

ˆ

Ωk

Sjf(x)dx �
ˆ

Ak
j

f(y)
(

lim
ε→0

|{x ∈ Ωk : y ∈ ωε−
j (x)}|

ε

)
dy (6.3)

where the one-sided neighborhood is defined as (see Fig. 2)

ωε−
j (x) = x + ωdir

j (x)(δ(x) − ε, δ(x)).

Next we estimate the limit expression in (6.3). As j and k are fixed, we can assume ε
to be very small relative to them. Let x ∈ Ωk. Assume that y ∈ ωε−

j (x). Then
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−ε < |y − x| − δ(x) < 0 (6.4)

and by definition x belongs to the interior of E(y).
Set

e = bx − x

|bx − x|

and let r ∈ (0, δ(x)) be such that x + re ∈ P (y). Next we give an upper bound for r. 
Because y ∈ ωε−

j (x), it also holds that

y − x

|y − x| ∈ ωdir
j (x).

The mapping

g(ρ) := |y − (x + ρe)| − δ(x + ρe) = |y − x− ρe| − δ(x) + ρ

is Lipschitz and hence absolutely continuous.
For all ρ ≥ 0 we have the lower bound

g′(ρ) = ∂ρ[|y − (x + ρe)| − δ(x + ρe)] = −e · y − x− ρe

|y − x− ρe| + 1

= 1 − cos �(bx − x, y − x− ρe)

≥ 1 − cos �(bx − x, y − x)

� 2−2j

The last inequality is due to y ∈ ωε−
j (x). Recall that g(0) ≥ −ε and g(r) = 0. Since g is 

absolutely continuous, we conclude

2−2jr �
rˆ

0

g′(s) ds = g(r) − g(0) ≤ ε,

and

r � 22jε.

Denote x0 = x + re ∈ P (y). Consider the 2-plane containing x, y, bx (and x0). Its 
intersection with the convex body E(y) provided by Proposition 6.1 is again a convex 
set E′ in the plane. Let � be its supporting line at x0. Then x0 ∈ P k′

j′ (y) for some 
j′ ∈ {j, j − 1}, k′ ∈ {k, k − 1} because



J.P.G. Ramos et al. / Advances in Mathematics 368 (2020) 107144 15
�(bx − x0, y − x0) ≥ �(bx − x, y − x) ≥ 2−j

sin �(bx − x0, y − x0) ≤
|bx − y|

δ(x) − C22jε
= |bx − y|δ(x)−1

1 − Cδ(x)−122jε
≤ sin 2−j+2

for ε small enough. By Proposition 6.1 this also means that y−x0 makes an angle ∼ 2−j

with �, and hence so does x − x0. Let e′ be the unit vector perpendicular to � and 
e′ · (y − x) < 0. Then there is

s � |x− x0| sin 2−j � 2jε

so that x + se′ ∈ �. Since x ∈ E′(y) and � intersects E′(y) only in ∂E′(y), there is s′ < s

with x1 = x + s′e′ ∈ ∂E′(y), which means

dist(x, P (y)) � 2jε. (6.5)

Recall that

dist(x, P k′

j′ (y)) ≤ |x− x0| � 22jε.

Let

N(ε′) =
⋃

j′∈{j−1,j},k′∈{k−1,k}
{x ∈ P (y) : dist(x, P k′

j′ (y)) ≤ ε′}.

Then

lim
ε→0

|{x ∈ Ωk : y ∈ ωε−
j (x) ≤ ε}|

ε

≤ lim
ε′→0

lim
ε→0

|{x ∈ Ωk : dist(x, P (y)) ≤ cn2jε} ∩N(ε′)|
ε

� lim
ε′→0

2jHn−1(P (y) ∩N(ε′))

≤
∑

|j′−j|≤1,|k′−k|≤1

2jHn−1(P k′

j′ (y)),

where the second inequality follows, for instance, by Theorem 3.2.39 in [10]. The in-
tegrable majorant of the sequence above that was needed for the application of the 
dominated convergence theorem before can be obtained by an application of the coarea 
formula. This completes the proof. �

These two propositions are enough to conclude a general L1 bound for the pieces 
Sk
j . This bound can be refined further, when additional regularity on the domain Ω is 

assumed.
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Proposition 6.3. Let Ω be an open set. Then ‖Sk
j ‖L1→L1 � 2k(n−1)+j.

Proof. If x ∈ P (y) ∩Ωk, then |x −y| = dist(x, Ωc) ≤ 2k+1. Hence P (y) ∩Ωk ⊂ B(y, 2k+1). 
Recall that P (y) = ∂E(y) and that E(y) is convex. Thus P (y) ∩Ωk ⊂ ∂(B(y, 2k+1) ∩E(y))
where B(y, 2k+1) ∩ E(y) is convex. Since the perimeter of B(y, 2k+1) dominates the 
perimeters of all convex sets with non-empty interior contained in it, we can conclude

Hn−1(P k
j (y)) ≤ Hn−1(P (y) ∩B(y, 2k+1)) ≤ Hn−1(∂(B(y, 2k+1) ∩ E(y)))

≤ Hn−1(∂B(y, 2k+1)) � 2k(n−1).

Now the claim follows from Proposition 6.2. �
Remark 6.4. In case Ω is bounded and ∂Ω is C2 smooth, the estimate for Hn−1(P k

j (y))
can be refined as follows. If x ∈ P k

j (y), then |y − bx| ≤ δ(x)2−j+1. This implies 
dist(y, ∂Ω) ≤ δ(x) · 2−j+1 and further

|by − bx| ≤ |by − y| + |y − bx| ≤ 4δ(x) · 2−j .

As the inward-pointing unit normal NΩ at the boundary is well-defined and Lipschitz,

|NΩ(by) −NΩ(bx)| � diam(Ω)2−j .

Because N(bz) = (z − bz)/|z − bz|, this implies
∣∣∣∣NΩ(by) −

(x− y)
δ(x)

∣∣∣∣ ≤ |NΩ(by) −NΩ(bx)| + |y − bx|
δ(x) � diam(Ω) · 2−j .

Therefore, all vectors x − y with y ∈ ωj(x) are within an angle ∼ c̃(Ω) · 2−j of NΩ(by). 
Hence the set P k

j (y) is contained in a cylinder of height ∼ 2k and basis ∼ c̃(Ω) · 2k−j . 
By the inequality for perimeters of convex sets as in the proof of Proposition 6.3

Hn−1(P k
j (y)) � c(Ω)2k · 2(k−j)(n−2).

This dependency on j is sharp even for very flat domains as can be seen by letting Ω be 
a smoothed out B(0, 10) ∩ {x1 ≥ 0} and y = 2−je1 and k ≤ 0.

However, as the estimate on Hn−1(P k
j (y)) is not the narrow gap of the proof of our 

main theorem, we do not pursue this aspect further.

The estimate Hn−1(P k
j (y)) � 2k(n−1) cannot be improved in general. If the boundary 

of the domain is a single point, the equality is achieved up to a constant. However, 
focusing on the whole Pj(y) instead of single pieces P k

j (y), one can obtain a different 
estimate at cost of worsening the dependency on j. The following proposition is useful 
for small values of j, and it holds in very general domains.
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Proposition 6.5. Let Ω be an open set and y ∈ Ω. Then
ˆ

Pj(y)

1
dist(x, y)n−1 dHn−1(x) � 2j

with the constant independent of y. In particular,

‖
∑
k

2k(1−n)Sk
j ‖L1→L1 � 22j

Proof. We have
ˆ

Pj(y)

1
dist(x, y)n−1 dHn−1(x) � lim inf

ε→0

1
ε

ˆ

{x∈E(y)c:dist(x,Pj(y))≤ε}

1
dist(x, y)n−1 dx.

Given any point x ∈ Pj(y) and a line lx = {y + t(x − y) : t ∈ R}, we see that by 
Proposition 6.1 the line makes an angle ∼ 2−j with Pj(y), and hence

H1(lx ∩ {z ∈ E(y)c : dist(z, Pj(y)) ≤ ε}) � 2jε.

The first claimed bound for the integral follows immediately from passing to polar coor-
dinates with origin at y.

To prove the second claim, note that by Proposition 6.2

ˆ

Ω

∑
k

2k(1−n)Sk
j f(x) dx � 2j

∑
|j′−j|≤1

ˆ

Ω

f(y)
(∑

k

2k(1−n)Hn−1(P k
j′(y))

)
dy

� 2j
∑

|j′−j|≤1

ˆ

Ω

f(y)

⎛
⎜⎝ ˆ

Pj′ (y)

1
dist(x, y)n−1 dHn−1(x)

⎞
⎟⎠ dy

� 22j‖f‖L1 ,

where the last step was an application of the first claim. �
7. Lp bounds and geometry

To conclude bounds for the operator Bα, we have to sum up all the pieces in the 
decomposition. In order to make this work, one has to ensure that there is enough decay 
in j and k. Although the L1 bounds do not sum up, interpolation with the better L∞

bounds provides us with enough decay in the angle parameter j. If Ω is bounded, we 
can take advantage of the Lp(Ω) spaces being nested and use the decay in the scale 
parameter k near the boundary to complete the proof with no smoothness assumptions 



18 J.P.G. Ramos et al. / Advances in Mathematics 368 (2020) 107144
on the boundary of the domain. This is possible only when we do not attempt to prove 
scalable estimates that would capture Lp → Lq smoothing beyond one derivative gain.

Theorem 7.1. Let Ω be a bounded open set, p, α > 1. Then

‖Bα‖Lp(Ω)→Lp(Ω) � diam(Ω)α−1

where the implicit constant only depends on p, α and the dimension.

Proof. Let Sj =
∑

k 2k(α−n)Sk
j so that Bα =

∑
j 2−jSj . Then by Proposition 6.3

‖Sj‖L1(Ω)→L1(Ω) ≤
log diam(Ω)+1∑

k=−∞
2k(α−n)‖Sk

j ‖L1(Ω)→L1(Ω)

�
log diam(Ω)+1∑

k=−∞
2k(α−1)2j � 2j diam(Ω)α−1.

By Proposition 5.2

‖2−jSj‖L∞(Ω)→L∞(Ω) � 2−nj diam(Ω)α−1

and by interpolation we obtain

‖2−jSj‖Lp(Ω)→Lp(Ω) � 2−
(p−1)n

p j diam(Ω)α−1.

As the exponent is negative, we can sum up in j to conclude the proof. �
To deal with the critical case α = 1 where our estimates have the correct scaling, we 

have to take into account finer properties of the boundary, as the estimation as rough as 
above leads to a logarithmic blow-up of the k-sum at the boundary.

Proposition 7.2. Let Ω be an open set.

• If Ω satisfies the uniform curvature bound with R, then for all y ∈ Ω and x ∈ P (y)
with δ(x) ≤ R, it holds that

δ(x)(1 − δ(x)
R

)(1 − cosβ) ≤ dist(y, ∂Ω) (7.1)

where β = �(bx − x, y − x).
• If Ωc is convex, then

δ(x)(1 − cosβ) ≤ dist(y, ∂Ω). (7.2)
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Fig. 3. The balls and points appearing in the proof of Proposition 7.2.

Proof. Take x ∈ Ω and y ∈ ∂B(x, δ(x)) and let β be the angle between bx − x and 
y − x. Because Ω satisfies a uniform curvature bound, there is an R > 0 independent of 
x and y so that we can find a ball B(z, R) ⊂ Ω with z = bx + (x − bx)R/δ(x) so that 
B(z,R) ∩ ∂Ω = {bx} (see Fig. 3). The Pythagorean identity reads

|z − y|2 = (δ(x) sin β)2 + (R− δ(x)(1 − cosβ))2

= R2(1 − 2δ(x)
R

(1 − δ(x)
R

)(1 − cosβ))

≤ R2(1 − δ(x)
R

(1 − δ(x)
R

)(1 − cosβ))2.

Let w be the closest point to y in ∂B(z, R). Since z, y and w are on the same line, we 
get

dist(y, ∂Ω) ≥ |y − w| = |z − w| − |z − y|

≥ R−R(1 − δ(x)
R

(1 − δ(x)
R

)(1 − cosβ))

= δ(x)(1 − δ(x)
R

)(1 − cosβ)

as claimed. If Ωc is convex, then the uniform curvature bound is satisfied with R = ∞, 
whence the second claim follows. �
Theorem 7.3. Let Ω be an open set. Let α = 1 and p > 1. Then

• If Ω is bounded and satisfies the uniform curvature bound, then

‖B1‖Lp(Ω)→Lp(Ω) � log
(

diam(Ω) + 1
)

R
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where R is the radius from the uniform curvature bound.
• If Ωc is convex, then

‖B1‖Lp(Ω)→Lp(Ω) � 1

and the operator norm only depends on the dimension and p.
• If Ω is merely open, then

‖B1‖Lp(Ω)→Lp(Ω) � 1

under the restriction p > 1 + 1
n .

Proof. Proposition 6.3 implies
ˆ

Ω

2k(1−n)−jSk
j f(x) dx �

ˆ
f(y)1Ak

j
(y) dy. (7.3)

Recall the definition (6.2). There are only ∼ log(diam(Ω)/R+1) values of k so that R/8 ≤
2k ≤ 2 diam(Ω). For k such that 2k+3 ≤ R, we can use the first item in Proposition 7.2 to 
see that for fixed y, the set P k

j (y) is non-empty only for k such that 2−2j+k � dist(y, ∂Ω). 
On the other hand, the upper bound

dist(y, ∂Ω) ≤ |y − bx| � 2k−j

is always valid, so P k
j (y) is non-empty only for 2−2j+k � dist(y, ∂Ω) � 2−j+k. Conse-

quently,

Ak
j ⊂ {y ∈ Ω : 2−2j+k � dist(y, ∂Ω) � 2−j+k}.

For any y, there are only � j values k such that the set above is non-empty, and hence 
by (7.3)

‖
∑
k

2k(1−n)−jSk
j ‖L1→L1 � log

(
diam(Ω)

R
+ 1

)
+ j.

Interpolation as in the proof of Theorem 7.1 implies the claim.
To prove the second item, just note that the convexity assumption on the complement 

means sending R → ∞ so that 2k+3 ≤ R always holds. To prove the third item, we study 
Sj as in the proof of Theorem 7.1 and replace the L1 bound from Proposition 6.3 by 
that from Proposition 6.5. �
Corollary 7.4. Let Ω be a domain, p > 1 and f ∈ Lp. Then Aαf(x) from (2.3) is weakly 
differentiable and
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‖∇Aαf‖Lp(Ω) � ‖f‖Lp(Ω)

if any one of the following holds:

• α > 1 and Ω is bounded.
• α = 1 and Ω is bounded and satisfies a uniform curvature bound.
• α = 1 and Ωc is convex.
• α = 1 and p > 1 + 1

n

The constant depends on the domain, α and the dimension.

Proof. By linearity, it suffices to prove the norm inequality for smooth functions. By 
Proposition 5.1, it suffices to bound Bα from (5.1). This follows from Theorem 7.1 and 
Theorem 7.3 �

Theorem 1.1 follows from Corollary 7.4 and Lemma 4.1.

8. Remarks

8.1. Role of the domain

It is not clear if the conditions on the domain in the hypothesis of Theorem 1.1 are 
necessary. One may ask if

‖∇MΩ
1 ‖Lp(Ω)→Lp(Ω) � 1

holds for all domains Ω and all p > 1. We are not aware of any counterexamples so far. 
Since MΩ

0 does satisfy an Lp(Ω) bound independent of the domain, the question is about 
the behavior of B1 (see Theorem 7.3) in general domains. We point out that one avenue 
for improving the Lp bounds for B1 could be to replace the strong L1 bounds for Sk

j by 
weak type bounds in order to improve the operator norm bound with respect to j.

8.2. Endpoint regularity in domains

Corollary 1.2 follows from Theorem 1.1, since

‖∇MΩ
1 f‖Ln/(n−1)(Ω) � ‖f‖Ln/(n−1)(Ω) � ‖f‖W 1,1(Ω).

Here we used the main theorem and (2.2). The same observation was done by [5] to notice 
that the fractional endpoint regularity problem follows from inequality (1.1) as α ≥ 1
in the full space Rn. The domain case was not known before as the inequality (1.1)
should have been replaced by (1.2). This amounts to changing the Hardy–Littlewood 
maximal function to the spherical maximal function in the display above. That one is 
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not bounded in Ln/(n−1), so the argument breaks down. However, using Theorem 1.1, 
we can complete the argument in certain domains Ω.

To the best of our knowledge, the fractional endpoint regularity problem has not been 
studied in domains before. It is hence natural to ask

Question 8.1. What must be assumed about an open set Ω ⊂ Rn so that

‖∇MΩ
α f‖Lα/(n−α)(Ω) � ‖f‖W 1,1(Ω)

for α ∈ (0, 1]?

Our main theorem gives some information on the case α = 1, but the remaining values 
of α remain open. The values α > 1 can be dealt with using a spherical maximal function 
argument with no additional assumptions. The remaining values of α are probably way 
harder to handle as the endpoint regularity question is completely open even in the full 
space.

Finally, we remark that the techniques used to get results for smooth kernels as in 
[2] are insensitive to the ambient domain, because one does not use precise information 
about the maximizing radius. The arguments there only rely on sublinearity of maximal 
functions. Hence a W 1,1 variant of Theorem 1.1 in [2] easily extends to the domain 
setting. Indeed, fixing α ∈ (0, 1), letting Ω be any Sobolev extension domain, Ωε = {x ∈
Ω : dist(x, Ωc) ≤ ε} and m a local maximal function with kernel compactly supported 
and smooth enough as in [2], one can invoke Theorem 3 in Section 5.8.2 in [8] to reduce 
the problem to proving

lim
ε→0

sup
h∈B(0,ε/2)

ˆ

Ωε

∣∣∣∣mf(x + h) −mf(x)
|h|

∣∣∣∣
n

n−α

dx � ‖f‖
n

n−α

W 1,1(Ω).

As f ∈ W 1,1(Ω) coincides with its extension Ef ∈ W 1,1(Rn) for all x ∈ Ω, the integral 
on the left hand side can be controlled by a maximal multiplier as in [2] acting on 
Ef(· + h) − Ef(·). Then the claim follows from Theorem 3.1 in [2] and the assumed 
boundedness of E : W 1,1(Ω) → W 1,1(Rn).

8.3. Smoothing for cube maximal functions

An equally interesting variant of the local fractional maximal function is the one 
defined by taking averages over cubes instead of balls

MΩ,cube
α f(x) = sup

r>0,Q(x,r)⊂Ω
rα −

ˆ

Q(x,r)

f(y) dy.

As the faces of the cubes are completely flat, there are no Lp bounds for the maximal 
function
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sup
r>0

−
ˆ

∂Q(x,r)

f(y) dHn−1(y), (8.1)

and this was singled out as the principal reason why the methods in [12] do not extend 
to the case of cubical fractional maximal function.

Although we avoid the use quantites of the type (8.1), our proof is also inapplicable 
to the cubical case. There are two obvious obstructions:

• Let Ω be the upper half-plane. Take δ > 0 and define f as the characteristic function 
of [−δ, δ] × [0, δs] for some s ≥ 1. Varying s and sending δ → 0, we see that

‖B1f‖Lp � ‖f‖Lp

cannot hold for any p < ∞.
• As a detail in the proof, one can note that the analogues of the sets P (y) from (6.1)

defined relative to cubes might have full measure. The role of curvature, or lack of 
it, manifests in the 2j factor in the statement of Proposition (6.2).

On the other hand, it seems that the problems with the cubical maximal function are 
not only a matter of lack of curvature. As the remarks above show, there are domains 
where averages over flat surfaces cause problems. However, if the geometry of the domain 
is very special, this kind of phenomena can be ruled out. The following observation gives 
an example.

Proposition 8.2. Let Ω = {(x, y) ∈ R2 : x < y}. Then

‖∇MΩ,cube
α f‖Lp � ‖f‖Lp

for all f ∈ Lp.

Sketch of proof. The reduction to the cubical analogue of (5.2) follows by the lines of 
the spherical proof. Then it suffices to note that the decomposition in j and k is unnec-
essary, and an Lp bound for p > 1 follows by Minkowski’s inequality and a change of 
variables. �

The exact behavior of the cubical local fractional maximal function in more general 
domains remains an interesting open problem.

8.4. Scalable estimates

The method of the proof of Theorem 1.1 forced us to prove Lp → W 1,p estimates 
for the derivative of the fractional maximal function. Such estimates can only hold true 
in bounded domains or for α = 1, and in bounded domains they are weaker than the 
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expected Lp → Ẇ 1, np
p−(α−1) estimates, only known for p > n/(n − 1) by [12]. We do 

not pursue this possible improvement direction here, although we believe it to be an 
interesting open problem.
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